
From Actions to Programs as Abstract Actual Causes

Bita Banihashemi*1, Shakil M. Khan*2, Mikhail Soutchanski3

1 York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
2 University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada

3 (Former) Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
bita@eecs.yorku.ca, shakil.khan@uregina.ca, mes@cs.ryerson.ca

Abstract

Causality plays a central role in reasoning about observations.
In many cases, it might be useful to define the conditions
under which a non-deterministic program can be called an
actual cause of an effect in a setting where a sequence of
programs are executed one after another. There can be two
perspectives, one where at least one execution of the pro-
gram leads to the effect, and another where all executions do
so. The former captures a “weak” notion of causation and is
more general than the latter stronger notion. In this paper, we
give a definition of weak potential causes. Our analysis is per-
formed within the situation calculus basic action theories and
we consider programs formulated in the logic programming
language ConGolog. Within this setting, we show how one
can utilize a recently developed abstraction framework to re-
late causes at various levels of abstraction, which facilitates
reasoning about programs as causes.

Introduction
Actual or token causation is concerned with identifying the
events or actions in a trace that can be considered as causes
of an observed effect. The seminal work of Pearl (2000) pro-
vided the foundations and served as inspiration for research
on actual causes in AI. This research culminated in the book
(Halpern 2016) that summarized a number of previously de-
veloped definitions concerning when an event can be consid-
ered as an actual cause of an effect. These definitions are de-
veloped within the framework of structural equations mod-
els (SEM), where a simple event is understood as assigning
a value to an endogenous variable.

However, this perspective does not facilitate the study of
causation for more complex activities such as control flow in
programs. It can be interesting and important to define when
a non-deterministic program is an actual cause of an effect
in a setting where a sequence of programs are executed one
after another. This immediately leads to the question when
can one intuitively say that a program is an actual cause?
One perspective can be that a non-deterministic program is
a weak potential cause, if at least one execution of the pro-
gram leads to a situation where the effect holds. Another
perspective is that a program is a strong potential cause if

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

all executions of the program produce the effect. Note that a
strong potential cause is also weak, but not vice versa. Also,
in both cases we talk about potential causes, since they can
manifest only in some of the situations that are produced by
the execution of the program sequence.

As an example, imagine Suzy buying a lottery ticket that
later wins a reward. If one conceptualizes the complex ac-
tions of purchasing the ticket as a highly non-deterministic
program, then it is reasonable to say that this program was a
weak potential cause of the fact that Suzy won, since there is
an execution of this program that leads to a situation where
the effect holds and another to a situation where it doesn’t.

Again, imagine a computer system that involves multi-
ple interacting agents. The typical examples of such systems
arise in computer security contexts where the behaviours of
the agents are specified by non-deterministic protocols due
to versatility of possible agent interactions. In this context,
one might be interested in determining if all of the execu-
tions of a protocol led to the successful handling of a secu-
rity leak. This corresponds to the case of a strong potential
cause.

In this paper, we give a definition of the more inclusive no-
tion of weak cause. We consider programs formulated in the
high-level logic programming language ConGolog (De Gia-
como, Lespérance, and Levesque 2000), which is based on
action theories specified in the situation calculus (SC) (Mc-
Carthy and Hayes 1969; Reiter 2001). We build on a recently
proposed definition of actual cause in the SC (Batusov and
Soutchanski 2018), which only considers primitive actions
as causes. Since we focus on programs as causes, a natural
question that arises then is how these two notions can be re-
lated. The programs can be complex, but often they can be
conceptualized at some abstract high-level (HL) as actions.
It turns out that the abstraction framework proposed in (Ban-
ihashemi, De Giacomo, and Lespérance 2017) that can relate
programs with primitive actions is also useful for relating a
subclass of weak potential causes (in particular, weak causes
that are also strong) at different levels of abstraction.

On the semantic level, models of programs can be very
complicated, but reasoning about effects of actions that serve
as their abstractions can be easier since essential details are
encapsulated in a simpler HL model. We argue that HL and
low-level (LL) causes can be related in a kind of commuta-
tive diagram. Namely, if an HL action is found to be a cause

of an effect, this action is associated to a program δ defined
over an LL theory that implements it, and this effect is an
abstraction of an LL formula φ (i.e., φ is a refinement of the
effect), then at the LL, δ must be a cause of φ. This result is
one of our main contributions. We focus here on semantics
and leave computational issues to future work.

The rest of this paper is organized as follows. In the next
section, we outline the SC. Then, we discuss previous work
on actual cause and abstraction. Subsequently, we define
what it means for a program to be a cause. Finally, we
study how abstraction can be utilized to reason about ab-
stract causes. We conclude with some discussion of previous
work and avenues for future research.

Preliminaries
Our base framework for this is the situation calculus (SC)
(McCarthy and Hayes 1969) as formalized in (Reiter 2001).
We assume that there is a finite number of action types A.
Moreover, we assume that the terms of object sort are a
countably infinite set N of standard names for which we
have the unique names assumption and domain closure. For
simplicity, and w.l.o.g., we assume that there are no func-
tions other than constants and no non-fluent predicates.

A basic action theory (BAT) D is the union of the fol-
lowing disjoint sets: the foundational, domain independent,
(second-order, or SO) axioms of the SC; (first-order, or FO)
precondition axioms; (FO) successor state axioms (SSAs)
describing how fluents change between situations; (FO)
unique names axioms for actions and (FO) domain clo-
sure on action types; (SO) unique name axioms and do-
main closure for object constants; and (FO) axioms describ-
ing the initial configuration of the world. A special predi-
cate Poss(a, s) is used to state that action a is executable
in situation s; precondition axioms characterize this predi-
cate. The abbreviation Executable(s) means that every ac-
tion performed in reaching situation s was possible in the
situation in which it occurred. The binary relation @ de-
fines precedence on situations; thus s @ s′ indicates s is
a sub-history of s′. Note that s v s′ is an abbreviation for
s @ s′∨s = s′. Also, s ≤ s′ states that s′ is a successor situ-
ation of s and that every action between s and s′ is in fact ex-
ecutable. We write do([a1, a2, . . . , an−1, an], s) as an abbre-
viation for do(an, do(an−1, . . . , do(a2, do(a1, s)) . . .)); for
an action sequence ~a, we often write do(~a, s) for do([~a], s).

