On the Semantics of Conditional Commitment

Shakil M. Khan and Yves Lespérance

Dept. of Computer Science and Engineering,
York University, Toronto, ON, Canada M3J 1P3
{skhan, lesperan}@cs.yorku.ca

Abstract. In this paper, we identify some problems with current for-
malizations of conditional commitments, i.e. commitments to achieve a
goal if some condition becomes true. We present a solution to these prob-
lems. We also formalize two types of communicative actions that can be
used by an agent to request another agent to achieve a goal or perform
an action provided that some condition becomes true. Our account is
set within ECASL [§], a framework for modeling communicating agents
based on the situation calculus.

1 Introduction

In recent years, the importance of agent communication in multiagent systems
has been widely recognized. As a result, many researchers have developed com-
municative multiagent frameworks [BBITIT6I20024126] and attempted to formal-
ize various types of communicative actions in these frameworks. One important
concept in these is the notion of conditional commitment. A conditional commit-
ment is a commitment to achieve some goal if some condition becomes true (e.g.
a commitment to ship some goods when payment of an agreed to amount ar-
rives). Conditional requests are requests that seek to have the addressee acquire
a conditional commitment. Any multiagent framework that deals with negotia-
tion and cooperation ought to handle conditional commitments. Unfortunately,
most definitions found in the literature (in [5I29/24]T], for example) are inade-
quate: they either define conditional commitments as disjunctive goals, which
makes the agents under-committed to the conditional goal, or define them as
conjunctive goals, which renders the agent over-committed.

We will go over some examples to point out the problems associated with the
disjunctive and the conjunctive accounts of conditional commitment. In these,
we use the following modal operators: O¢, i.e. ¢ eventually holds, Happens(a),
i.e. the action « is performed next, ¢ Until 1, i.e. eventually ¥ becomes true, and
as long as v is false, ¢ holds, and Before(1), ¢), i.e. if ¢ eventually becomes true,
then ¢ becomes true before 1) does. The formal semantics of these operators are
given in Section 2.

In the disjunctive account, a conditional commitment to achieve some goal
provided that some condition holds is modeled as a commitment to achieve the
goal if the condition holds, i.e. as a simple material implication. For example,
consider an online marketplace domain. Suppose that there are two agents, a

F. Dignum et al. (Eds.): AC 2005, LNAI 3859, pp. 45-60} 2006.
© Springer-Verlag Berlin Heidelberg 2006

46 S.M. Khan and Y. Lespérance

seller agent sir, and a buyer agent byr. If we use a disjunctive account, sir’s
conditional commitment to ship some goods to byr on the condition that byr
pays can be modeled as follows:

CondlInt y;(slr, Get Paid, Happens(shipGoods(sir, byr)))
= Int(slr, ~OGetPaid V
[-GetPaid Until
(GetPaid N Happens(shipGoods(slr, byr)))]).

This says that slr’s conditional commitment to ship the goods when byr pays
amounts to slr having the intention that byr eventually pays and after that she
ships the goods, if byr eventually pays (as mentioned earlier, the Until construct
in the goal above implies that CGetPaid and OHappens(shipGoods(slr, byr))).
One problem with this account of conditional intention is that there is a counter-
intuitive way to satisfy the conditional intention, namely, the agent may commit
to the triggering condition remaining false and deliberately perform some ac-
tion that makes it remain false. Thus, in the example, to satisfy her conditional
intention, slr may intentionally perform some action to stop byr from paying
her, such as blocking debits from byr. In other words, there is nothing in this
formalization of conditional intention that stops sir from intending not to get
paid and not to send the goods. However, this is counter-intuitive and a model of
conditional commitment should not support this. Thus, with the disjunctive ac-
count of conditional commitment, the agent seems under-committed to the goal.
Examples of accounts in the literature that formalize conditional commitments
as disjunctive goals are [24] and [I].

In the conjunctive account, a conditional commitment to achieve a goal pro-
vided that a condition holds is modeled as a temporally ordered conjunctive
commitment to the triggering condition and the conditional goal, where the
triggering condition is achieved first. Although this model may seem appropri-
ate in many cases, it often leads to problems. For example, suppose that sir
has the conditional commitment to ship a replacement unit provided that byr
reports and returns a defective good. If we use a conjunctive account, this can
be modeled as follows:

CondIntcon (sir, De f Good Ret, Happens(shipRepl(slr, byr))) =
Int(sir, Before(Happens(shipRepl(sir, byr)), De f Good Ret)
A OHappens(shipRepl(slr, byr))).

This says that slr’s conditional commitment to ship a replacement unit provided
that byr returns a defective good can be modeled as slr’s intention that byr re-
turns a defective good before slr ships a replacement unit, and eventually sir
ships a replacement unit. Note that, according to this definition, since sir has the
intention that the defective product is returned before she ships the replacement
unit, and that she eventually ships the replacement unit, it follows that sir has
the intention that byr eventually returns a product, i.e. Int(sir, O De fGoodRet).
So slr may deliberately perform some action, such as shipping a defective good in

On the Semantics of Conditional Commitment 47

the first place, to achieve this intention. Thus, the conjunctive account of condi-
tional commitment results in over-committed agents. Both [5] and [29] formalize
conditional commitments as conjunctive goals.

