
Capability Type Systems for
Secure Cooperation

Philip W. L. Fong

pwlfong@cs.uregina.ca

Department of Computer Science

University of Regina

Regina, Saskatchewan, Canada

Overview

Motivation

Capability Types for Data Flow Control

Discretionary Capability Confinement

Enabling Technologies for Link-Time Type Checking

Capability Type Systems (June 21, 2005 @ PolyU) – p.1/33

Motivation

Capability Type Systems (June 21, 2005 @ PolyU) – p.2/33

Secure Cooperation

Secure Cooperation
Protection of mutually suspicious code units from
one another as they collaborate in the same
execution environment.

Applications
e.g., mobile code systems, software plug-in’s, OS
kernel extensions

Prototypical Platforms
Java, CLR

Capability Type Systems (June 21, 2005 @ PolyU) – p.3/33

Problem Statement
Language-based access control mechanisms:

Employing programming language technologies to address
access control challenges of secure cooperation:

Stack inspection [Wallach et al 2000]
Inlined reference monitor [Erlingsson & Schneider 2000]
Access control based on shallow execution history
[Abadi & Fournet 2003] [Fong 2004 / IEEE S&P]

OCapability Type Systems (June 21, 2005 @ PolyU) – p.4/33

Problem Statement
Language-based access control mechanisms:

Employing programming language technologies to address
access control challenges of secure cooperation:

Stack inspection [Wallach et al 2000]
Inlined reference monitor [Erlingsson & Schneider 2000]
Access control based on shallow execution history
[Abadi & Fournet 2003] [Fong 2004 / IEEE S&P]

Enforce only control flow policies [Jensen et al 1999]

Fail to account for data flow policies :
Controlling propagation of delegated resources
Object-level communication protocols

Capability Type Systems (June 21, 2005 @ PolyU) – p.4/33

Prison Mail System

Prison Mail System (PMS)

A toy problem originally proposed by Ambler and
Hoch (1977) for studying protection in
programming languages.
We present here a simplified, object-oriented
variant without diluting its original challenges.

Capability Type Systems (June 21, 2005 @ PolyU) – p.5/33

PMS: Roles

In the PMS are 3 types of objects:
1. Prisoner

forbidden from direct communication
all message exchanges must be mediated by
the PMS

2. Guard
responsible for message delivery

3. Mail
message carriers

Capability Type Systems (June 21, 2005 @ PolyU) – p.6/33

PMS: Java Interfaces

public interface Prisoner {
void send(Prisoner receiver, Guard messenger);
void receive(Mail message);

}

public interface Guard {
void deliver(Mail message, Prisoner receiver);

}

public final class Mail {
public Mail(String) { msg = m; }
public String read() { return msg; }
private String msg;

}

Capability Type Systems (June 21, 2005 @ PolyU) – p.7/33

PMS: Interaction Protocol

send(receiver, messenger)

sender : Prisoner messenger : Guard receiver : Prisoner

deliver(message, receiver)

receive(message)

Capability Type Systems (June 21, 2005 @ PolyU) – p.8/33

PMS: Interaction Protocol

public interface Prisoner {
(1) void send(Prisoner receiver, Guard messenger);
(3) void receive(Mail message);

}

public interface Guard {
(2) void deliver(Mail message, Prisoner receiver);

}

public final class Mail {
public Mail(String) { msg = m; }
public String read() { return msg; }
private String msg;

}

Capability Type Systems (June 21, 2005 @ PolyU) – p.9/33

PMS: Protection Problems
1. Mutual Suspicion.

The messenger is not allowed to read the message.

2. Rights Amplification.
The receiver is allowed to read the message.

3. Controlled Propagation of Capability.
Message in transit must not be leaked to other
Guards.

4. Mediated Communication.
The sender shall not send the message directly to
the receiver.

5. Conservation of Capability.
The sender and the messenger must not store away
the receiver for future use.

Capability Type Systems (June 21, 2005 @ PolyU) – p.10/33

Capability Types for Data Flow
Control

Capability Type Systems (June 21, 2005 @ PolyU) – p.11/33

Intuition: Capability Type Systems
A type qualifier restricts how one may access the
underlying datum:

int *p;

OCapability Type Systems (June 21, 2005 @ PolyU) – p.12/33

Intuition: Capability Type Systems
A type qualifier restricts how one may access the
underlying datum:

const int *p;

OCapability Type Systems (June 21, 2005 @ PolyU) – p.12/33

Intuition: Capability Type Systems
A type qualifier restricts how one may access the
underlying datum:

const int *p;

A capability [Dennis & Van Horn 1966] is an unforgeable
pair :

〈object-reference, access-rights〉.