An SC formula is uniform in s iff it does not mention
Poss, @, or equality on situations, it does not quantify over
situations, and whenever it mentions a term of sort situation
then that term is s. Also, we use upper-case Greek letters
for situation-suppressed SC formulae and we denote by Φ[s]
the formula obtained from Φ by restoring the situation argu-
ment s into all fluents in Φ. To represent and reason about
complex actions, various high-level programming languages
have been defined. Here we concentrate on (a fragment of)
ConGolog (De Giacomo, Lespérance, and Levesque 2000)
that includes the following constructs:

δ ::= nil | α | Φ? | (δ1; δ2) | (δ1|δ2) | (πx.δ(x)) | δ∗ | (δ1‖δ2).

Thus, complex actions can be composed using constructs

that include the empty program (nil), primitive actions (α),
waiting for a condition (Φ?), sequence (δ1; δ2), nondeter-
ministic branch (δ1|δ2), nondeterministic choice of argu-
ments (πx.δ(x)), nondeterministic iteration (δ∗), and con-
current execution (δ1‖δ2). Intuitively, πx.δ(x) nondetermin-
istically picks a binding for the variable x and performs the
program δ for this binding of x.

The semantics of ConGolog is specified in terms of
single-step transitions, using the following two predi-
cates (De Giacomo, Lespérance, and Levesque 2000): (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ in
situation smay lead to situation s′ with δ′ remaining; and (ii)
Final(δ, s), which holds if program δ may legally terminate
in situation s. The definitions of Trans and Final we use
are as in (De Giacomo, Lespérance, and Levesque 2000),
except that the test construct Φ? does not yield any transi-
tion, but is final when satisfied. The predicate Do(δ, s, s′)
means that program δ, when executed starting in situation
s, has s′ as its legal terminating situation. It is defined
as Do(δ, s, s′) .

= ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)
where Trans∗ denotes the reflexive transitive closure of
Trans. We use K to denote the axioms defining ConGolog.

Following (De Giacomo, Lespérance, and Muise 2012),
we say that a ConGolog program δ is situation-determined
(SD) in s if for every sequence of transitions, the remaining
program is determined by the resulting situation, i.e.,

SituationDetermined(δ, s)
.
=

∀s′, δ′, δ′′. Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′.

Example. Our running example involves a simple rescue
robot Rob that is designed to aid first responders. Ini-
tially Rob is at the Station but as an emergency at loca-
tion L1 exists, Rob is expected to go to L1 and assist in
the rescue operations (by removing rubble or by evacuat-
ing people). Action goLL(r, l) takes robot r to location l,
and is executable if r is not already at that location. Ac-
tion removeRubble(r, l) (resp. evacuate(r, l)) can be per-
formed by robot r at location l to remove rubble (resp. evac-
uate people); these actions are executable if r is at loca-
tion l. Fluent AtLL(r, l, s) indicates r’s location to be l at
situation s. Fluents Cleared(r, l, s) and Evacuated(r, l, s)
evaluate to true when the robot r has removed rubble and
evacuated people at location l respectively. Robot r is also
able to update the software packages it uses by perform-
ing action updateSWLL(r, v), where v indicates the version
of the software. Fluent UpdatedSWLL(r, v, s) indicates if
software has been updated to version v. Initially, we assume
a new version V 2021 is available.

The BAT for this domain Dex
l includes the following ac-

tion precondition axioms (throughout, we assume that free
variables are universally quantified from the outside):

Poss(goLL(r, l), s) ≡ ¬AtLL(r, l, s),
Poss(updateSWLL(r, v), s) ≡ ¬UpdatedSWLL(r, v, s),
Poss(removeRubble(r, l), s) ≡ AtLL(r, l, s),
Poss(evacuate(r, l), s) ≡ AtLL(r, l, s).

Moreover, Dex
l includes the following SSAs:

UpdatedSWLL(r, v, do(a, s)) ≡
a = updateSWLL(r, v) ∨ UpdatedSWLL(r, v, s),

AtLL(r, l, do(a, s)) ≡ a = goLL(r, l) ∨
(AtLL(r, l, s) ∧ ¬∃l′. l′ 6= l ∧ a = goLL(r, l′)),

Cleared(r, l, do(a, s)) ≡
a = removeRubble(r, l) ∨ Cleared(r, l, s),

Evacuated(r, l, do(a, s)) ≡
a = evacuate(r, l) ∨ Evacuated(r, l, s).

Thus, e.g., r will be located at l in do(a, s) iff a refers to r
going to l, or r was already at l in s and a is not the action
of r going to a different location l′.
Dex

l also includes the following initial state axioms:
AtLL(Rob, Station, S0), ¬UpdatedSWLL(Rob, V 2021, S0),
¬Evacuated(Rob, L1, S0), ¬Cleared(Rob, L1, S0). /

Theoretical Foundations
Actual Cause
Given a trace of events, actual achievement causes are the
events that are behind achieving an effect. In this section,
we review previous work on achievement causality in the
SC (Batusov and Soutchanski 2018). An effect here is an SC
formula Φ[s] that is uniform in s and that may include quan-
tifiers over object variables. Given an effect Φ, the actual
causes are defined relative to a causal setting that includes a
BATD representing the domain dynamics, and a ground sit-
uation σ, representing the “narrative” (i.e., trace of events)
where the effect was observed.

Definition 1 (Causal Setting) A causal setting is a tuple
〈D, σ, Φ[s]〉, where D is a BAT, σ is a ground situation term
of the form do([α1, · · · , αn], S0) with ground action func-
tions α1, · · · , αn such that D |= Executable(σ), and Φ[s]
is an SC formula uniform in s such thatD |= ¬Φ[S0]∧Φ[σ].

Since the theory D does not change, when referring to a
causal setting we will often suppress D and simply write
〈σ,Φ〉. Also, here Φ is required to hold by the end of the
narrative σ, and thus we ignore the cases where Φ is not
achieved by the actions in σ, since in that case, the achieve-
ment cause truly does not exist.

As all changes in the SC result from actions, the achieve-
ment causes of an effect are contained within a set of ground
action terms occurring in σ. However, since σ might include
multiple occurrences of the same action, one also needs to
identify the situations where those actions were executed.

According to (Batusov and Soutchanski 2018), if some
action α of the action sequence in σ triggers the formula
Φ to change its truth value from false to true relative to D,
and if there are no actions in σ after α that change the value
of Φ back to false, then α is an actual cause of achieving
Φ in σ. They showed that using the single-step regression
operator ρ (i.e., one-step version of the regression operator
defined in (Reiter 2001)), in addition to the primary action
that actually brings about the effect of interest, one can re-
cursively compute the chain of actions that build up to the
primary achievement cause. The following inductive defini-
tion formalizes this intuition. Let Πapa(α, σ) be the r.h.s. of
the precondition axiom for α in σ.

