
Viewer Discretion
Language-Based Protection Mechanisms for

Dynamically Extensible Systems

Philip W. L. Fong

pwlfong@cs.uregina.ca

Department of Computer Science

University of Regina

Regina, Saskatchewan, Canada



Dynamically Extensible Systems

Viewer Discretion (June 14, 2005 @ PolyU) – p.1/35



Dynamically Extensible Systems

Dynamically Extensible Systems
Executable extensions are dynamically linked into the address
space of a software system, either to deliver a short-lived
service, or to augment the capability of the host system in a
permanent manner.

OViewer Discretion (June 14, 2005 @ PolyU) – p.2/35



Dynamically Extensible Systems

Dynamically Extensible Systems
Executable extensions are dynamically linked into the address
space of a software system, either to deliver a short-lived
service, or to augment the capability of the host system in a
permanent manner.

Examples:

Mobile code systems

Scriptable applications

Software systems with plug-in architectures

OViewer Discretion (June 14, 2005 @ PolyU) – p.2/35



Dynamically Extensible Systems

Dynamically Extensible Systems
Executable extensions are dynamically linked into the address
space of a software system, either to deliver a short-lived
service, or to augment the capability of the host system in a
permanent manner.

Examples:

Mobile code systems

Scriptable applications

Software systems with plug-in architectures

The most challenging form of dynamically extensible systems are
those that dynamically download and execute foreign code.

Viewer Discretion (June 14, 2005 @ PolyU) – p.2/35



Mobile Code Systems

Two paradigms for structuring distributed systems:
1. Client-Server Systems

Client
Request

−−−−−−−−→ Server

2. Mobile Code Systems

Code Producer Code Unit
−−−−−−−−−→ Code Consumer

Viewer Discretion (June 14, 2005 @ PolyU) – p.3/35



Code Mobility

Process S

Client Machine

Process C

R

Server Machine

Viewer Discretion (June 14, 2005 @ PolyU) – p.4/35



Code Mobility

P

Client Machine

Process C

R

Server Machine

Process S

Program
Fragment

Viewer Discretion (June 14, 2005 @ PolyU) – p.5/35



Code Mobility

Process S

Client Machine

Process C

R

Client Machine

Process C

R

Program
Fragment

P

Server Machine

Process S

Server Machine

Viewer Discretion (June 14, 2005 @ PolyU) – p.6/35



Motivation of Code Mobility

1. Extension of system capabilities
Example: Active network

2. Real-time interaction with remote resources
Example: Java applets

3. Reduction of communication traffic
Example: Active disks

4. Avoiding distribution of state

Viewer Discretion (June 14, 2005 @ PolyU) – p.7/35



Security Challenges of Dynamically Extensible Systems

The Grand Challenge
Subject only to time-bounded, automated checking, code units
originating from any arbitrary source collaborate with one another
in the same address space.

1. Anonymous trust
. . . any arbitrary source . . .

2. Mutual suspicion
. . . same address space.

3. Implicit acquisition
. . . time-bounded, automated checking . . .

Viewer Discretion (June 14, 2005 @ PolyU) – p.8/35



Anonymous Trust
Traditional discretionary access control is based on
trusted identities.

Fallacy of the “ Identity Assumption” [Chess
1998]

The most important assumption that mobile code systems
violate is:

Whenever a program attempts some action, we can
easily identify a person to whom that action can be
attributed, and it is safe to assume that that person
intends the action to be taken.

For all intents and purposes, that is, every program that
you run may be treated as though it were an extension of
yourself.

Viewer Discretion (June 14, 2005 @ PolyU) – p.9/35



Anonymous Trust

Anonymous Trust How can a host system establish trust
for a code unit originating from an unknown origin
and developed by an unknown party?

Viewer Discretion (June 14, 2005 @ PolyU) – p.10/35



Mutual Suspicion
Assumption of “ Benign Peers”:

However, unlike processes, threads are not independent
of one another. Because all threads can access every
address in the task, a thread can read or write over any
other thread’s stacks. This [multi-threading] structure does
not provide protection between threads. Such protection,
however, should not be necessary. Whereas processes
may originate from different users, and may be hostile to
one another, only a single user can own an individual task
with multiple threads. The threads, in this case, probably
would be designed to assist one another, and therefore
would not require mutual protection.