In this paper, we propose a solution to these problems (the wunder/over-
commitment problems, henceforth). Our solution involves using an additional
constraint with the disjunctive account to eliminate the under-commitment prob-
lem. We use the Extended Cognitive Agent Specification Language (ECASL) [g]
as our base formalism for this. Our account is formulated for internal/mental
states semantics for communication acts. Nevertheless, the same issues arise for
public/social-commitment semantics (as discussed in Section 5). In this paper,
we will use the terms ‘intention’ and ‘commitment’ interchangeably.

The paper is organized as follows: in the next section, we outline the ECASL
framework. In Section 3, we present our model of conditional commitment and
discuss some of its properties. In Section 4, we present some communicative acts
that allow agents to make requests that result in conditional commitments. In
Section 5, we compare our approach to previous work on conditional commit-
ments. Finally in Section 6, we summarize our results and discuss possible future
work.

2 ECASL

The Extended Cognitive Agent Specification Language (ECASL) [§], an exten-
sion of CASL [23/25], is a framework for specifying and verifying complex com-
municating multiagent systems that incorporates a formal model of means-ends
reasoning. In this section, we outline the part of ECASL that is needed for our
formalization of conditional commitment.

In ECASL, agents are viewed as entities with mental states, i.e., knowledge
and goals, and the specifier can define the behavior of the agents in terms of
these mental states. ECASL combines a declarative action theory defined in
the situation calculus with a rich programming/process language, ConGolog [4].
Domain dynamics and agents’ mental states are specified declaratively in the
theory, while the agents’ behavior is specified procedurally in ConGolog.

In ECASL, a dynamic domain is represented using an action theory [17] for-
mulated in the situation calculus [13], a (mostly) first order language for repre-
senting dynamically changing worlds in which all changes are the result of named
actions. ECASL uses a theory D that includes the following set of axioms:

— action precondition axioms, one per action,

— successor state axioms (SSA), one per fluent, that encode both effect and
frame axioms and specify exactly when the fluent changes [18],

— initial state axioms describing what is true initially including the mental
states of the agents,

— axioms identifying the agent of each action,

— unique name axioms for actions, and

— domain-independent foundational axioms describing the structure of situa-
tions [10].

48 S.M. Khan and Y. Lespérance

Within ECASL, the behavior of agents is specified using the notation of the
logic programming language ConGolog [4], the concurrent version of Golog [11].
A typical ConGolog program is composed of a sequence of procedure decla-
rations, followed by a complex action. Complex actions can be composed using
constructs that include primitive actions, waiting for a condition, sequence, non-
deterministic branch, nondeterministic choice of arguments, conditional branch-
ing, while loop, procedure call, nondeterministic iteration, concurrent execution
with and without priorities, and interrupts. To deal with multiagent processes,
primitive actions in ECASL take the agent of the action as argument.

The semantics of the ConGolog process description language is defined in
terms of transitions, in the style of structural operational semantics [I5]. The
overall semantics of a program is specified by the Do(d, s, s’) relation, which
holds if and only if s’ can be reached by performing a sequence of transitions
starting with program ¢ in s, and the remaining program may legally terminate
in s'[1

The situation calculus underlying ECASL is a branching time temporal logic,
where each situation has a linear past and a branching future. In the framework,
one can write both state formulas and path formulas. A state formula ¢(s) takes
a single situation as argument and is evaluated with respect to that situation.
On the other hand, a path formula ¥ (s1, s2) takes two situations as arguments
and is evaluated with respect to the interval (finite path) [s1, s2]. A state formula
¢ may contain a placeholder constant now that stands for the situation in which
¢ must hold. ¢(s) is the formula that results from replacing now by s. Similarly,
a path formula 1 may contain the placeholder constants now and then that
stand for the situations that are the endpoints of the interval [now,then] over
which ¢ must hold. ¥(s1, s2) denotes ¥ with s; substituted for now and so sub-
stituted for then. Where the intended meaning is clear, we sometimes suppress
the placeholder(s).

ECASL allows the specifier to model agents in terms of their mental states
by including operators to specify agents’ information (i.e., their knowledge), and
motivation (i.e., their goals or intentions). We use state formulas within the
scope of knowledge, and path formulas within the scope of intentions. Following
[14/21], ECASL models knowledge using a possible worlds account adapted to
the situation calculus. K (agt,s’,s) is used to denote that in situation s, agt
thinks that she could be in situation s'. s’ is called a K-alternative situation for
agt in s. Using K, the knowledge or belief of an agent, Know(agt, ¢, s), is defined
as Vs'(K(agt, s, s) D ¢(s')), i.e. agt knows ¢ in s if ¢ holds in all of agt’s K-
accessible situations in s. In ECASL, K is constrained to be reflexive, transitive,
and Euclidean in the initial situation to capture the fact that agents’ knowledge
is true, and that agents have positive and negative introspection. As shown in
[21], these constraints then continue to hold after any sequence of actions since
they are preserved by the successor state axiom for K.