Definition 2 (Achievement Cause) A causal setting C =
〈D, σ,Φ[s]〉 satisfies the achievement condition of Φ via the

situation term do(α∗, σ∗) v σ iff there is an action α′ and
situation σ′ such that

D |= ¬Φ[σ′] ∧ ∀s. do(α′, σ′) v s v σ ⊃ Φ[s],

and either α∗ = α′ and σ∗ = σ′, or the associated causal
setting 〈σ′, ρ[Φ[s], α′] ∧ Πapa(α′, σ′)〉 satisfies its achieve-
ment condition via the situation term do(α∗, σ∗). Whenever
a causal setting C satisfies the achievement condition via sit-
uation do(α∗, σ∗), the action α∗ executed in situation σ∗ is
said to be an achievement cause of C.
According to (Batusov and Soutchanski 2018), the achieve-
ment causes of C form a finite sequence of situation-action
pairs, which is called the achievement causal chain of C.

Example (Cont’d). Consider causal setting Cex =
〈Dex

l , σex1,Φex1〉, where Φex1 = ∃r, l. Cleared(r, l) and
σex1 = do([updateSWLL(Rob, V 2021), goLL(Rob, L1),
removeRubble(Rob, L1)], S0). Then by Definition 2, the
action removeRubble(Rob, L1) performed in situation
S2 = do([updateSWLL(Rob, V 2021), goLL(Rob, L1)],
S0) is an achievement cause of Cex. This is the case
since removeRubble(Rob, L1) is the first action
after which the effect Φex1 becomes true. More-
over, we can show that goLL(Rob, L1) executed in
S1 = do(updateSWLL(Rob, V 2021), S0) is an-
other achievement cause of Cex, since the causal
setting 〈Dex

l ,Φ′, S2〉 satisfies the achievement condi-
tion Φ′ via the situation term do(goLL(Rob, L1), S1),
where Φ′ = ρ[Φex1, removeRubble(Rob, L1)] ∧
Πapa(removeRubble(Rob, L1), S2). Finally, these are all
the causes, and in particular updateSWLL(Rob, V 2021)
executed in S0 is not an achievement cause of Cex. /

Abstraction
We will use the abstraction framework of (Banihashemi,
De Giacomo, and Lespérance 2017) for reasoning about ab-
stract causes. In this framework, there is a high-level (HL) or
abstract action theory Dh and a low-level (LL) or concrete
action theory Dl representing the dynamics of the domain
at different levels of detail. Dh (resp. Dl) involves a finite
set of primitive action types Ah (resp. Al) and a finite set of
primitive fluent predicates Fh (resp. Fl). Also, Dh and Dl

are assumed to share no domain specific symbols except for
standard names for objects in N .
Definition 3 (Refinement Mapping) A refinement map-
pingm is a function that associates each HL primitive action
type A in Ah to a SD ConGolog program δA defined over
the LL theory that implements the action, i.e., m(A(~x)) =
δA(~x). Moreover,mmaps each situation-suppressed HL flu-
ent F (~x) in Fh to a situation-suppressed formula ΦF (~x)
defined over the LL theory that characterizes the concrete
conditions under which F (~x) holds in a situation.
We extend the notation so that m(Φ) stands for the result of
substituting every fluent F (~x) in situation-suppressed for-
mula Φ by m(F (~x)). Also, we apply m to action sequences
with m(α1, . . . , αn)

.
= m(α1); . . . ;m(αn) for n ≥ 1 and

m(ε)
.
= nil, where ε is the empty sequence of actions.

To relate the HL and LL models/theories, a variant of
bisimulation (Milner 1989) is defined as follows.

Definition 4 (m-Bisimulation) Given Mh a model of Dh,
and Ml a model of Dl ∪ K, a relation B ⊆ ∆Mh

S × ∆Ml

S

(where ∆M
S stands for the situation domain of M) is an m-

bisimulation relation between Mh and Ml if 〈sh, sl〉 ∈ B
implies that: (i) sh evaluates each HL primitive fluent the
same as the evaluation of the refinement of the fluent in sl;
(ii) for every HL primitive action type A in Ah , if there ex-
ists s′h s.t. Mh |= Poss(A(~x), sh) ∧ s′h = do(A(~x), sh),
then there exists s′l s.t. Ml |= Do(m(A(~x)), sl, s

′
l) and

〈s′h, s′l〉 ∈ B; and (iii) for every HL primitive action type
A in Ah , if there exists s′l s.t. Ml |= Do(m(A(~x)), sl, s

′
l),

then there exists s′h s.t. Mh |= Poss(A(~x), sh) ∧ s′h =
do(A(~x), sh) and 〈s′h, s′l〉 ∈ B.
Mh is m-bisimilar to Ml, written Mh ∼m Ml, iff there ex-
ists an m-bisimulation relation B between Mh and Ml such
that (SMh

0 , SMl
0) ∈ B.

Definition 5 (Sound abstraction) Dh is a sound abstrac-
tion ofDl relative to refinement mappingm iff for all models
Ml ofDl∪K, there exists a modelMh ofDh s.t.Mh ∼m Ml.
With a sound abstraction, if the HL theory entails that a se-
quence of actions is executable and achieves a condition,
then the LL must also entail that there exists an executable
refinement of the sequence such that the “translated” condi-
tion holds afterwards. Also, if the LL theory considers the
executability of a refinement of a sequence of HL actions to
be satisfiable and a refinement of an HL condition to hold
afterwards, then the HL must also consider the executabil-
ity of the sequence of HL actions satisfiable after which the
condition must hold as well.
Definition 6 (Complete abstraction) Dh is a complete ab-
straction of Dl relative to refinement mapping m iff for all
models Mh of Dh, there exists a model Ml of Dl ∪ K s.t.
Ml ∼m Mh.
With a complete abstraction, if the LL theory entails that
some refinement of a sequence of HL actions is executable
and achieves a “translated” HL condition, then the HL also
entails that the action sequence is executable and the condi-
tion holds afterwards. Also, if the HL theory considers the
executability of a sequence of actions to be satisfiable and a
condition to hold after that, then the LL must also consider
the executability of the refinement of the sequence of HL
actions satisfiable after which a “translated” condition must
hold as well.

Note that this approach supports the use of ConGolog pro-
grams to specify the possible dynamics of the domain at both
the HL and LL; this is done by following (De Giacomo et al.
2016) and “compiling” the program into the BAT D to get a
new BAT D′ whose executable situations are exactly those
that can be reached by executing the program.

