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Java Virtual Machine

JVM as an archetypical mobile code platform

Java type safety

Loader Classfile
−−−−−→ Verifier Classfile

−−−−−→ Runtime Env.

No type confusion ⇒ Security manager protected
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The JVM Verification Architecture

Program safety is a whole-program notion:
Intrachecking

Inferring the static properties of a classfile.

Interchecking
Checking that the inferred properties are compatible with
the run-time environment.

Interchecking and intrachecking are not cleanly
separated in the JVM bytecode verifier.
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Running Example

invokespecial A::M(S)

+M(S)

A

C
+M(S)

B

...

...

Need to show that C is a subclass of A.
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Architectural Problems

Crux:
Lack of modularity : Tight coupling among loader,
verifier and linker

Want:

1. Stand-alone verification modules
2. Distributed verification
3. Augmented type systems
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The Proof Linking Architecture

1. Modular verification:

Avoid the interchecking of external dependencies while
intrachecking a code unit.

2. Verification interface:

Record external dependencies in terms of proof
obligations and commitments.

3. Proof linking:

Incrementally discharge proof obligations at link time.
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Verification Interface

Record external dependencies by a well-defined
verification interface :
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Verification Interface

Record external dependencies by a well-defined
verification interface :

1. Proof obligations:

Example:
subclass(C,A)
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Verification Interface

Record external dependencies by a well-defined
verification interface :

1. Proof obligations:

Example:
subclass(C,A)

2. Commitments:

Example:
extends(C,B)
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Verification Interface

Record external dependencies by a well-defined
verification interface :

1. Proof obligations:

Example:
subclass(C,A) // resolve A::M(S) in C

2. Commitments:

Example:
extends(C,B)

3. Obligation discharging schedule
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Modular Verification
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Incremental Proof Linking
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Initial Theory
Arbitrary logic programs expressing type rules:
Example:

subclass(X,X).
subclass(X,Y ) :-
extends(X,Z), subclass(Z,Y ).

When coupled with commitments, Initial Theory
allows proof linker to discharge proof obligations:
Example:

The following commitments
extends(C,B).
extends(B,A).

allow us to discharge
subclass(C,A)
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Outline

1. Modeling Adequacy and Soundness
The Proof Linking architecture can be instantiated to
adequately model the semantic complexity of a production
mobile code system, and to do so in a provably sound
manner.

2. Implementation Feasibility
The Proof Linking architecture can be feasibly realized to
provide support for stand-alone verification modules,
distributed verification and augmented type systems.
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Modeling Adequacy and
Soundness
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Correctness Conditions

1. Safety:

All obligations relevant to the safe execution of a linking
primitive are generated and checked before that primitive
is executed.

2. Monotonicity:

Checked obligations may not be contradicted by
subsequently asserted commitments.

3. Completion:

All commitments that may be used for satisfying an
obligation are generated before the obligation is checked.
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Formal Modeling of Proof Linking
1. Linking primitives

load X Acquire classfile X

verify X Verify class X

endorse X Endorse class X for resolution
endorse X::M(S) Endorse member X::M(S) for resolution
resolve Y in X Resolve class symbol Y in class X

resolve Y ::M(S) in X Resolve member symbol Y ::M(S) in class X

2. Proof obligations and commitments

3. Initial theory

4. Linking strategy

Schedule of linking events in the form of a partial ordering
on the linking primitives.
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Linking Strategy

1. Natural Progression Property

load X < verify X < endorse X < resolve Y in X < resolve Y ::M(S) in X

2. Import-Checked Property

endorse Y < resolve Y in X

endorse Y < endorse Y ::M(S) < resolve Y ::M(S) in X

3. Subtype Dependency Property

verify Y < endorse X if Y is a supertype of X

4. Referential Dependency Property

endorse Y < endorse X ::M(S) if Y is referenced in X ::M(S)
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Establishing Correctness
Safety

Example:

verify C
subclass(C,A)

−−−−−−−−−−−−−−→ resolve A::M(S) in C

Monotonicity
Use definite clause logic (aka Horn clauses).

Completion
Example:
1. subclass(C,A) // resolve A::M(S) in C

1.1. extends(C,B) // verify C

1.2. subclass(B,A)

1.2.1. extends(B,A) // verify B

1.2.2. subclass(A,A)
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Correctness Results

Established Safety, Monotonicity and Completion for
a simplified model of Java dynamic linking [ FSE’98 ]

Formal verification by PVS [ TOSEM 9(4) ]

Extension to account for multiple classloaders
[ JVM’01 ]
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Implementation Feasibility
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Implementation Efforts
Aegis VM (aegisvm.sourceforge.net )

Reference implementation of Proof Linking
Open source JVM on GNU/Linux (x86)

Three components
Generic proof linking framework
Stand-alone bytecode verifier
Pluggable Verification Modules (PVMs)

Application
JAC – Java Access Control

UR CS TR 2003-11 (submitted for review)
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Generic Proof Linking Framework
User-defined verification domains

Obligation discharging as native function dispatching

Pluggable Obligation Library

API for interrogating the internal state of the VM

Standard representation of verification interface
Expressive obligation encoding scheme

Correctness considerations
Safety and Completion guaranteed

High fidelity to the Sun linking strategy
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Pluggable Verification Modules

An extensible protection mechanism

Link-time bytecode verification is turned into a
pluggable service that can be readily replaced,
reconfigured and augmented.

Application-specific verification services can be
safely introduced into the dynamic linking process of
the Aegis VM.

Supports link-time enforcement of augmented type
systems.
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JAC – Java Access Control

Write-protecting the transitive state of an object:

public class List {

public int data;

public List next;

public List(int data, List next) {

this.data = data; this.next = next;

}

}

readonly List x = new List(1, new List(2, null));

x.data = 5; // Error: Writing to immediate state

x.next.data = 6; // Error: Writing to transitive state
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JAC (Cont.)

public class Alice {

public static void main(String[] args) throws Throwable

List L = new List(1, new List(2, new List(3, null)));

Class C = Class.forName(args[0]);

Bob b = (Bob) C.newInstance();

System.out.println(b.sum(L));

}

}

public interface Bob {

int sum(readonly List L);

}
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JAC (Cont.)

public class Charlie implements Bob {

public int sum( List L) {

int acc = 0;

while (L != null) {

if (L.next == null) // corrupt last node

L.data = 0;

acc += L.data;

L = L.next;

}

return acc;

}

}
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JAC (Cont.)

public class Charlie implements Bob {

public int sum(readonly List L) {

int acc = 0;

while (L != null) {

if (L.next == null) // corrupt last node

L.data = 0;

acc += L.data;

L = L.next;

}

return acc;

}

}
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Future Works

Architectural constraints as security policies for
software extensions

Control flow constraints as proof obligations

Aspect-oriented approaches to extensible protection
mechanisms
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Summary of Contributions
1. The Proof Linking architecture

(a) Verification interface as proof obligations and commitments

(b) The notion of obligation discharging schedule

2. Modeling adequacy and soundness
(a) Correctness conditions: Safety , Monotonicity , Completion

(b) Employing the notion of linking strategy to articulate correctness

(c) Formal verification of Proof Linking for Java bytecode typechecking

3. Implementation feasibility
(a) Reference implementation of Proof Linking in the Aegis VM

(b) Stand-alone bytecode verifier

(c) Pluggable Verification Modules as an extensible protection mechanism
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