! Since we have predicates that take programs as arguments, we need to encode pro-
grams and formulas as first-order terms as in [4]. For notational simplicity, we sup-
press this encoding and use formulas and programs as terms directly.

On the Semantics of Conditional Commitment 49

ECASL supports knowledge expansion as a result of sensing actions [21] and
some informing communicative actions. Here, we restrict our discussion to knowl-
edge expansion as a result of inform actions. The preconditions of inform are as
follows:

Poss(inform(inf,agt, @), s) = Know(inf, ¢, s)
A —Know(in f, Know(agt, ¢, now), s).

In other words, the agent inf can inform agt that ¢, iff inf knows that ¢ currently
holds, and does not believe that agt currently knows that ¢. The successor state
axiom (SSA) for K can be defined as follows:

K(agt, s*,do(a,s)) = 3s'. K(agt,s',s) A s* = do(a,s’) A Poss(a,s').

This says that after an action happens, every agent learns that it was possible
and has happened. Moreover, if the action involves someone informing agt that
¢ holds, then agt knows this afterwards. This follows from the fact that it is a
precondition of inform(inf,agt, ¢) that inf knows that ¢, that what is known
must be true (i.e. K is reflexive), and that the SSA for K requires the agent to
know that Poss(a, s) after a happens in s. Note that this axiom only handles
knowledge expansion, not revision.

ECASL also incorporates goal expansion and a limited form of goal contrac-
tion. Goals or intentions are modeled using an accessibility relation W over
possible situations. The W-accessible situations for an agent are the ones where
she thinks that all her goals are satisfied. W-accessible situations may include
situations that the agent thinks are impossible, unlike Cohen and Levesque’s [2]
G-accessible worlds. But intentions are defined in terms of the more primitive
W and K relations so that the intention accessible situations are W-accessible
situations that are also compatible with what the agent knows, in the sense that
there is a K-accessible situation in their history. This guarantees that agents’
intentions are realistic, that is, agents can only intend things that they believe
are possible. Thus we have:

Int(agt, 1, s) =Vs',s*.[W(agt, s*,s) A K(agt,s',s) Ns'" < s*] D (s, s").

This means that the intentions of an agent in s are those formulas that are true
for all intervals between situations s’ and s* where the situations s* are W-
accessible from s and have a K-accessible situation s’ in their past. Intentions
are future oriented, and any goal formula will be evaluated with respect to a
finite path defined by a pair of situations, a current situation now and an ending
situation then. This formalization of goals can deal with both achievement goals
and maintenance goals. An achievement goal ¢ is said to be eventually satisfied
if ¢ holds in some situation between now and then, i.e., if O(¢p, now,then),
which is defined as 3s’. (now < s’ < then A qﬁ(s’))E In [22], Shapiro showed

2 We sometimes use < with a path formula 1 argument, in which case, we mean that
1 holds over some interval [s, then] that starts at some situation s between now and
then; see Table 1 for the formal definition.

50 S.M. Khan and Y. Lespérance

how positive and negative introspection of intentions can be modeled by placing
some constraints on K and W. To make sure that agents’ wishes and intentions
are consistent, W is also constrained to be serial.

ECASL provides an intention transfer communication action, request, which
is defined in terms of inform. This is similar to Herzig and Longin’s account [7],
where a request is defined as informing about one’s intentions, and the requested
goals are adopted via cooperation principles. The request action can be used by
an agent to request another agent to achieve some state of affairs. Formally, we
have:

request(req, agt, ¢) = inform(req, agt, Int(req, ¢, now)).

The SSA for W which handles intention change in ECASL, has the same struc-
ture as a SSA for a domain dependent fluent. In the following, W (agt, a, s*, s)
(W~ (agt,a, s*,s), resp.) denotes the conditions under which s* is added to
(dropped from, resp.) W as a result of the action a in s:

W (agt, s*,do(a,s)) = W (agt,a,s*,s) Vv
(W(agt, s*, s) A=W~ (agt, a, s*, s)).

An agent’s intentions are expanded when it is requested something by another
agent. After the request(req, agt,v) action, agt adopts the goal that 1, unless
she has a conflicting goal or is not willing to serve req for 1. Therefore, this
action should cause agt to drop any paths in W where ¥ does not hold. This is
handled in W—:

W~ (agt,a,s*,s) = [3req, . a = request(req, agt,)
A Serves(agt, req, v, s) A —Int(agt,), s)
A3s'. K(agt,s',s) Ns' < s* A =ip(do(a,s’),s")].

A limited form of intention contraction is also handled in ECASL. Agents
intentions are contracted as a result of a cancelRequest action. ECASL also in-
corporates a formal model of means-ends reasoning and commitment to rational
plans to achieve intentions. See []] for the details of these.

Table 1 shows some abbreviations that will be used throughout the paper.