Example (Cont’d). In our example, we define an HL BAT
Dex

h that abstracts over some details of Dex
l . At the HL, we

abstract over details of rescue actions. Action rescue(r, l)
abstracts over the process of either clearing rubble or evac-
uating people. The fluent AidedInRescue(r, l, s) indicates
if robot r has aided in rescue at location l. For simplicity, ac-
tions updateSWHL(r, v) and goHL(r, l) are defined similar
to updateSWLL(r, v) and goLL(r, l) respectively.

Dex
h includes the following precondition axioms:

Poss(updateSWHL(r, v), s) ≡ ¬UpdatedSWHL(r, v, s),
Poss(goHL(r, l), s) ≡ ¬AtHL(r, l, s),
Poss(rescue(r, l), s) ≡ AtHL(r, l, s).

The HL BAT also includes the following SSAs:

AidedInRescue(r, l, do(a, s)) ≡
a = rescue(r, l) ∨AidedInRescue(r, l, s).

AtHL and UpdatedSWHL have SSAs similar to their LL
counterparts respectively.
Dex

h contains the following initial state axioms:

AtHL(Rob,Station,S0),¬UpdatedSWHL(Rob,V 2021,S0),
¬AidedInRescue(Rob,L1,S0).

Refinement Mapping mex We specify the relationship
between the HL and LL BATs through a refinement map-
ping mex which is defined as follows:

mex(goHL(r, l)) = goLL(r, l),
mex(updateSWHL(r, v)) = updateSWLL(r, v),
mex(rescue(r, l)) = evacuate(r, l) | removeRubble(r, l),
mex(AtHL(r, l)) = AtLL(r, l),
mex(UpdatedSWHL(r, v)) = UpdatedSWLL(r, v),
mex(AidedInRescue(r, l))=Cleared(r, l)∨Evacuated(r, l).

By using Theorem 9 in (Banihashemi, De Giacomo, and
Lespérance 2017), it can be confirmed that Dex

h is a sound
abstraction of Dex

l relative to the mapping mex. /

Programs as Actual Causes
We now return to our discussion of abstract causes. As seen
in the previous section, Definition 2 appeals to regression,
a syntactic notion, and this requires the effect formula Φ[s]
to be uniform in s. However, this is too restrictive for us
as it is hard to adapt for abstract causes. Specifically, it is
hard to define regression over programs; recall Reiter de-
fined regression over primitive actions.1 Therefore, we start
by introducing the notion of dynamic effect formulae in the
SC, which is motivated by the notion of epistemic dynamic
formulae (Khan and Lespérance 2021).
Definition 7 (Dynamic Effect Formula) Let ~x and θ~a re-
spectively range over object terms and a sequence of action
terms. The class of situation-suppressed dynamic effect for-
mulae ψ is defined inductively using the following grammar:

ψ ::= P (~x) | ExecSeq(θ~a) | After(θ~a, ψ) | ¬ψ | ψ1∧ψ2 | ∃~x.ψ.

That is, a dynamic effect formula can be a situation-
suppressed fluent, a formula that says that some sequence of
actions θ~a is executable, a formula that indicates some dy-
namic effect formula holds after some sequence of actions
has occurred, or one that can be built from other dynamic
effect formulae using the usual connectives. Note that ψ can
have quantification over object variables, but must not in-
clude quantification over situations or the precedence oper-
ator @. We use lower-case Greek letters for dynamic effect

1Note that, previously (Mo, Li, and Liu 2016) has proposed an
extension of regression for programs; investigating whether their
definition can be adapted for our purpose is future work.

formulae. ψ[s] is the formula obtained from ψ by restoring
the appropriate situation argument into all fluents in ψ.
Definition 8

ψ[s]
.
=



P (~x, s) if ψ is P (~x)

∃s′. Do(θ~a, s, s′) if ψ is ExecSeq(θ~a)

ψ′[do([θ~a], s)] if ψ is After(θ~a, ψ
′)

¬(ψ′[s]) if ψ is (¬ψ′)
ψ1[s] ∧ ψ2[s] if ψ is (ψ1 ∧ ψ2)

∃~y. (ψ′[s]) if ψ is (∃~y. ψ′)

We generalize causal settings by allowing effects in our
framework to be any dynamic effect formula ψ, i.e., we no
longer require the effect to be uniform in s. Also, we do not
require the trace to be a ground situation term, so it can now
include arbitrary (non-ground) action terms. This general-
ization allows for the modeling of abstract causes.
Definition 9 (Generalized Causal Setting) A generalized
causal setting is a tuple 〈D, δ, ψ〉, where D is a BAT, δ is a
ConGolog program, and ψ is a dynamic effect formula s.t.:

D ∪K |= ¬ψ[S0] ∧ ∃s′. Do(δ, S0, s
′) ∧ ψ[s′].

Thus, there is at least one execution of the program δ starting
in the initial situation S0 after which the effect ψ holds.

As discussed in the previous section, the definition of ac-
tual achievement cause given by (Batusov and Soutchanski
2018) only deals with narratives that are linear sequences
of actions. Consequently, their causes are actions (or more
precisely, action-situation pairs).2 To facilitate the model-
ing of abstract causes, we extend this by allowing narratives
to be linear sequences of ConGolog programs. This allows
programs to be identified as causes of observed effects. In
the following, we progressively define what it means for a
ConGolog program to be a weak potential cause, starting
with primary causes. Note that, given a generalized causal
setting there can be more than one primary potential cause
of the effect as the program can have multiple possible exe-
cutions.

Definition 10 Given a generalized causal setting C =
〈D, (δ1; · · · ; δn), ψ〉 and a model M of D ∪ K, a program
δi+1 ∈ {δ1, · · · , δn} is called a primary weak potential
cause of ψ relative to C and M if and only if:

M |= ∃si, si+1, sn. Do((δ1; . . . ; δi), S0, si) ∧ ¬ψ[si]

∧Do(δi+1, si, si+1) ∧Do((δi+2; . . . ; δn), si+1, sn)

∧ ∀s′. si+1 ≤ s′ ≤ sn ⊃ ψ[s′].

The triple (si, si+1, ψ) is called a witness for this.

That is, a program δi+1 in the scenario (δ1; . . . ; δn) is a pri-
mary weak potential cause relative to a model M of theory
D ∪ K and causal setting C if and only if there is an exe-
cution of the prefix (δ1; . . . ; δi) that ends in situation si in
which ψ is false, situation si+1 can be reached by execut-
ing δi+1 starting from si, situation sn can be reached by

2Here and in the sequel, for brevity, we omit the terms actual
and achievement when we talk about causes, since we exclusively
consider actual achievement causes in this paper.

executing the remaining programs starting from si+1, and ψ
holds in all situations from si+1 up to sn. Essentially, this is
a straightforward generalization of the base case of Defini-
tion 2 and ensures that there is an execution of the scenario
over which ψ was achieved by some action in δi+1 and ψ
persisted till the end of the trace, i.e., it was not later made
false by a subsequent action.