From a standard OS textbook [Silberschatz and Galvin 1994].

Viewer Discretion (June 14, 2005 @ PolyU) – p.11/35



Mutual Suspicion

Because peer code units may originate from arbitrary
sources, resource-sharing peers may not trust one
another.

Mutual Suspicion How can protection be established
among mutually suspicious code units residing in
the same address space?

Also called the secure cooperation problem
[Rees 1996].

Viewer Discretion (June 14, 2005 @ PolyU) – p.12/35



Implicit Acquisition

Software is traditionally acquired through a gradual,
manual, and explicit process.

Fallacy of the “Explicit Acquisition Assumption”
[De Paoli et al 1998]:

Conventional computing paradigms assume that programs
are installed and configured once on any and every
machine and that these programs only exchange data.
This means that a user can make all possible checks over
a new program before running it. This assumption,
however, is no longer valid for open and mobile
environments, such as Java and the web.

Viewer Discretion (June 14, 2005 @ PolyU) – p.13/35



Implicit Acquisition

Implicit Acquisition In the absence of an explicit
acquisition process, how can trust be established
automatically within a limited time frame?

Viewer Discretion (June 14, 2005 @ PolyU) – p.14/35



The Language-Based Approach to
Protection

Viewer Discretion (June 14, 2005 @ PolyU) – p.15/35



Language-Based Security

Language-Based Security
Employing programming language technologies
to address the security challenges of
dynamically extensible systems.

OViewer Discretion (June 14, 2005 @ PolyU) – p.16/35



Language-Based Security

Language-Based Security
Employing programming language technologies
to address the security challenges of
dynamically extensible systems.

Protection Mechanisms
Static analysis & program verification
Execution monitoring
Program transformation

Viewer Discretion (June 14, 2005 @ PolyU) – p.16/35



Example: The Java Platform

Java is an archetypical language-based system.
Low-level memory protection
High-level access control

Viewer Discretion (June 14, 2005 @ PolyU) – p.17/35



Java: Low-Level Memory Protection
Unforgeable, strongly-typed object references.

OViewer Discretion (June 14, 2005 @ PolyU) – p.18/35



Java: Low-Level Memory Protection
Unforgeable, strongly-typed object references.

Java programs are compiled into strongly-typed
bytecode.

Bytecode programs annotated with source-level type
information.

OViewer Discretion (June 14, 2005 @ PolyU) – p.18/35



Java: Low-Level Memory Protection
Unforgeable, strongly-typed object references.

Java programs are compiled into strongly-typed
bytecode.

Bytecode programs annotated with source-level type
information.

Bytecode programs executed in Java Virtual
Machine (JVM).
1. Link-time bytecode verification

Type checking through data flow analysis
2. Type-safe dynamic linking
3. Run-time checks:

Array bounds checks.
Null reference checks.
Checked type casting.

Viewer Discretion (June 14, 2005 @ PolyU) – p.18/35



Java: High-Level Access Control
Stack inspection [Wallach et al 1998, Gordon & Fournet 2002]

OViewer Discretion (June 14, 2005 @ PolyU) – p.19/35



Java: High-Level Access Control
Stack inspection [Wallach et al 1998, Gordon & Fournet 2002]

Every class is assigned a set of access rights
Assignment is based on code source or digital signatures.
User may define custom access control policies.
When a stack frame is created in the run-time stack, it
inherits the access rights of the class in which the invoked
method is declared.

OViewer Discretion (June 14, 2005 @ PolyU) – p.19/35



Java: High-Level Access Control
Stack inspection [Wallach et al 1998, Gordon & Fournet 2002]

Every class is assigned a set of access rights
Assignment is based on code source or digital signatures.
User may define custom access control policies.
When a stack frame is created in the run-time stack, it
inherits the access rights of the class in which the invoked
method is declared.

To decide if an access is to be granted:
Every stack frame in the current run-time stack must be
granted the required access right.
Why? To guard against the Confused Deputy Problem.