OCapability Type Systems (June 21, 2005 @ PolyU) – p.12/33

Intuition: Capability Type Systems
A type qualifier restricts how one may access the
underlying datum:

const int *p;

A capability [Dennis & Van Horn 1966] is an unforgeable
pair :

〈object-reference, access-rights〉.
In a programming language context, a type qualifier
plays the role of access-rights:

access-rights Object ref;

Such is the motivation for capability type systems
[Boyland et al 2001].

Capability Type Systems (June 21, 2005 @ PolyU) – p.12/33

Intuition: Data Flow Control
Access control by restricting argument passing:

f(a, b)

If a is prevented from being passed into f , then the invocation of f

will fail.

Application to object-oriented context :

a.f(b)

The message receiver a is also an argument!

Controlling to which method a may be passed as an argument
allows us to present a restricted view of a, in which some
methods of a are inaccessible . . .

. . . thus a capability type system.

Further development:

Controlling propagation and sharing of capabilities.

Capability Type Systems (June 21, 2005 @ PolyU) – p.13/33

Capability Types for Data Flow Control

T ::= > Top: most restricted - no aliasing

| ⊥ Bottom: least restricted - any aliasing

| P → T Propagation: pass into P as a T argument

| [T] Sharing: store into a field as a T value

| T1 u T2 Choice: exercise either T1 or T2

| X Abstraction: recursive capability types

P ::= a set of method signatures

X ::= a capability type variable

Capability Type Systems (June 21, 2005 @ PolyU) – p.14/33

Example
Example Consider the recursive definition:

R = (READ → ⊥) u [R]

where READ = {String Mail.read()}.

A Mail reference with a capability type satisfying the above
recursive definition can be read right away, or be saved into a
field for both future reading and future sharing.

The capability type R corresponds to the following labelled
transition system (LTS):

[.]

T

R
String Mail.read()

Capability Type Systems (June 21, 2005 @ PolyU) – p.15/33

Solution Annotation

public interface Guard {
void deliver(Mail message,

Prisoner receiver);
}

OCapability Type Systems (June 21, 2005 @ PolyU) – p.16/33

Solution Annotation

public interface Guard {
void deliver(@flow(RECV → [READ → ⊥]) Mail message,

Prisoner receiver);
}

where

RECV def
= {void Prisoner.receive(Mail)}

READ def
= {String Mail.read()}

OCapability Type Systems (June 21, 2005 @ PolyU) – p.16/33

Solution Annotation

public interface Guard {
void deliver(@flow(RECV → [READ → ⊥]) Mail message,

@flow(RECV → ⊥) Prisoner receiver);
}

where

RECV def
= {void Prisoner.receive(Mail)}

READ def
= {String Mail.read()}

Capability Type Systems (June 21, 2005 @ PolyU) – p.16/33

Full Annotation
public interface Prisoner {

void send(@flow(DLVR → RECV → ⊥) Prisoner receiver,
@flow(DLVR → ⊥) Guard messenger);

void receive(@flow([READ → ⊥]) Mail message);
}
public interface Guard {

void deliver(@flow(RECV → [READ → ⊥]) Mail message,
@flow(RECV → ⊥) Prisoner receiver);

}

where

DLVR def
= {void Guard.deliver(Mail, Prisoner)}

RECV def
= {void Prisoner.receive(Mail)}

READ def
= {String Mail.read()}

Capability Type Systems (June 21, 2005 @ PolyU) – p.17/33

What Have Been Achieved?

All 5 protection problems are fully addressed.

Type constraints are formulated at the level of JVM
bytecode.

Enforceable at link time by the code consumer.
Type checking involves data flow analysis.

Implementation is underway:
Compile-time tool for (i) type checking annotated
Java source code and (ii) embedding type
annotations into Java classfiles.
Link-time type checker embedded in a JVM.

Future work: type inference & certifying compiler.

Capability Type Systems (June 21, 2005 @ PolyU) – p.18/33

Discretionary Capability
Confinement

Capability Type Systems (June 21, 2005 @ PolyU) – p.19/33

Challenge: Capability Spoofing Attacks

OCapability Type Systems (June 21, 2005 @ PolyU) – p.20/33

Challenge: Capability Spoofing Attacks

What if an untrusted class implements both the
Prisoner and Guard interfaces?

OCapability Type Systems (June 21, 2005 @ PolyU) – p.20/33

Challenge: Capability Spoofing Attacks

What if an untrusted class implements both the
Prisoner and Guard interfaces?

What if a Guard creates, and subsequently colludes
with, a Prisoner instance?

OCapability Type Systems (June 21, 2005 @ PolyU) – p.20/33

Challenge: Capability Spoofing Attacks

What if an untrusted class implements both the
Prisoner and Guard interfaces?

What if a Guard creates, and subsequently colludes
with, a Prisoner instance?