Moreover, we define what it means for a program to be a
primary weak potential cause relative to a causal setting.

Definition 11 (Primary Weak Potential Cause) Given
a generalized causal setting C = 〈D, (δ1; · · · ; δn), ψ〉,
a program δi ∈ {δ1, · · · , δn} is called a primary weak
potential cause relative to C if and only if for all models M
of D ∪K, δi is a primary weak potential cause of ψ relative
to C and M .

Next, we define weak potential causes in general. These in-
clude both primary and non-primary causes reflecting both
base and inductive cases of Definition 2.

Definition 12 Given a generalized causal setting C =
〈D, (δ1; · · · ; δn), ψ〉 and a model M of D ∪ K, a program
δi ∈ {δ1, · · · , δn} is called a weak potential cause of ψ rel-
ative to C and M if and only if:

1. δi is a primary weak potential cause wrt C and M with
witness (s′, s′′, ψ′), where ψ′ = ψ, or

2. δj (where i < j ≤ n) is a weak potential cause relative to
setting C and M with witness (sj−1, do([~aj], sj−1), ψj),
and δi is a primary weak potential cause relative
to the setting 〈D, (δ1; · · · ; δj−1), ψ′〉 and model M
with witness (s′, s′′, ψ′), where ψ′ = ExecSeq(~aj) ∧
After(~aj , ψj).

We call (s′, s′′, ψ′) a witness for δi being a weak potential
cause wrt C and M .

Thus, δi is a weak potential cause relative to model M and
generalized causal setting C if and only if it is either a pri-
mary weak potential cause wrt C and M , or it is a primary
weak potential cause of another weak potential cause δj ,
i.e., it enables δj by ensuring that the appropriate execution
path ~aj of δj that brought about δj’s own effect ψj is exe-
cutable (i.e., that ExecSeq(~aj)) and by fulfilling the condi-
tions under which the execution of ~aj achieved ψj (i.e., that
After(~aj , ψj)).

Definition 13 (Weak Potential Cause) Given a general-
ized causal setting C = 〈D, (δ1; · · · ; δn), ψ〉, a program
δi ∈ {δ1, · · · , δn} is called a weak potential cause of ψ
relative to C if and only if for all models M of D∪K, δi is a
weak potential cause of ψ relative to C and M .

Moreover, if D is initially completely specified, there is
only one model; in that case, we call ψ′ from the witness
(s′, s′′, ψ′) in Definition 12 a witness to the fact that δi is a
weak potential cause of ψ relative to C.

Thus, we only call a program a weak potential cause relative
to a generalized causal setting if it is a weak potential cause
in all models of the theory.

Example (Cont’d). Consider the generalized causal set-
ting 〈Dex

l , (updateSWLL(Rob, V 2021); goLL(Rob, L1);

δrescue(Rob, L1)),∃r, l.Cleared(r, l)〉, where δrescue(r, l)
= mex(rescue(r, l)). Then according to our definitions,
δrescue(Rob, L1) is the primary weak potential cause rela-
tive to the above setting, as in all models,Dex

l ∪K |= ∃s2, s3.
Do((updateSWLL(Rob, V 2021); goLL(Rob, L1)), S0, s2)
∧¬∃r, l.Cleared(r, l)[s2]∧Do(δrescue(Rob, L1), s2, s3)∧
∃r, l.Cleared(r, l)[s3], and by the SSA for Cleared, the
effect persists until the end of scenario.

Note that, as only in some executions of the scenario
∃r, l.Cleared(r, l) is true, δrescue(Rob, L1) is considered
weak. If we instead consider the effect ∃r, l.Cleared(r, l)∨
Evacuated(r, l), then δrescue(Rob, L1) can be considered
as the primary strong potential cause in the sense that in all
executions of the scenario δrescue achieves the effect.

Moreover, we can also show that goLL(Rob, L1) is a
weak potential cause, since it is a primary weak potential
cause wrt the setting 〈Dex

l , (updateSWLL(Rob, V 2021);
goLL(Rob, L1)), ExecSeq(removeRubble(Rob, L1)) ∧
After(removeRubble(Rob, L1),∃r, l.Cleared(r, l))〉.

On the other hand, updateSWLL(Rob, V 2021) cannot be
shown to be a weak potential cause. /

Our notion of programs as actual cause above is a weak
and more inclusive one. We consider a program as a cause if
there is at least one execution where the program is a cause.
In some cases, it might be useful to consider a stronger ver-
sion, where a program is considered to be a cause if it is a
cause according to all executions of the program. A thorough
investigation of such a variant is future work.

When the program δ is finite, terminating, and composed
of ground actions only, one can show that the intermediate
effects (i.e., [ExecSeq(~a) ∧ After(~a, φ)]) can be straight-
forwardly computed using Reiter’s regression. Also, and in
particular, when δ is a finite sequence of ground actions,
the causes computed using our definition and Batusov and
Soutchanski’s (2018) definition are the same.

Theorem 14 Let δ = α1; · · · ;αn be a finite sequence of
ground actions. Then (αi, do([α1,· · ·, αi−1], S0)) is a cause
relative to the causal setting 〈D, do([δ], S0),Φ〉 according to
Definition 2 iff αi is a potential cause relative to the gener-
alized causal setting 〈D, δ,Φ〉 according to Definition 13.3

Proof. (Sketch) By Definitions 2, 8, 10, 11, and the defi-
nition of Do, the primary cause computed by both defini-
tions is the same. Moreover, by induction on the number of
causes and using Definitions 2, 8, 10, 11, 12, 13, the defini-
tion ofDo, and Reiter’s (2001) regression theorem, it can be
shown that the intermediate effects in these two definitions
(i.e., formulae ρ[Φ[s], α′]∧Πapa(α′, σ′) in Definition 2 and
ExecSeq(~aj) ∧ After(~aj , ψ) in Definition 12) are equiva-
lent, and thus it can be shown that the causes computed in
both cases are the same.

Given the above, it is easy to see that when δ is a finite se-
quence of ground actions, all properties shown for (Batusov
and Soutchanski 2018)’s framework also hold in ours. These
include the proper handling of preemption and switches.