OViewer Discretion (June 14, 2005 @ PolyU) – p.19/35



Java: High-Level Access Control
Stack inspection [Wallach et al 1998, Gordon & Fournet 2002]

Every class is assigned a set of access rights
Assignment is based on code source or digital signatures.
User may define custom access control policies.
When a stack frame is created in the run-time stack, it
inherits the access rights of the class in which the invoked
method is declared.

To decide if an access is to be granted:
Every stack frame in the current run-time stack must be
granted the required access right.
Why? To guard against the Confused Deputy Problem.

Provision for access rights amplification:
A method may annotate its stack frame to grant an access
right to all the preceding frames.

Viewer Discretion (June 14, 2005 @ PolyU) – p.19/35



Proof-Carrying Code

Viewer Discretion (June 14, 2005 @ PolyU) – p.20/35



Proof-Carrying Code
Proof-Carrying Code (PCC) [Necula & Lee 1996, Necula 1997]

Application of Floyd-style program verification to
memory protection in native code.

Verified code runs in full speed

Safety policies encoded in first-order logic
Edinburgh Logical Framework (LF)

OViewer Discretion (June 14, 2005 @ PolyU) – p.21/35



Proof-Carrying Code
Proof-Carrying Code (PCC) [Necula & Lee 1996, Necula 1997]

Application of Floyd-style program verification to
memory protection in native code.

Verified code runs in full speed

Safety policies encoded in first-order logic
Edinburgh Logical Framework (LF)

Applications:
OS kernel extensions
Type-safe assembly language
Java bytecode
Mobile agents

OViewer Discretion (June 14, 2005 @ PolyU) – p.21/35



Proof-Carrying Code
Proof-Carrying Code (PCC) [Necula & Lee 1996, Necula 1997]

Application of Floyd-style program verification to
memory protection in native code.

Verified code runs in full speed

Safety policies encoded in first-order logic
Edinburgh Logical Framework (LF)

Applications:
OS kernel extensions
Type-safe assembly language
Java bytecode
Mobile agents

Question: Who is to perform verification?
Viewer Discretion (June 14, 2005 @ PolyU) – p.21/35



Proof-Carrying Code

Interactive proof system:

Code
Producer Prover

Code
Checker Consumer

Code

Proof

Internet

Trusted Environment

Resilient to malicious code generator or
tampering.
No cryptography or trusted certification authorities
are necessary.

Viewer Discretion (June 14, 2005 @ PolyU) – p.22/35



Proof-Carrying Code
Efficient proof checking:

Efficient proof generation:

OViewer Discretion (June 14, 2005 @ PolyU) – p.23/35



Proof-Carrying Code
Efficient proof checking:

Code Producer:
1. Generate verification condition for code
2. Generate proof of verification condition
3. Ship both code and proof

Efficient proof generation:

OViewer Discretion (June 14, 2005 @ PolyU) – p.23/35



Proof-Carrying Code
Efficient proof checking:

Code Producer:
1. Generate verification condition for code
2. Generate proof of verification condition
3. Ship both code and proof
Code Consumer:

1. Acquire proof-carrying code
2. Generate verification condition for code
3. Check if proof establishes verification condition

Efficient proof generation:

OViewer Discretion (June 14, 2005 @ PolyU) – p.23/35



Proof-Carrying Code
Efficient proof checking:

Code Producer:
1. Generate verification condition for code
2. Generate proof of verification condition
3. Ship both code and proof
Code Consumer:

1. Acquire proof-carrying code
2. Generate verification condition for code
3. Check if proof establishes verification condition
Intuition:

Proof checking faster than proof generation

Efficient proof generation:

OViewer Discretion (June 14, 2005 @ PolyU) – p.23/35



Proof-Carrying Code
Efficient proof checking:

Code Producer:
1. Generate verification condition for code
2. Generate proof of verification condition
3. Ship both code and proof
Code Consumer:

1. Acquire proof-carrying code
2. Generate verification condition for code
3. Check if proof establishes verification condition
Intuition:

Proof checking faster than proof generation

Efficient proof generation:
Certifying compiler [Necula et al 1998/2000].

