
Proof Linking
A Modular Verification Architecture for Mobile

Code Systems

Philip W. L. Fong

pwlfong@cs.uregina.ca

Department of Computer Science

University of Regina

Regina, Saskatchewan, Canada

Mobile Code Systems
Code Mobility

Process S

Client Machine

Process C

R

Server Machine

Proof Linking – p.1/30

Mobile Code Systems
Code Mobility

P

Client Machine

Process C

R

Server Machine

Process S

Program
Fragment

Proof Linking – p.2/30

Mobile Code Systems
Code Mobility

Process S

Client Machine

Process C

R

Client Machine

Process C

R

Program
Fragment

P

Server Machine

Process S

Server Machine

Proof Linking – p.3/30

Mobile Code Systems
Code Mobility

Process S

Client Machine

Process C

R

Client Machine

Process C

R

Program
Fragment

P

Server Machine

Process S

Server Machine

Examples

Postscript files Active Packets
Active Disks Java Applets

Proof Linking – p.4/30

Java Virtual Machine

JVM as an archetypical mobile code platform

Java type safety

Loader Classfile
−−−−−→ Verifier Classfile

−−−−−→ Runtime Env.

No type confusion ⇒ Security manager protected

Proof Linking – p.5/30

The JVM Verification Architecture

Program safety is a whole-program notion:
Intrachecking

Inferring the static properties of a classfile.

Interchecking
Checking that the inferred properties are compatible with
the run-time environment.

Interchecking and intrachecking are not cleanly
separated in the JVM bytecode verifier.

Proof Linking – p.6/30

Running Example

invokespecial A::M(S)

+M(S)

A

C
+M(S)

B

...

...

Need to show that C is a subclass of A.

Proof Linking – p.7/30

Architectural Problems

Crux:
Lack of modularity : Tight coupling among loader,
verifier and linker

Want:

1. Stand-alone verification modules
2. Distributed verification
3. Augmented type systems

Proof Linking – p.8/30

The Proof Linking Architecture

1. Modular verification:

Avoid the interchecking of external dependencies while
intrachecking a code unit.

2. Verification interface:

Record external dependencies in terms of proof
obligations and commitments.

3. Proof linking:

Incrementally discharge proof obligations at link time.

Proof Linking – p.9/30

Verification Interface

Record external dependencies by a well-defined
verification interface :

OProof Linking – p.10/30

Verification Interface

Record external dependencies by a well-defined
verification interface :

1. Proof obligations:

Example:
subclass(C,A)

OProof Linking – p.10/30

Verification Interface

Record external dependencies by a well-defined
verification interface :

1. Proof obligations:

Example:
subclass(C,A)

2. Commitments:

Example:
extends(C,B)

OProof Linking – p.10/30

Verification Interface

Record external dependencies by a well-defined
verification interface :

1. Proof obligations:

Example:
subclass(C,A) // resolve A::M(S) in C

2. Commitments:

Example:
extends(C,B)

3. Obligation discharging schedule

Proof Linking – p.10/30

Modular Verification

Linking Primitives

Commitment

Database

Verifier
Run−time

Environment
Loader

Commitments

+

Obligations

Verified

Code Unit

Proof

Linker
CommitmentsObligations

Untrusted

Code Unit

Obligations

resolve S in X 321 OOO

Proof Linking – p.11/30

Incremental Proof Linking

resolve S in X

Run−time

Environment

Proof

Linker

Linker

3 Prove obligations by

consulting commitments

Commitment

Database

Resolve4

2 Look up obligations

of requested action

O1 O2 O3

1

Obligations

Request that symbol S

is to be resolved in X

Linking Primitives

Proof Linking – p.12/30

Initial Theory
Arbitrary logic programs expressing type rules:
Example:

subclass(X,X).
subclass(X,Y) :-
extends(X,Z), subclass(Z,Y).

When coupled with commitments, Initial Theory
allows proof linker to discharge proof obligations:
Example:

The following commitments
extends(C,B).
extends(B,A).

allow us to discharge
subclass(C,A)

Proof Linking – p.13/30

Outline

1. Modeling Adequacy and Soundness
The Proof Linking architecture can be instantiated to
adequately model the semantic complexity of a production
mobile code system, and to do so in a provably sound
manner.

2. Implementation Feasibility
The Proof Linking architecture can be feasibly realized to
provide support for stand-alone verification modules,
distributed verification and augmented type systems.

Proof Linking – p.14/30

Modeling Adequacy and
Soundness

Proof Linking – p.15/30

Correctness Conditions

1. Safety:

All obligations relevant to the safe execution of a linking
primitive are generated and checked before that primitive
is executed.

2. Monotonicity:

Checked obligations may not be contradicted by
subsequently asserted commitments.

3. Completion:

All commitments that may be used for satisfying an
obligation are generated before the obligation is checked.

Proof Linking – p.16/30

Formal Modeling of Proof Linking
1. Linking primitives

load X Acquire classfile X

verify X Verify class X

endorse X Endorse class X for resolution
endorse X::M(S) Endorse member X::M(S) for resolution
resolve Y in X Resolve class symbol Y in class X

resolve Y ::M(S) in X Resolve member symbol Y ::M(S) in class X

2. Proof obligations and commitments

3. Initial theory

4. Linking strategy

Schedule of linking events in the form of a partial ordering
on the linking primitives.