Crux
Ability to forge capabilities

Capability Type Systems (June 21, 2005 @ PolyU) – p.20/33

Discretionary Capability Confinement

Discretionary Capability Confinement (DCC)
[with Boting Yang, submitted for review]:

A type system for avoiding capability forging:
statically enforceable
lightweight - no data flow analysis

Orthogonal but complementary to the previous
type system.

Capability Type Systems (June 21, 2005 @ PolyU) – p.21/33

DCC Basic Concepts

subsumed−by

Domains B

C

trusts

A
capability−of

Confinement

Capability Type Systems (June 21, 2005 @ PolyU) – p.22/33

DCC Typing Constraints

(DCC1) Capability confinement. A reference may escape a
confinement domain only in 2 cases:
1. it does not escape as a capability
2. it escapes via argument passing

OCapability Type Systems (June 21, 2005 @ PolyU) – p.23/33

DCC Typing Constraints

(DCC1) Capability confinement. A reference may escape a
confinement domain only in 2 cases:
1. it does not escape as a capability
2. it escapes via argument passing

(DCC2) Mediated access. If C does not trust A, the A shall
not invoke the static methods declared in C.

OCapability Type Systems (June 21, 2005 @ PolyU) – p.23/33

DCC Typing Constraints

(DCC1) Capability confinement. A reference may escape a
confinement domain only in 2 cases:
1. it does not escape as a capability
2. it escapes via argument passing

(DCC2) Mediated access. If C does not trust A, the A shall
not invoke the static methods declared in C.

(DCC3) Consistent subtyping. A reference type is always
trusted by its supertypes.

OCapability Type Systems (June 21, 2005 @ PolyU) – p.23/33

DCC Typing Constraints

(DCC1) Capability confinement. A reference may escape a
confinement domain only in 2 cases:
1. it does not escape as a capability
2. it escapes via argument passing

(DCC2) Mediated access. If C does not trust A, the A shall
not invoke the static methods declared in C.

(DCC3) Consistent subtyping. A reference type is always
trusted by its supertypes.

(DCC4) Hereditary mutual suspicion. If A and B does not
trust one another, then so do A and a subtype of B.

Capability Type Systems (June 21, 2005 @ PolyU) – p.23/33

DCC Annotations for PMS

subsumed−by

{ Object, String, etc }

PrisonerDomain

{ Prisoner, Mail }

GuardDomain

{ Guard }

AppCoreDomain

{ Main }

subsumed−by

subsumed−by subsumed−by

Root

Capability Type Systems (June 21, 2005 @ PolyU) – p.24/33

What Have Been Achieved?
DCC is interesting in its own right:

implementing a useful capability type system for Java with
minimum perturbation to the semantics of the language.

a basic building block for building more sophisticated
capability type systems.

OCapability Type Systems (June 21, 2005 @ PolyU) – p.25/33

What Have Been Achieved?
DCC is interesting in its own right:

implementing a useful capability type system for Java with
minimum perturbation to the semantics of the language.

a basic building block for building more sophisticated
capability type systems.

Type constraints are formulated at the level of JVM bytecode.

Enforceable at link time by the code consumer.

Type checking very efficient: no data flow analysis involved

OCapability Type Systems (June 21, 2005 @ PolyU) – p.25/33

What Have Been Achieved?
DCC is interesting in its own right:

implementing a useful capability type system for Java with
minimum perturbation to the semantics of the language.

a basic building block for building more sophisticated
capability type systems.

Type constraints are formulated at the level of JVM bytecode.

Enforceable at link time by the code consumer.

Type checking very efficient: no data flow analysis involved

Fully implemented:

Compile-time type checker based on JDK 5.0 annotation
facility and Apache BCEL

Link-time type checker based on PVM

OCapability Type Systems (June 21, 2005 @ PolyU) – p.25/33

What Have Been Achieved?
DCC is interesting in its own right:

implementing a useful capability type system for Java with
minimum perturbation to the semantics of the language.

a basic building block for building more sophisticated
capability type systems.

Type constraints are formulated at the level of JVM bytecode.

Enforceable at link time by the code consumer.

Type checking very efficient: no data flow analysis involved

Fully implemented:

Compile-time type checker based on JDK 5.0 annotation
facility and Apache BCEL

Link-time type checker based on PVM

A pure Java implementation based on IsoMod is underway

Capability Type Systems (June 21, 2005 @ PolyU) – p.25/33

What Have Been Achieved?