Viewer Discretion (June 14, 2005 @ PolyU) – p.23/35



Type Systems for Information Flow
Control

Viewer Discretion (June 14, 2005 @ PolyU) – p.24/35



Information Flow Control
Multilevel security [Bell & LaPadula 1973]

e.g., unclassified, restricted, confidential, secret,
top secret

Information flow control
Simple Security Property (No read up)
*-Property (No write down)

OViewer Discretion (June 14, 2005 @ PolyU) – p.25/35



Information Flow Control
Multilevel security [Bell & LaPadula 1973]

e.g., unclassified, restricted, confidential, secret,
top secret

Information flow control
Simple Security Property (No read up)
*-Property (No write down)

Application to program certification
[Denning & Denning 1977]

Every expression is statically assigned a security
label.
Static analysis to ensure no information flow from
high security values to low security variables.

Viewer Discretion (June 14, 2005 @ PolyU) – p.25/35



Information Flow Control
Explicit flow:

Implicit flow:

OViewer Discretion (June 14, 2005 @ PolyU) – p.26/35



Information Flow Control
Explicit flow:

X := H + 1;
L := X − 1;

Implicit flow:

OViewer Discretion (June 14, 2005 @ PolyU) – p.26/35



Information Flow Control
Explicit flow:

X := H + 1;
L := X − 1;

Implicit flow:

if H > 0 then
L := 1;

else
L := 0;

end if

OViewer Discretion (June 14, 2005 @ PolyU) – p.26/35



Information Flow Control
Explicit flow:

X := H + 1;
L := X − 1;

Implicit flow:

if H > 0 then
L := 1;

else
L := 0;

end if

L := 0;
while H > 0 do

H := H − 1;
L := L + 1;

end while

OViewer Discretion (June 14, 2005 @ PolyU) – p.26/35



Information Flow Control
Explicit flow:

X := H + 1;
L := X − 1;

Implicit flow:

if H > 0 then
L := 1;

else
L := 0;

end if

L := 0;
while H > 0 do

H := H − 1;
L := L + 1;

end while

Reasoning about information flow is equivalent to performing
dependency analysis [Abadi et al 1999].

“Does the value of L depends on H?”
Viewer Discretion (June 14, 2005 @ PolyU) – p.26/35



Information Flow Control
Volpano & Smith (1996) were the first to establish the
soundness of an information flow type system for a
core procedural language.

OViewer Discretion (June 14, 2005 @ PolyU) – p.27/35



Information Flow Control
Volpano & Smith (1996) were the first to establish the
soundness of an information flow type system for a
core procedural language.
1. Define a security policy under a standard

operational semantics:
Non-interference A variation of confidential (high)

input does not cause a variation of public (low)
output.

2. Define an information flow type system.
3. Prove that all well-typed programs observe the

security policy.

Viewer Discretion (June 14, 2005 @ PolyU) – p.27/35



Information Flow Control
Recent trends in type-based information flow control
[Sabelfeld & Myers 2003]:

1. Enriching language expressiveness
e.g., procedures, functions, exceptions, objects

2. Exploring the impact of concurrency
e.g., non-determinism, multi-threading, distribution

3. Analyzing covert channels
e.g., timing channels, probabilistic channels

4. Refining security policies
e.g., downgrading

OViewer Discretion (June 14, 2005 @ PolyU) – p.28/35



Information Flow Control
Recent trends in type-based information flow control
[Sabelfeld & Myers 2003]:

1. Enriching language expressiveness
e.g., procedures, functions, exceptions, objects

2. Exploring the impact of concurrency
e.g., non-determinism, multi-threading, distribution

3. Analyzing covert channels
e.g., timing channels, probabilistic channels

4. Refining security policies
e.g., downgrading

A Java implementation of information flow control is Jif
[Myers 1999].

http:www.cs.cornell.edu/jif

Viewer Discretion (June 14, 2005 @ PolyU) – p.28/35



Inlined Reference Monitors

Viewer Discretion (June 14, 2005 @ PolyU) – p.29/35



Reference Monitors
Execution monitoring via interposition:

Access Control Policy

Reference
Monitor

System Call Request

Accepted System Call

System Call Denial

OViewer Discretion (June 14, 2005 @ PolyU) – p.30/35



Reference Monitors
Execution monitoring via interposition:

Access Control Policy

Reference
Monitor

System Call Request

Accepted System Call

System Call Denial

Problem: Hard-coded into the host system.
Fail to account for the evolution of . . .

software configuration
security model

Viewer Discretion (June 14, 2005 @ PolyU) – p.30/35



Inlined Reference Monitors
Inlined Reference Monitors (IRM) [Erlingsson & Schneider 99/00]

Execution monitoring logic is weaved into untrusted code units
by a trusted binary rewriter.