3Note that, an SC formula Φ is also a dynamic effect formula.

Reasoning about Abstract Causes
We now focus on investigating how reasoning about abstract
causes can be simplified. In particular, we will show that
under some conditions, a subclass of weak potential causes
at various levels of abstraction can be related. This subclass
involves weak causes that are also strong in the sense that all
executions of the cause achieve the effect (see the corollary
below). This reduces reasoning about abstract causes (i.e.,
programs) at the LL to that of actions as causes at the HL
when said conditions are met.

We start by formalizing some of these conditions. First,
we assume that every HL action αi is mapped via m to an
LL program δi that may take part in an LL scenario; in this
way, any abstract scenario can be refined by a concrete one.

Moreover, we assume only action sequences that refine
some HL action sequence are executed in the LL BAT:
Assumption 1 (All LL behaviours refine HL actions)

Dl ∪ K |= ∀s.Executable(s)⊃∃δ.Trans∗(ANYSEQHL,S0, δ, s),
where ANYSEQHL

.
= (|Ai∈Ah π~x.m(Ai(~x)))∗,

i.e., do any sequence of refinements of HL actions.

Furthermore, we require that LL effects are non-transient
wrt HL actions:

Assumption 2 (Non-transiency of LL Effects) Suppose
the set FFi

R includes all the fluent literals in a refinement of
an HL fluent Fi. We assume that:

Dl ∪ K |= ∀s.Do(ANYSEQHL, S0, s) ⊃∧
Ai∈Ah

∧
Fi∈Fh

∧
FL∈F

Fi
R

∀s′, s′′, ~x, ~y.
FL(~y)[s] ∧Do(m(Ai(~x)), s, s′) ∧ FL(~y)[s′]
∧ s < s′′ < s′ ⊃ FL(~y)[s′′]

The above essentially requires the LL theory to entail that
if a fluent literal FL that is in a refinement of an HL flu-
ent Fi is true in both the situations before and after the
execution of the refinement of an HL action Ai(~x), then
it should remain true in all intermediate situations of ex-
ecution of the refinement of Ai(~x) as well. This condi-
tion must hold after any sequence of refinements of HL ac-
tions, i.e., Do(ANYSEQHL, S0, s). To see why this is nec-
essary, consider the following example. Suppose that at the
HL, we have the generalized causal setting 〈Dh, (α;β), Fhl〉
in which α is the only primary weak potential cause. As-
sume the following mapping: m(α) = a and m(β) =
b1; b2, and m(Fhl) = Fll. At the LL, after performing
a, Fll becomes true, and after performing b1 and b2, Fll

becomes false and true respectively. Hence, in the setting
〈Dl,m(α;β),m(Fhl)〉, m(β) is considered the only pri-
mary weak potential cause if the analysis is done at the LL
using Definition 13. To achieve correspondence of potential
causes between HL and LL, we need to rule out such cases.

To investigate how causes at the abstract and concrete lev-
els are related, we first consider sound abstractions. For this,
we first show that if at the HL, an effect Φ which is not true
in the initial situation, holds after the execution of sequence
of actions ~α, then at the LL, the refinement of Φ is false in
the initial situation, and holds after the execution of a refine-
ment of ~α. Moreover, if at the HL, an action αk (in ~α) is

considered a primary weak potential cause wrt the general-
ized casual setting Ch = 〈Dh, (~α),Φ〉, then a refinement of
αk can be considered a primary weak potential cause wrt the
setting Cm = 〈Dl,m(~α),m(Φ)〉 at the LL.4

Theorem 15 Suppose that Dh is a sound abstraction of Dl

wrt some refinement mapping m, and that Assumptions 1
and 2 hold. Then for any ground HL action sequence ~α and
for any HL situation suppressed formula Φ such that Dh |=
Executable(do(~α, S0))∧¬Φ[S0]∧Φ[do([~α], S0)], we have:

1. Dl∪K |= ¬m(Φ)[S0]∧∃s. Do(m(~α), S0, s)∧m(Φ)[s].
2. If ~α = ~αk−1αk~αk+1 and αk is the primary weak po-

tential cause wrt the generalized causal setting Ch =
〈Dh, (~α),Φ〉, then m(αk) is the unique primary weak
potential cause wrt the generalized causal setting Cm =
〈Dl,m(~α),m(Φ)〉.

Proof. (Sketch) Part 1 follows from Theorem 4 in (Bani-
hashemi, De Giacomo, and Lespérance 2017), as Dh is a
sound abstraction of Dl wrt mapping m. Based on part 1,
we conclude that there is a primary weak potential cause
at the low-level. Part 2 is shown by contradiction. Sup-
pose αk is the primary weak potential cause relative to Ch,
but m(αk) is not the unique primary weak potential cause
relative to Cm. We know by Assumption 1 that all low-
level actions (that may be executed) are part of some re-
finement of some high-level action. Hence, we can assume
m(~α) = m(~αj−1αj~αj+1) where j 6= k, and m(αj) is the
primary weak potential cause in the casual setting Cm. This
means that we can take an arbitrary model Ml of Dl ∪ K
such that m(αj) is the primary weak potential cause relative
to Cm and Ml. Since Dh is a sound abstraction of Dl wrt
to m, there exists a model Mh of Dh such that Mh and Ml

are bisimilar, and that αj is considered the primary weak
potential cause relative to Ch and Mh. But this contradicts
the fact thatDh entails that αk is the primary weak potential
cause wrt Ch. Assumption 2 ensures that the effect achieved
by m(αk) is persistent until the end of the trace.

We now focus on showing the correspondence of non-
primary (indirect) causes at the abstract and concrete lev-
els. As the witnessing formulae may be different for each
low-level model, we assume complete information (a single
model) at the LL.

Theorem 16 Suppose that Dh is a sound abstraction of Dl

wrt some refinement mapping m, and that Assumptions 1
and 2 hold. Then for any ground HL action sequence ~α and
for any HL situation suppressed formula Φ such that Dh |=
Executable(do(~α, S0))∧¬Φ[S0]∧Φ[do([~α], S0)], we have:

• If ~α = ~αk−1αk~αk+1αj~αj+1, αj is a weak poten-
tial cause wrt the generalized causal setting Ch =
〈Dh, (~α),Φ〉 with witness Φj , and,

• αk is the primary weak potential cause wrt the
setting C′h = 〈Dh, (~αk−1αk~αk+1),ExecSeq(αj) ∧
After(αj ,Φj)〉, and,

4In the following, we will quantify over action sequences and
so we need to encode sequences as first-order terms as in (De Gia-
como, Lespérance, and Levesque 2000). For notational simplicity,
we suppress this encoding and use sequences as terms directly.