Inferring DCC annotations from legacy systems:
Application: certifying compiler
DCC type inference is NP-Complete

Complexity core: DCC1

A branch-and-bound type inference algorithm
based on graph transformation
infer DCC annotations for medium-size open
source software such as Jython (336 classes),
JRuby (468 classes), Kawa (746 classes) in a
matter of minutes

Capability Type Systems (June 21, 2005 @ PolyU) – p.26/33

Enabling Technologies for
Link-Time Type Checking

Capability Type Systems (June 21, 2005 @ PolyU) – p.27/33

Link-Time Type Checking

Need to embed link-time type checkers into the
dynamic linking process of a JVM

Type Annotations

Frontend javac Backend
Link−Time

Type Checker

Annotated

Java Source

Java

Source

Internet

Annotated

Classfile

JVM

Classfile

OCapability Type Systems (June 21, 2005 @ PolyU) – p.28/33

Link-Time Type Checking

Need to embed link-time type checkers into the
dynamic linking process of a JVM

Type Annotations

Frontend javac Backend
Link−Time

Type Checker

Annotated

Java Source

Java

Source

Internet

Annotated

Classfile

JVM

Classfile

2 enabling technologies:
PVM - Pluggable Verification Modules
IsoMod - A Module System for Software Isolation

Capability Type Systems (June 21, 2005 @ PolyU) – p.28/33

Pluggable Verification Modules
Pluggable Verification Modules (PVM) [OOPSLA’04]

Bytecode verification of the JVM becomes a
pluggable service that can be readily replaced,
reconfigured and augmented.
Application-specific verification services can be
safely incorporated into the dynamic linking
process of the JVM
Based on a verification architecture known as
Proof Linking

Challenge: Static verification interacts with dynamic
linking

How does one separate the two?

Capability Type Systems (June 21, 2005 @ PolyU) – p.29/33

Modular Verification

Obligation Discharging Schedule

Verifier
Run−time

Environment
Loader

Commitments

+

Obligations

Verified

Code Unit

Proof

Linker
CommitmentsObligations

Untrusted

Code Unit

Obligations

resolve S in X 321 OO

Linking Primitives

Database

Commitment
O

Capability Type Systems (June 21, 2005 @ PolyU) – p.30/33

Proof Linking

Obligation Discharging Schedule

Run−time

Environment

Proof

Linker

Linker

3 Prove obligations by

consulting commitments

Commitment

Database

Resolve4

2 Look up obligations

of requested action

O1 O2 O3

1

Obligations

Request that symbol S

is to be resolved in X

Linking Primitives

resolve S in X

Capability Type Systems (June 21, 2005 @ PolyU) – p.31/33

Proof Linking Architecture

Java instantiation satisfies 3 correctness conditions
— Safety, Monotonicity, Completion
[ACM FSE’98]

Correctness proof formally verified by PVS
[ACM TOSEM’00]

Support distributed verification protocols
[ICSE’98, JVM’01]

Capability Type Systems (June 21, 2005 @ PolyU) – p.32/33

IsoMod
A Module System for Software Isolation
[with Simon Orr, submitted for review]

Access control by controlling name visibility

IsoMod

Name Space

Untrusted
Extensions

Trusted
App Core

Child
Name Space

Import

Parent

OCapability Type Systems (June 21, 2005 @ PolyU) – p.33/33

IsoMod
A Module System for Software Isolation
[with Simon Orr, submitted for review]

Access control by controlling name visibility

IsoMod

Name Space

Untrusted
Extensions

Trusted
App Core

Child
Name Space

Import

Parent

An expressive, declarative policy language
DCC fully encoded in IsoMod

OCapability Type Systems (June 21, 2005 @ PolyU) – p.33/33

IsoMod
A Module System for Software Isolation
[with Simon Orr, submitted for review]

Access control by controlling name visibility

IsoMod

Name Space

Untrusted
Extensions

Trusted
App Core

Child
Name Space

Import

Parent

An expressive, declarative policy language
DCC fully encoded in IsoMod

Implementation is underway
Pure Java implementation as a custom class loader

Capability Type Systems (June 21, 2005 @ PolyU) – p.33/33

	Overview
	Motivation
	Secure Cooperation
	Problem Statement
	Prison Mail System
	PMS: Roles
	PMS: Java Interfaces
	PMS: Interaction Protocol
	PMS: Interaction Protocol
	PMS: Protection Problems
	Capability Types for Data Flow Control
	Intuition: Capability Type Systems
	Intuition: Data Flow Control
	{large Capability Types for Data Flow Control}
	Example
	Solution Annotation
	Full Annotation
	What Have Been Achieved?
	Discretionary Capability Confinement
	{large Challenge: Capability Spoofing Attacks}
	{large Discretionary Capability Confinement}
	DCC Basic Concepts
	DCC Typing Constraints
	DCC Annotations for PMS
	What Have Been Achieved?
	What Have Been Achieved?
	Enabling Technologies for Link-Time Type Checking
	Link-Time Type Checking
	Pluggable Verification Modules
	Modular Verification
	Proof Linking
	Proof Linking Architecture
	IsoMod