3 Conditional Commitments

Having presented our framework, we now return to our discussion about condi-
tional commitments. Informally, an agent agt has a conditional commitment or
intention that v on the condition that ¢ if agt intends to achieve 1 as soon as
the condition ¢ holds. In our specification, we assume that ¢ is a state formula,
whereas 1 is a path formula and can represent any kind of goal (achievement,
maintenance, etc.). In other words, the trigger condition ¢ of a conditional in-
tention takes a single situation mow as argument, unlike the goal formula),

On the Semantics of Conditional Commitment 51

Table 1. Some Definitions of Temporal Operators

1. O(, now, then) = 3s’. now < s’ < then A (s’ then),
2. O(y, now, then) = =~ (—, now, then),
3. [¢ Until ¢](now, then) = 3s’. now < s’ < then
AY(s' then) AVs". now < " < s D ¢(s"),

4. Before(1), ¢, now, then) = 3s’. now < s’ < then

AP(s' then) D 3s". now < " < ' A p(s”),
. Eo (¢, now) = 3s. now < s A ¢(s),
- Ao (¢7 now) = _‘EQ(_'¢7 now)7
. Happens(a, now, then) = do(a,now) < then,
. Happens (6, now, then) = 3s’. s < then A Do(8, s, then).

O BRI

which takes two situations now and then as argumentsﬁ If one wishes to use an
achievement goal ¢’ for 1, one can use (¢, now, then), i.e. eventually ¢'. For
simplicity, we also assume that the trigger condition ¢ is a one-time goal, i.e.
once ¢ becomes true, it remains true forever.

So we now propose a formalization of conditional intentions that avoids the
under /over-commitment problem:

CondInt(agt, ¢, ¥, s) =
Int(agt, DisjGoal(p,), now, then)
A NoUnderComm(agt, d, now, then), s),
DisjGoal(¢, v, now, then) =
[=¢ Until (¢ A ¢)](now, then) V =<(¢p, now, then),
NoUnderComm(agt, ¢, now, then) =
O([Int(agt, O(=¢, now, then), now) >

Know(agt, An(—¢, now), now)], now, then).

That is, agt conditionally intends that ¢ provided that ¢, iff agt intends that
the following conditions hold:

1. either (a) ¢ eventually holds, and v holds immediately from the time ¢
comes to hold, or (b) ¢ never holds, and

2. if in any situation agt intends that ¢ never comes to hold, she must also
know in that situation that it can never become true.

Intuitively, this says that one way to fulfill an agent’s conditional intention is
to (la) satisfy 9 after ¢ comes to hold, and a second way is that (1b) ¢ never
comes to hold in the future. This part of our account is as in the disjunctive
approach. However, we add to this that (2) the agent does not intend that

3 We could also handle trigger conditions that are not state formulas. However, in
these cases, since the trigger condition holds over a time interval, it is not always
clear when exactly the triggering of the commitment to the conditional goal should
occur. To avoid these complications, we stick to state formulas as triggers.

52 S.M. Khan and Y. Lespérance

¢ never comes to hold unless she knows that it can never hold. Thus we re-
quire that if at some situation, agt intends that ¢ never comes true, it must
be the case that she knows in that situation that ¢ can never become true,
and she only intends this because it has become inevitable. So the additional
constraint that NoUnderComm(agt, ¢, now, then) ensures that agt will not do
anything intentionally to make the triggering condition ¢ remain false. One
might be tempted to define NoUnderComm(agt,$, now,then) as O(—Int(a-
gt, O(—¢, now, then), now), now, then), i.e. agt never intends that ¢ never holds.
However, since some event may make ¢ impossible to achieve, there is a pos-
sibility that agt may come to intend that ¢ always be false, if this becomes
inevitable. The only case in which agt intends that ¢ always be false is when she
knows that it can never become true.

Consider once again our online marketplace example given in Section 1 for
the disjunctive account. Using this definition of conditional commitment, a
seller slr’s intention to send the goods when a buyer byr pays, CondInt(slr,-
GetPaid(byr, slr), Happens(shipGoods(slr, byr),now, then), s) can be formalized
as follows:

Int(sir, DisjGoal(Get Paid(byr, slr),
Happens(shipGoods(slr, byr), now, then), now, then)
A NoUnderComm(slr, Get Paid(byr, slr), now, then), s).

slr’s intention can be further expanded to:

Int(sir, [Get Paid AndT henSendGoods(byr, slr, now, then)
V =& (GetPaid(byr, slr), now, then)| A
[O((Int(slr, O-Get Paid(byr, slr), now) D
Know(slr, Ag(—Get Paid(byr, slr), now), now)), now, then)l, s),

where,

GetPaid AndT henSendGoods(byr, slr, now, then) =
[-Get Paid(byr, slr) Until
(GetPaid(byr, slr) A
Happens(shipGoods(slr, byr), now, then))](now, then).

From this, we can see that there are only two ways by which slr can satisfy this
conditional intention: either at some future or current situation byr pays sir and
then slr sends the goods to byr, or, byr never pays slr, and as long as slr does
not know that byr will never pay her, she does not intend not to get paid. Since
slr cannot intend not to get paid, she cannot deliberately perform anything (for
example block payments from byr) to make the triggering condition remain false.
If at a later situation, sir learns that it has become impossible for byr to ever pay
her, sir will inevitably intend that byr never pays her, but otherwise she cannot
acquire this intention. Thus, our formalization of conditional commitment does
not suffer from the under-commitment problem.