Rewriter

Secured
Code

Untrusted
Code

Security
Policy

IRM

OViewer Discretion (June 14, 2005 @ PolyU) – p.31/35



Inlined Reference Monitors
Inlined Reference Monitors (IRM) [Erlingsson & Schneider 99/00]

Execution monitoring logic is weaved into untrusted code units
by a trusted binary rewriter.

Rewriter

Secured
Code

Untrusted
Code

Security
Policy

IRM

Administrated by code consumer ⇒ non-bypassable.

OViewer Discretion (June 14, 2005 @ PolyU) – p.31/35



Inlined Reference Monitors
Inlined Reference Monitors (IRM) [Erlingsson & Schneider 99/00]

Execution monitoring logic is weaved into untrusted code units
by a trusted binary rewriter.

Rewriter

Secured
Code

Untrusted
Code

Security
Policy

IRM

Administrated by code consumer ⇒ non-bypassable.

2 implementation options:
off-line rewriting
dynamic rewriting at load time

Viewer Discretion (June 14, 2005 @ PolyU) – p.31/35



IRM: Security Automata

Security policies are specified as Security Automata (SA)
[Schneider 2000]:

noSnd
read

send read

start

OViewer Discretion (June 14, 2005 @ PolyU) – p.32/35



IRM: Security Automata

Security policies are specified as Security Automata (SA)
[Schneider 2000]:

noSnd
read

send read

start

Policy language PSLang is an improvement over a first-generation
SA-based policy language.

Security events

Security states

Security updates

Viewer Discretion (June 14, 2005 @ PolyU) – p.32/35



IRM: Java Stack Inspection
Rewriting is applied to Java bytecode.

Source code not necessarily available

Compiler not part of the Trusted Computing Base

Interoperable with standard JVM.

OViewer Discretion (June 14, 2005 @ PolyU) – p.33/35



IRM: Java Stack Inspection
Rewriting is applied to Java bytecode.

Source code not necessarily available

Compiler not part of the Trusted Computing Base

Interoperable with standard JVM.

Rewriter performs peephole optimization on
generated code.

General enough to enforce Java stack inspection.
an under-optimized implementation:

3.0 – 72.5% slow down

a highly optimized implementation:
0.4 – 6.4% slow down

Viewer Discretion (June 14, 2005 @ PolyU) – p.33/35



Future Directions

Viewer Discretion (June 14, 2005 @ PolyU) – p.34/35



Active Areas of Research

More type systems for information flow control

Secure program partitioning

Characterization of enforceable policies

Beyond stack inspection

Access control type systems

Detection and avoidance of software vulnerabilities

Viewer Discretion (June 14, 2005 @ PolyU) – p.35/35


	Dynamically Extensible Systems
	Dynamically Extensible Systems
	Mobile Code Systems
	Code Mobility
	Code Mobility
	Code Mobility
	Motivation of Code Mobility
	{
ormalsize Security Challenges of Dynamically Extensible Systems}
	Anonymous Trust
	Anonymous Trust
	Mutual Suspicion
	Mutual Suspicion
	Implicit Acquisition
	Implicit Acquisition
	The Language-Based Approach to Protection
	Language-Based Security
	Example: The Java Platform
	{large Java: Low-Level Memory Protection}
	{large Java: High-Level Access Control}
	Proof-Carrying Code
	Proof-Carrying Code
	Proof-Carrying Code
	Proof-Carrying Code
	Type Systems for Information Flow Control
	Information Flow Control
	Information Flow Control
	Information Flow Control
	Information Flow Control
	Inlined Reference Monitors
	Reference Monitors
	Inlined Reference Monitors
	IRM: Security Automata
	IRM: Java Stack Inspection
	Future Directions
	Active Areas of Research