• Dl is initially completely specified, and,
• m(αj) is a weak potential cause wrt the causal setting
Cm = 〈Dl,m(~α),m(Φ)〉 with witness m(Φj),

then, m(αk) is the unique primary weak po-
tential cause wrt the generalized causal set-
ting C′m = 〈Dl,m(~αk−1αk~αk+1), φ′L〉, where
Dl ∪ K |= ∃s∗, ~aj . Do(m(~αk−1αk~αk+1), S0, s

∗) ∧
Do(m(αj), s

∗, do([~aj], s
∗)) and φ′L = ExecSeq(~aj) ∧

After(~aj ,m(Φj)).
Proof. (Sketch) The proof is by contradiction. Suppose αk

is the primary weak potential cause relative to C′h, butm(αk)
is not the unique primary weak potential cause relative to
C′m. We know by Assumption 1 that all low-level actions
(that may be executed) are part of some refinement of some
high-level action. Hence, we can assume another action αp

where p 6= k is in the sequence of actions ~αk−1αk~αk+1,
and m(αp) is the primary weak potential cause in the casual
setting C′m. This means that we can take an arbitrary model
Ml ofDl∪K such that m(αp) is the primary weak potential
cause relative to C′m andMl. SinceDh is a sound abstraction
ofDl wrt tom, there exists a modelMh ofDh such thatMh

and Ml are bisimilar, and that αp is considered the primary
weak potential cause relative to C′h and Mh. But this con-
tradicts the fact that Dh entails that αk is the primary weak
potential cause wrt C′h. Assumption 2 ensures that the effect
achieved by m(αk) is persistent until the end of the trace,
and having a single model ensures that there is a sequence
of actions ~aj such that ExecSeq(~aj)∧After(~aj ,m(Φj)).

Example (Cont’d). Consider the HL setting Ch =
〈Dex

h , (~α), φe〉, where ~α = [updateSWHL(Rob, V 2021),
goHL(Rob, L1), rescue(Rob, L1)] and φe = ∃r, l.
AidedInRescue(r, l). Using similar reasoning as before,
we can show that rescue(Rob, L1) is the primary weak po-
tential cause relative to Ch. Moreover, goHL(Rob, L1) is an-
other cause relative to Ch.

By Theorem 15, we have that mex(rescue(Rob, L1)) =
δrescue(Rob, L1) is the primary weak potential cause rel-
ative to setting Cm = 〈Dex

l ,mex(~α),mex(φe)〉, where
mex(φe) = ∃r, l.Cleared(r, l) ∨ Evacuated(r, l) and
mex(~α) = updateSWLL(Rob, V 2021); goLL(Rob, L1);
δrescue(Rob, L1). Moreover, by Theorem 16, the action
goLL(Rob, L1) is considered another weak potential cause
relative to Cm. /

Notice that since the number of actions and fluents that
a reasoner needs to consider are typically higher at the LL,
Theorems 15 and 16 can yield important efficiency benefits.

Corollary 5 of (Banihashemi, De Giacomo, and
Lespérance 2017) ([BDL17]), showed that if Dh is a
sound abstraction of Dl wrt m, then the different sequences
of LL actions that are refinements of a given HL action
sequence all have the same effects on the HL fluents, and
more generally on HL situation-suppressed formulae, i.e.,
from the HL perspective they are deterministic:
Corollary 17 (from BDL17) If Dh is a sound abstraction
of Dl wrt m, then for any sequence of ground HL actions ~α
and for any HL situation-suppressed formula φ, we have:
Dl ∪ K |= ∀s, s′.Do(m(~α), S0, s) ∧Do(m(~α), S0, s

′) ⊃
(m(φ)[s] ≡ m(φ)[s′]).

This indicates that the weak potential causes in Theorems 15
and 16 are in fact strong in the sense that in all executions of
the program, the effect is achieved.

With complete abstractions, we can show that if at the
LL, the refinement of an effect Φ which is not true in the
initial situation, holds after the execution of a refinement of
sequence of actions ~α, then at the HL, the effect Φ is false
in the initial situation, and holds after the execution of ~α.
Moreover, if at the LL, the refinement of an action αk (in
~α) is considered the primary weak potential cause wrt the
generalized casual setting Cm = 〈Dl,m(~α),m(Φ)〉, then
αk can be considered a primary weak potential cause wrt
the setting Ch = 〈Dh, (~α),Φ〉 at the HL.

Theorem 18 Suppose that Dh is a complete abstraction of
Dl wrt some refinement mapping m. Then for any ground
HL action sequence ~α and for any HL situation sup-
pressed formula Φ such that Dl ∪ K |= ¬m(Φ)[S0] ∧
∃s. Do(m(~α), S0, s) ∧m(Φ)[s], we have that:

1. Dh |=¬Φ[S0]∧Executable(do([~α], S0))∧Φ[do([~α], S0)].
2. If ~α = ~αk−1αk~αk+1 and m(αk) is the primary weak

potential cause wrt the generalized causal setting Cm =
〈Dl,m(~α),m(Φ)〉 then αk is the unique primary weak
potential cause wrt the setting Ch = 〈Dh, (~α),Φ〉.

When considering non-primary (indirect) causes at the
abstract and concrete levels, similar to sound abstraction,
we need to assume complete information (a single model)
at the LL, since the witnessing formulae may be different
for each LL model. The following theorem shows the cor-
respondence between indirect causes at the concrete and ab-
stract levels.

Theorem 19 Suppose that Dh is a complete abstraction of
Dl wrt some refinement mapping m. Then for any ground
HL action sequence ~α and for any HL situation sup-
pressed formula Φ such that Dl ∪ K |= ¬m(Φ)[S0] ∧
∃s. Do(m(~α), S0, s) ∧m(Φ)[s], we have that:

• If Dl is initially completely specified, and,
• ~α = ~αk−1αk~αk+1αj~αj+1, m(αj) is a weak poten-

tial cause wrt the generalized causal setting Cm =
〈Dl,m(~α),m(Φ)〉 with witness m(Φj), and,

• m(αk) is the unique primary weak poten-
tial cause wrt the generalized causal set-
ting C′m = 〈Dl,m(~αk−1αk~αk+1), φ′L〉, where
Dl ∪ K |= ∃s∗, ~aj . Do(m(~αk−1αk~αk+1), S0, s

∗) ∧
Do(m(αj), s

∗, do([~aj], s
∗))) and φ′L = ExecSeq(~aj) ∧

After(~aj , m(Φj)), and,
• αj is a weak potential cause wrt the causal setting Ch =
〈Dh, ~α,Φ〉,

then, αk is the unique primary weak potential cause wrt
the setting C′h = 〈Dh, (~αk−1αk~αk+1),ExecSeq(αj) ∧
After(αj ,Φj)〉.
Proofs of Theorems 18 and 19 follow a similar reasoning as
Theorems 15 and 16, respectively.