On the Semantics of Conditional Commitment 53

Moreover, since we use the disjunctive approach, our account does not suffer
from the over-commitment problem associated with the conjunctive approach.
Consider the second example given in Section 1, where slr has the intention to
ship a replacement unit when byr returns a defective good. Using our definition,
this can be expanded to sir’s intention that either byr never returns a defec-
tive product, or byr returns a defective product and sir ships the replacement
unit after that. Thus sir is not over-committed and will not perform something
deliberately so that byr returns a product. The additional constraint that sir
never intends that byr never return a product unless she knows that byr will
never return a product does not seem to lead to any over-commitment. Thus
our formalization of conditional intention is also free from the over-commitment
problem.

Note that our account allows the agent who has a conditional intention to
intend not to know whether the condition holds. We could easily strengthen the
definition to rule this out, but it is not clear that this is always appropriate.

Next, we show two simple properties of conditional intention. Assume that the
domain theory D (as discussed in Section 2) includes our definition of conditional
commitment given above. Then we have the following theorem that says that if
an agent agt conditionally intends that ¢ provided that ¢ in situation s, and if
she knows that ¢ holds in s, then agt intends that 1 in s.

Theorem 1

D = CondInt(agt, ¢, 1, s) A Know(agt, ¢, s) D
Int(agt, v, s).

So when the agent knows that the condition has become true, a conditional in-
tention reduces to an ordinary intention. The second property states that agents
are able to introspect their conditional intentions:

Theorem 2

D = [CondInt(agt, ¢, 1, s) D
Know(agt, CondInt(agt, ¢, 1, now), s)] A
[~CondInt(agt, ¢,1), s) D
Know(agt, ~CondInt(agt, ¢, ¥, now), s)].

Thus, if an agent has a conditional intention (does not have a conditional inten-
tion, resp.) that ¢ provided that ¢, then she knows that she has (does not have,
resp.) this conditional intention.

It would be interesting to prove additional results about conditional inten-
tions, for instance, that a conditional intention persists as long as its condition
is known to remain false and not known to have become impossible. We leave
this for future work.

54 S.M. Khan and Y. Lespérance

4 Conditional Requests

We now discuss two communicative acts, request When and reqAct When, that can
be used by an agent to request someone to achieve i or to execute a program J re-
spectively, on the condition that ¢ becomes true. Recall that, in ECASL the SSA
for W determines whether an agent adopts a goal when requested; the requested
goal is adopted by the requestee via cooperation principles encoded in the SSA
for W. Thus, we model requests as informing about intentions, rather than as
primitives. In the following, we use CondIntCont(agt, ¢,1) as an abbreviation
for the content of a conditional intention DisjGoal(¢, v, now,then) A NoUn-
derComm(agt, ¢, now, then). Now, one simple way to model a requester req’s
request to requestee agt to achieve 1 on the condition that ¢ is as follows:

requestW heng;m (req, agt, ¢, 1) =
request(req, agt, CondIntCont(req, ¢,)).

This says that, req’s conditional request to agt to achieve v provided that ¢
amounts to req’s request to agt to fulfill the content CondIntCont(req, ¢, 1) of
her own conditional intention. Using the definition of request, this conditional
request amounts to req informing agt that she currently intends to achieve v
provided that ¢. However, note that the content CondIntCont(req, ,) of this
conditional intention includes mental attitudes that refer to req, rather than
agt. Since the SSA for W does not automatically replace the agent parame-
ters of mental state operators used in a goal formula, if we model conditional
requests as above, given appropriate conditions (i.e., when agt agrees to serve
req on CondIntCont(req, ¢,1) and does not currently have the intention that
—CondIntCont(req, ,1)), agt will adopt the intention that CondIntCont(req,-
®,1), but not that CondIntCont(agt,$,1). Thus she will not have the condi-
tional intention to achieve 1 provided that ¢ after the conditional request is
performed, and this simple definition is not quite correct.

For example, suppose that the manager agent mgr wants to conditionally
request the seller sir in situation s to ship the goods when the buyer byr pays
her. So mgr can do this by performing the following action in s:

requestW hengm (mgr, slr, Get Paid(byr, slr),
Happens(shipGoods(slr, byr), now, then)),
which can be expanded to:
request(mgr, slr,
CondIntCont(mgr, Get Paid(byr, slr),
Happens(shipGoods(slr, byr), now,then))).
After the request is performed, if sir agrees to serve mgr on CondIntCont(mgr,-
GetPaid(byr, slr), Happens(shipGoods(slr, byr), now,then)), and does not in-

tend that =CondIntCont(mgr, Get Paid(byr, slr), Happens(shipGoods(slr, byr),
now, then)), the SSA for W will ensure that:

On the Semantics of Conditional Commitment 55

Int(slr, CondIntCont(mgr, Get Paid(byr, slr),
Happens(shipGoods(slr, byr), now, then)), s,),

which can be expanded to:

Int(sir, DisjGoal(Get Paid(byr, slr),
Happens(shipGoods(slr, byr), now, then), now, then)
A NoUnderComm(mgr, Get Paid(byr, slr), now,then), s,),

where s, is the situation that results from performing the requestW hen ac-
tion in s. Now, using the definition of conditional intention, we can see that
in s, slr does not have the conditional intention of sending the goods pro-
vided that byr pays her. The problem is with the mental state operators in the
NoUnderComm(mgr,...) part of slr’s intention: they say that mgr will not
intend that the payment not occur unless she knows it can never occur. What
we need is for this constraint to hold for sir.