Proof Linking – p.17/30

Linking Strategy

1. Natural Progression Property

load X < verify X < endorse X < resolve Y in X < resolve Y ::M(S) in X

2. Import-Checked Property

endorse Y < resolve Y in X

endorse Y < endorse Y ::M(S) < resolve Y ::M(S) in X

3. Subtype Dependency Property

verify Y < endorse X if Y is a supertype of X

4. Referential Dependency Property

endorse Y < endorse X ::M(S) if Y is referenced in X ::M(S)

Proof Linking – p.18/30

Establishing Correctness
Safety

Example:

verify C
subclass(C,A)

−−−−−−−−−−−−−−→ resolve A::M(S) in C

Monotonicity
Use definite clause logic (aka Horn clauses).

Completion
Example:
1. subclass(C,A) // resolve A::M(S) in C

1.1. extends(C,B) // verify C

1.2. subclass(B,A)

1.2.1. extends(B,A) // verify B

1.2.2. subclass(A,A)

Proof Linking – p.19/30

Correctness Results

Established Safety, Monotonicity and Completion for
a simplified model of Java dynamic linking [FSE’98]

Formal verification by PVS [TOSEM 9(4)]

Extension to account for multiple classloaders
[JVM’01]

Proof Linking – p.20/30

Implementation Feasibility

Proof Linking – p.21/30

Implementation Efforts
Aegis VM (aegisvm.sourceforge.net)

Reference implementation of Proof Linking
Open source JVM on GNU/Linux (x86)

Three components
Generic proof linking framework
Stand-alone bytecode verifier
Pluggable Verification Modules (PVMs)

Application
JAC – Java Access Control

UR CS TR 2003-11 (submitted for review)

Proof Linking – p.22/30

Generic Proof Linking Framework
User-defined verification domains

Obligation discharging as native function dispatching

Pluggable Obligation Library

API for interrogating the internal state of the VM

Standard representation of verification interface
Expressive obligation encoding scheme

Correctness considerations
Safety and Completion guaranteed

High fidelity to the Sun linking strategy

Proof Linking – p.23/30

Pluggable Verification Modules

An extensible protection mechanism

Link-time bytecode verification is turned into a
pluggable service that can be readily replaced,
reconfigured and augmented.

Application-specific verification services can be
safely introduced into the dynamic linking process of
the Aegis VM.

Supports link-time enforcement of augmented type
systems.

Proof Linking – p.24/30

JAC – Java Access Control

Write-protecting the transitive state of an object:

public class List {

public int data;

public List next;

public List(int data, List next) {

this.data = data; this.next = next;

}

}

readonly List x = new List(1, new List(2, null));

x.data = 5; // Error: Writing to immediate state

x.next.data = 6; // Error: Writing to transitive state

Proof Linking – p.25/30

JAC (Cont.)

public class Alice {

public static void main(String[] args) throws Throwable

List L = new List(1, new List(2, new List(3, null)));

Class C = Class.forName(args[0]);

Bob b = (Bob) C.newInstance();

System.out.println(b.sum(L));

}

}

public interface Bob {

int sum(readonly List L);

}

Proof Linking – p.26/30

JAC (Cont.)

public class Charlie implements Bob {

public int sum(List L) {

int acc = 0;

while (L != null) {

if (L.next == null) // corrupt last node

L.data = 0;

acc += L.data;

L = L.next;

}

return acc;

}

}

Proof Linking – p.27/30

JAC (Cont.)

public class Charlie implements Bob {

public int sum(readonly List L) {

int acc = 0;

while (L != null) {

if (L.next == null) // corrupt last node

L.data = 0;

acc += L.data;

L = L.next;

}

return acc;

}

}

Proof Linking – p.28/30

Future Works

Architectural constraints as security policies for
software extensions

Control flow constraints as proof obligations

Aspect-oriented approaches to extensible protection
mechanisms

Proof Linking – p.29/30

Summary of Contributions
1. The Proof Linking architecture

(a) Verification interface as proof obligations and commitments

(b) The notion of obligation discharging schedule

2. Modeling adequacy and soundness
(a) Correctness conditions: Safety , Monotonicity , Completion

(b) Employing the notion of linking strategy to articulate correctness

(c) Formal verification of Proof Linking for Java bytecode typechecking

3. Implementation feasibility
(a) Reference implementation of Proof Linking in the Aegis VM

(b) Stand-alone bytecode verifier

(c) Pluggable Verification Modules as an extensible protection mechanism

Proof Linking – p.30/30

	Mobile Code Systems
	Mobile Code Systems
	Mobile Code Systems
	Mobile Code Systems
	Java Virtual Machine
	The JVM Verification Architecture
	Running Example
	Architectural Problems
	The Proof Linking Architecture
	Verification Interface
	Modular Verification
	Incremental Proof Linking
	Initial Theory
	Outline
	Modeling Adequacy and Soundness
	Correctness Conditions
	Formal Modeling of Proof Linking
	Linking Strategy
	Establishing Correctness
	Correctness Results
	Implementation Feasibility
	Implementation Efforts
	Generic Proof Linking Framework
	Pluggable Verification Modules
	JAC -- Java Access Control
	JAC (Cont.)
	JAC (Cont.)
	JAC (Cont.)
	Future Works
	Summary of Contributions