Example (Cont’d). Let ~α = [updateSWHL(Rob, V 2021),
goHL(Rob, L1), rescue(Rob, L1)] and φe = ∃r, l.
AidedInRescue(r, l). Suppose at the LL, Dex

l ∪ K |=

¬mex(φe)[S0] ∧ ∃s. Do(mex(~α), S0, s) ∧ mex(φe)[s].
Moreover, suppose that δrescue(Rob, L1) is the
primary weak potential cause wrt setting Cm =
〈Dex

l ,mex(~α),mex(φe)〉, which brings about the ef-
fect mex(φe) = ∃r, l.Cleared(r, l) ∨ Evacuated(r, l).
Also, goLL(Rob, L1) is another cause wrt Cm.

Then by Theorem 18, we have that rescue(Rob, L1) is
the primary weak potential cause wrt the setting Ch =
〈Dex

h , (~α), φe〉, which brings about the effect φe. Moreover,
by Theorem 19 the action goHL(Rob, L1) can be considered
another weak potential cause wrt Ch. /

Depending on requirements of the domain, a modeler can
decide among sound, complete, or sound and complete ab-
stractions, each providing efficiency benefits.

Discussion
While there has been a lot of work on actual causation, to
the best of our knowledge, our account is the first and the
only proposal that investigates programs as actual causes.
Perhaps the closest to our work is the one by (Datta et al.
2015), who identified a subset of actions (program steps) of a
set of interacting programs as an actual cause for a violation
of specific properties in a security domain. Our approach
however, focuses on formalizing abstract actual causes as
programs in the settings where the actions that led to the
observed effect are only incompletely specified. Our frame-
work is based on an expressive logical language for repre-
senting and reasoning about dynamic domains. In addition
to non-deterministic programs, we allow for incomplete in-
formation that is represented through multiple models of a
BAT. Furthermore, we investigate how abstraction may be
used to facilitate representation and reasoning.

In this paper, we do not study how one can obtain an
abstraction given ConGolog programs. Instead, we study
causal reasoning that can be accomplished if we are given
a sound and/or a complete abstraction of our causal theory.
(Luo et al. 2020) proposed forgetting (of LL fluent and ac-
tion symbols) to obtain a sound and complete abstraction
of an LL BAT for a given mapping. Also, (Banihashemi, De
Giacomo, and Lespérance 2017) identified the necessary and
sufficient conditions for a (given) HL BAT to be a sound ab-
straction of an LL BAT under a mapping.

For simplicity, we focused on a single layer of abstrac-
tion, but the framework supports extending the hierarchy to
several levels. In future work, we plan to investigate method-
ologies for designing abstract theories and refinement map-
pings with respect to given observed effects, as well as auto-
mated synthesis techniques to support this. Extending the
current framework to support probabilistic actions (Belle
and Levesque 2020) and approximate abstractions, and how
such extensions facilitate reasoning about causality are im-
portant avenues for future research.

References
Banihashemi, B.; De Giacomo, G.; and Lespérance, Y. 2017.
Abstraction in Situation Calculus Action Theories. In Singh,
S. P.; and Markovitch, S., eds., Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence, 1048–
1055. AAAI Press.
Batusov, V.; and Soutchanski, M. 2018. Situation Calcu-
lus Semantics for Actual Causality. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
1744–1752. AAAI Press.
Belle, V.; and Levesque, H. J. 2020. Regression and pro-
gression in stochastic domains. Artificial Intelligence, 281:
103247.
Datta, A.; Garg, D.; Kaynar, D. K.; Sharma, D.; and Sinha,
A. 2015. Program Actions as Actual Causes: A Building
Block for Accountability. In Fournet, C.; Hicks, M. W.; and
Viganò, L., eds., IEEE 28th Computer Security Foundations
Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, 261–
275. IEEE Computer Society.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artif. Intell., 121(1-2): 109–169.
De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012. On
supervising agents in situation-determined ConGolog. In In-
ternational Conference on Autonomous Agents and Multia-
gent Systems, AAMAS 2012, 1031–1038. IFAAMAS.
De Giacomo, G.; Lespérance, Y.; Patrizi, F.; and Sardiña, S.
2016. Verifying ConGolog Programs on Bounded Situation
Calculus Theories. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, 950–956. AAAI Press.
Halpern, J. Y. 2016. Actual Causality. MIT Press. ISBN
978-0-262-03502-6.
Khan, S. M.; and Lespérance, Y. 2021. Knowing Why - On
the Dynamics of Knowledge about Actual Causes in the Sit-
uation Calculus. In Dignum, F.; Lomuscio, A.; Endriss, U.;
and Nowé, A., eds., AAMAS ’21: 20th International Confer-
ence on Autonomous Agents and Multiagent Systems, Virtual
Event, United Kingdom, May 3-7, 2021, 701–709. ACM.
Luo, K.; Liu, Y.; Lespérance, Y.; and Lin, Z. 2020. Agent
Abstraction via Forgetting in the Situation Calculus. In
ECAI 2020 - 24th European Conference on Artificial Intelli-
gence, volume 325 of Frontiers in Artificial Intelligence and
Applications, 809–816. IOS Press.
McCarthy, J.; and Hayes, P. J. 1969. Some Philosophi-
cal Problems From the Standpoint of Artificial Intelligence.
Machine Intelligence, 4: 463–502.
Milner, R. 1989. Communication and concurrency. PHI
Series in computer science. Prentice Hall.
Mo, P.; Li, N.; and Liu, Y. 2016. Automatic Verification
of Golog Programs via Predicate Abstraction. In Kaminka,
G. A.; Fox, M.; Bouquet, P.; Hüllermeier, E.; Dignum, V.;
Dignum, F.; and van Harmelen, F., eds., ECAI 2016 - 22nd
European Conference on Artificial Intelligence, 29 August-
2 September 2016, The Hague, The Netherlands - Includ-
ing Prestigious Applications of Artificial Intelligence (PAIS
2016), volume 285 of Frontiers in Artificial Intelligence and
Applications, 760–768. IOS Press.
Pearl, J. 2000. Causality: Models, Reasoning, and Inference.
Cambridge University Press.

Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.