To deal with this problem, we propose the following model of conditional
requests:

requestWhen(req, agt, ¢, 1) = request(req, agt, CondIntCont(agt, ¢,)).

This says that req’s request to agt to conditionally achieve ¥ provided that ¢
amounts to req’s request to agt to fulfill the content of agt’s conditional intention
to achieve v provided that ¢, i.e., CondIntCont(agt, ¢,). Using the definition
of request, this can be further expanded to:

requestWhen(reg, agt, ¢,) =
inform(req, agt, Int(req, CondIntCont(agt, ¢, 1), now)).

That is, req can request agt to achieve 1 on the condition that ¢ by informing agt
that she intends that CondIntCont(agt, ¢,). Note that, the agent parameter of
CondIntCont(agt, ,1) is now the requestee agt, rather than the requester req.
This guarantees that given that agt serves req and does not have the opposite
intention, she will conditionally intend to achieve ¢ provided that ¢ after req
conditionally requests her this. Thus this formalization of conditional request
does not suffer from the above mentioned problem.

We also define a special type of conditional request, namely, a request to
perform an action when some condition holds:

reqActWhen(req, agt, ¢,0) =
requestW hen(req, agt, ¢, Happensc(d, now, then)).

This states that req’s conditional request to agt to execute the program § pro-
vided that ¢ amounts to req’s conditional request to agt to execute ¢ starting
in the situation where ¢ holds.

Now consider what happens when mgr conditionally requests sir to ship the
goods when byr pays her, that is, when mgr performs the req ActW hen(mgr, sir,-
GetPaid(byr, slr), shipGoods(slr,byr)) action. Given that slr agrees to serve

56 S.M. Khan and Y. Lespérance

mgr and does not have the opposite intention, the SSA for W will make sir
adopt the following intention:

Int(slr, CondIntCont(slr, Get Paid(byr, slr),
Happen(sendGoods(slr, byr), when, then)), s,),

and thus, by the definition of conditional intention, she will conditionally intend
to send the goods when byr pays her. Thus, our formalization of conditional
requests allows the proper transfer of conditional intention from the requester
to the requestee.

We next present a theorem that shows how agents’ intentions are affected
by the requestWhen action. Assume that the domain theory D includes our
definition of these new communicative actions. We can show that:

Theorem 3

D E [-Int(agt, ~CondIntCont(agt, ¢,), s)
A Serves(agt, req, CondIntCont(agt, ¢, 1), s)
A Poss(requestW hen(req, agt, ¢,), s)] D
CondInt(agt, ¢, v, do(requestW hen(req, agt, ¢, 1), s)).

This says that if in some situation s, an agent agt does not intend not to fulfill
the content of a conditional intention to achieve ¢ provided that ¢, and if she
serves another agent req on the content of this conditional commitment in s,
then she will have the conditional intention to achieve v given that ¢ after req
conditionally request her this in s, provided that the request is possible in s.

It would be useful to extend our framework with a communication act that
allows a conditional commitment created as a result of a requestWhen to be
cancelled. We believe that the existing ECASL cancelRequest action can be used
to define such a conditional commitment cancelling act. We leave this for future
work.

5 Related Work

The under-commitment problem that we pointed out in Section 1 is related to
another problem involving intentions discussed by Cohen and Levesque [2]. In
that paper, they consider a robot who drops the intention of bringing a bottle
of beer by breaking the last available bottle and thus making the intention
impossible to achieve. Their solution was twofold: (1) they formalize intentions
as persistent goals and (2) they assume that existing intentions act as a screen
of admissibility over new intentions. In their framework, an agent’s intentions
persist until she knows that they have been achieved, or knows that it has become
impossible to achieve them. Since the robot intends to bring a bottle of beer,
she will not drop this goal until she achieves it or gets to know that it has
become impossible to achieve. However, the robot can break the last available
bottle to make her goal unachievable. But since an agent’s current intentions

On the Semantics of Conditional Commitment 57

provide a screen of admissibility for adopting new intentions, she cannot have
these two conflicting intentions at the same time. Thus since she intends to bring
a bottle, she cannot adopt the intention to break the only available bottle. Note
that while this problem has similarities with the one addressed here, it does not
involve conditional intentions.

In the literature, there has been some work on conditional intention. However,
as mentioned earlier, all of the proposed treatments that we are aware of seem to
suffer from the under- or over-commitment problems. Although it does not ex-
plictly address conditional intentions, the FIPA agent communication language
specification [5] defines a type of communication act that leads to conditional
intentions. In that framework, an agent can conditionally request another agent
to execute an action when some condition holds. This is modeled as follows:
req’s conditional request to agt to perform act when ¢ holds amounts to req
informing agt that she has the intention that agt execute act and that ¢ be true
just before that. Note that req’s intention amounts to the conjunction that ¢ be
true at some point and agt executes act right after that. Thus, this treatment of
conditional intention can be viewed as a conjunctive account where the intention
is to first achieve the triggering condition ¢, and then to achieve the conditional
goal. As discussed in Section 1, this leads to the over-commitment problem.

Yolum and Singh [29] present a different model of conditional commitment
that relies on a social obligation-based semantics rather than a traditional one
based on mental states. Their main concern was the study of communication
protocols that accommodate exceptions and take advantage of opportunities.
They model interaction protocols using commitment machines that supply a
content to protocol states and actions in terms of the social commitments of the
participating agents. In their formal semantics, which is only briefly described,
they adopt a branching time temporal model. The semantics for commitments
involves a modal accessibility relation for commitments C' that relates a state
of the protocol (i.e. a time-point) s, a debtor agent z, and a creditor agent y
to a set of paths P. Intuitively, x is responsible to y for satisfying ¢ in state s
iff ¢ holds at time-point s along all paths p that are C-accessible from (x,y, s).
To model conditional commitment, they introduce a strict implication operator
(denoted by ~) that requires the consequent to hold when the antecedent holds.
The strict implication is false when the antecedent is false. Their semantics says
that ¢ ~ ¢’ holds in a state s iff ¢ holds in s and for all s’ that satisfy ¢, every
s” that is similar to s’ (i.e. s & §') also satisfies ¢’. What they mean by the
similarity relation = is not explained. Thus for them, a conditional commitment
C(z,y,¢ ~ ¢') holds in state s iff on all C-accessible paths p, ¢ holds at s,
and whenever some s’ satisfies ¢, every s” that is similar to s’ satisfies ¢’. Since
they model conditional commitments using the ~» operator, which behaves like
a conjunction with some additional constraints, it appears that their formaliza-
tion suffers from the over-commitment problem. It is also not clear how their
formalization ensures that the goal is achieved after the condition along the
paths.

58 S.M. Khan and Y. Lespérance

Both [I] and [24] model conditional commitment as a disjunctive goal. In
their social commitment and argument network based framework, Bentahar et
al. [I] define conditional commitments as a simple implication. Their semantics
of conditional commitment goes as follows: M, s = CondInt g.,, (agt1, agte, ¢, V)
iff M,s = EF"¢ = M,s = ABC(agty, agts,v), where s,E,F", and ABC de-
notes a timepoint, there exists a path, sometime in the future, and absolute
commitment, respectively. This says that agt; is committed to agts to achieve
1) on the condition that ¢ means that agt; is unconditionally committed to agts
to achieve v if ¢ holds at some timepoint over some path in the future. Be-
sides suffering from the under-commitment problem associated with disjunctive
accounts, this seems to require commitment to the goal too early, before the
condition becomes true.

In [24], Shapiro et al. describe a framework for specifying communicative
multiagent systems using ConGolog [4] within the situation calculus, an early
version of CASL. Since they were lacking a goal-revision mechanism at that
point, they introduced a type of conditional request, the requestUnless action,
in an attempt to avoid the need for goal-revision. requestUnless(req, agt, ¢,)
means that req is requesting agt to adopt the goal that v unless ¢ is obtained.
The execution of requestUnless(req, agt, ¢,1) makes agt adopt the goal that
¢ V1. This amounts to modeling conditional intentions as disjunctive goals, and
hence the account suffers from the under-commitment problem.

6 Conclusion

In this paper, we identified some problems with many existing formalizations of
conditional commitments. These seem to either have the agents over-committed,
intending to achieve the condition under which the goal would have to be
achieved, or under-committed, possibly intending that this condition remain
false forever. We could not find any problem-free account in the literature. We
presented a definition of conditional intentions that does not suffer from these
problems. We then formalized two types of communicative actions that allow
agents to make requests that lead to conditional commitments. We also proved
some properties of conditional commitments and conditional requests. Finally,
we discussed previous work on conditional commitments.

Note that, our framework allows an agent with a conditional intention to not
intend that the trigger condition eventually becomes true. However, it does not
allow her to intend that the trigger condition never comes to hold, without also
knowing that it can never become true. In other words, in our framework, an
agent’s conditional intention that ¢ provided that ¢ is not consistent with her
intention that O—¢, unless she already knows that this must be the case. This
might be problematic in some cases. For instance, in our example where a seller
has a conditional intention to ship a replacement unit when a buyer returns a
defective product, we might want to say that the seller has the intention that the
buyer never returns a defective good. However, it is not possible for an agent to
consistently have both of these intentions in our framework. One way to overcome

On the Semantics of Conditional Commitment 59

this limitation might be to adopt a richer semantic model of intention, where
one allows different degrees of preferability, similar to the levels of plausibility
in traditional belief revision frameworks such as [6]. Such semantic models and
the resulting logics are more expressive, but much more complex to specify and
reason in.

The theory presented here is a part of our ongoing research on the semantics of
speech acts and agent communication in the situation calculus. In [9], we present
an extended version of this work where we model some simple communication
protocols that deal with conditional requests. Much work remains. In the future,
we would like to prove other properties of conditional commitments, for exam-
ple, about the persistence and revision of such commitments. We also plan to
formalize complex interaction protocols, such as the Contract Net protocol [28§]
and the Net Bill protocol [27], using our formalization of conditional intention.
It would also be interesting to try to use this formalization to implement flexible
communication agents and to develop tools to support multiagent programming
as in [19112].

Acknowledgements

We thank Hector Levesque and the reviewers for useful comments on this work.

References

1. J. Bentahar, B. Moulin, J.-J. Ch. Meyer, and B. Chaib-draa. A logical model of
commitment and argument network for agent communication. In Proc. of AAMAS-
04, pages 792799, 2004.

2. P. Cohen and H. Levesque. Intention is choice with commitment. Artificial Intelli-
gence, 42(2-3):213-361, 1990.

3. P. Cohen and H. Levesque. Rational interaction as the basis for communication.
In P. Cohen, J. Morgan, and M. Pollack, editors, Intentions in Communication,
pages 221-255. MIT Press, Cambridge, Mass., 1990.

4. G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence, 121:109-169,
2000.

5. Foundations for Intelligent Physical Agents. FIPA communicative act library spec-
ification, document 37. 1997-2002.

6. P. Gardenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge, Massachusetts, 1988.

7. A. Herzig and D. Longin. A logic of intention with cooperation principles and with
assertive speech acts as communication primitives. In Proc. of AAMAS-02, pages
920-927, 2002.

8. S. Khan and Y. Lespérance. ECASL: A model of rational agency for communicating
agents. In Proc. of AAMAS-05, pages 762-769. Utrecht, The Netherlands, July
2005.

9. S. Khan. A situation calculus account of multiagent planning, speech acts, and
communication, MSc Thesis (in preparation), 2005.

60

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

S.M. Khan and Y. Lespérance

G. Lakemeyer and H. Levesque. AOL: A logic of acting, sensing, knowing, and
only-knowing. In Proc. of KR-98, pages 316-327, 1998.

H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog: A logic pro-
gramming language for dynamic domains. J. of Logic Programming, 31:59-84, 1997.
V. Louis and T. Martinez. An operational model for the FIPA-ACL semantics. In
R. van Eijk, R. Flores, and M.-P. Huget, editors, Proc. of International Workshop
on Agent Communication. LNCS, 2005

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4:463—-502, 1969.

R. Moore. A formal theory of knowledge and action. Formal Theories of the Com-
monsense World, pages 319-358, 1985.

G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Computer Science Dept., Aarhus University, Denmark, 1981.

A. Rao and M. Georgeff. Modeling rational agents within a BDI-architecture. In
R. Fikes and E. Sandewall, editors, Proc. of KRE&R-91, pages 473-484, 1991.

R. Reiter. Knowledge in Action. Logical Foundations for Specifying and Implement-
ing Dynamical Systems. MIT Press, 2001.

R. Reiter. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor, Arti-
ficial Intelligence and Mathematical Theory of Computation: Papers in the Honor
of John McCarthy. Academic Press, 1991.

D. Sadek and P. Bretier. ARTIMIS: Natural dialogue meets rational agency. In
Proc. of IJCAI-97, pages 1030-1035, 1997.

D. Sadek. Communication theory = rationality principles + communicative act
models. In Proc. of AAAI-94 Workshop on Planning for Interagent Comm., 1994.
R. Scherl and H. Levesque. Knowledge, action, and the frame problem. Artificial
Intelligence, 144(1-2), 2003.

S. Shapiro. Specifying and Verifying Multiagent Systems Using CASL. PhD thesis,
Dept. of C.S., U. of Toronto, 2005.

S. Shapiro and Y. Lespérance. Modeling multiagent systems with the Cognitive
Agents Specification Language - a feature interaction resolution application. In C.
Castelfranchi and Y. Lespérance, editors, Intelligent Agents Vol. VII - Proc. of
ATAL-00, volume LNAT 1986, pages 244—259, 2001.

S. Shapiro, Y. Lespérance, and H. Levesque. Specifying communicative multi-agent
systems. Agents and Multi-Agent Systems — Formalisms, Methodologies, and Ap-
plications, LNAT 1441:1-14, 1998.

S. Shapiro, Y. Lespérance, and H. Levesque. The Cognitive Agents Specifica-
tion Language and verification environment for multiagent systems. In Proc. of
AAMAS-02, pages 1926, 2002.

M. Singh. Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communications. LNAT 799, 1994.

M. Sirbu. Credits and debits on the internet. Readings in Agents, pages 299-305,
1998.

R. Smith. The contract net protocol: High level communication and control in a
distributed problem solver. IEEE Transactions on Computers, C-29(12):1104-1113,
1980.

P. Yolum and M. Singh. Commitment machines. In J.-J. C. Meyer and M. Tambe,
editors, Intelligent Agents VIII : 8th Intl. Workshop, ATAL-01, volume LNAT 2333,
pages 235247, 2002.

	Introduction
	ECASL
	Conditional Commitments
	Conditional Requests
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

