
Towards Causal Analysis of Protocol Violations

Shakil M. Khan and Mikhail Soutchanski

Department of Computer Science, Ryerson University, Toronto, Canada
{shakilmkhan,mes}@scs.ryerson.ca

Abstract. When a protocol specified within a given system fails to en-
sure some desired properties, it is important to identify the actual causes
of this failure. In this paper, we utilize a formal model of causal analysis
in the situation calculus to show how one can specify the actual causes
of such violations in non-deterministic protocols defined within dynamic
systems. We show that our definition has some desirable properties.

1 Introduction

Reasoning about violations in protocols is essential for many applications where
it is important to design protocols that adhere to certain desirable properties [4,
9]. In case of a property violation, it is important to identify the actual causes of
this failure. Such information can be used by the protocol designer to construct
better protocols, e.g. by ensuring that certain execution paths are excluded. In
this paper, we propose to utilize a formal model of causal analysis [2] in the
situation calculus (SC) [12] to detect and reason about protocol violations.

We show how one can define the potential causes of protocol violations
through the computation of causal chains within the SC. We make two assump-
tions: (1) there is a logical theory (with a complete initial state) that models
how the system responds to actions, and (2) there is a non-deterministic protocol
specified in the SC-based ConGolog programming language [5]. We are looking
for events in all possible executions of the protocol to explain an observed effect.

Adopting a first-order language like the SC for causality analysis allows us
to be more expressive. Namely, we can formulate quantified properties, model
systems with infinite domains, and we can find violations in generic protocols
specified over these systems. The underlying domain of objects in these systems
can be infinite, e.g., it can include integer and real numbers with their standard
interpretations. Furthermore, our formalization enables us to detect unwanted
inter-component interactions in protocols, not just faulty component actions. We
prove that our definition is sound and complete relative to a class of protocols.

2 Background

The Situation Calculus (SC). We use a version of the SC [12], where a dy-
namic domain is modeled using a basic action theory (BAT) D consisting of
action precondition axioms (APA), successor-state axioms (SSA), initial state

2 Shakil M. Khan and Mikhail Soutchanski

axioms, unique name axioms for actions (UNA), and domain-independent foun-
dational axioms Σ. We also utilize the single-step regression operator ρ. Given
a query “does φ hold in situation do(α, s)?”, ρ transforms it into an equivalent
query “does ψ hold in s?”, eliminating action α by compiling it into ψ. The ex-
pression ρ[φ, α] denotes such an equivalent query obtained from the formula φ by
replacing each fluent atom F in φ with the rhs of the SSA for F where the action
variable a is instantiated with the ground action α, and then simplified using
UNAs and constants. One can prove that given a BAT D, a formula φ(s) uniform
in s, and a ground action term α, we have that D |= ∀s. φ(do(α, s))↔ ρ[φ(s), α].
Example. We use the well-known dining philosophers problem [7] with three
philosophers as our running example. The actions in this domain are pickUp(p, f),
putDown(p, f), eat(p), while the fluents are hasFork(p, f, s), thinking(p, s), and
eating(p, s). Most of these and the following axioms are self-explanatory; see [8]
for details. We define a philosopher p is waiting in situation s as an abbreviation

waiting(p, s)
def
= ¬(eating(p, s) ∨ thinking(p, s)). We use the relation neighb to

describe the seating arrangement and assume the fork Fij is in between philoso-
phers Pi, Pj . We sample a few axioms (all free variables are ∀-quantified at front):

(a). Poss(pickUp(p, f), s) ↔
¬hasFork(p, f, s) ∧ ∃p′.(neighb(p, f, p′) ∨ neighb(p′, f, p)) ∧ ¬hasFork(p′, f, s),

(b). Poss(eat(p), s) ↔ ∃f, f ′. f 6= f ′ ∧ hasFork(p, f, s)

∧ hasFork(p, f ′, s) ∧ ¬eating(p, s),

(c). hasFork(p, f, do(a, s)) ↔ a = pickUp(p, f)

∨ (hasFork(p, f, s) ∧ ¬a = putDown(p, f)),

(d). eating(p, do(a, s)) ↔ a = eat(p) ∨ (eating(p, s) ∧ ¬∃f. a = putDown(p, f)),

(e). ∀p. thinking(p, S0) ↔ p = P1 ∨ p = P2 ∨ p = P3,

(f). ∀p, f. ¬eating(p, S0) ∧ ¬hasFork(p, f, S0).

3 Actual Achievement Causes

Given a trace (a log), actual achievement causes are the key events responsible
for achieving some effect. Here, we briefly review [2]. An effect is an SC formula
φ(s) that is uniform in s. Given an effect φ(s), the actual causes of φ are defined
relative to a causal setting, i.e., a BAT D representing the domain dynamics, and
a narrative σ, representing the ground situation, where the effect was observed:
Def 1. A causal setting is a tuple 〈D, σ, φ(s)〉, where D is a BAT, σ is a situation
term of the form do([a1, · · · , an], S0) with ground action functions a1, · · · , an s.t.
D |= executable(σ), and φ(s) is an SC formula uniform in s s.t. D |= φ(σ).

As the theory D does not change, we will often suppress D. We require φ to
hold by the end of the narrative σ. Following [2], we identify the potential causes
of an effect φ with a set of pairs, each of which consists of a ground action term
occurring in σ and the situation where this action was executed. The notion of
the achievement condition suggests that if some action α mentioned in σ triggers
the formula φ(s) to change its truth value from false to true relative to D, and if

Towards Causal Analysis of Protocol Violations 3

there are no actions in σ after α that change the value of φ(s) back to false, then
α is the actual cause of achieving φ(s) in σ. Batusov and Soutchanski [2] showed
that when used together with the single-step regression operator ρ, this notion
of achievement condition not only identifies the single action that brings about
the effect of interest, but also captures recursively the actions that build up to
it, i.e., the root causes. Additionally, one must include the preconditions under
which these actions are executable. The following inductive definition formalizes
this intuition. Let Πapa(α, σ) be the right-hand side of the APA for action α
with the situation term replaced by situation σ.
Def 2. A causal setting C = 〈σ, φ(s)〉 satisfies the achievement of φ via the
situation term do(α∗, σ∗) v σ iff there is an action α′ and situation σ′ s.t.:

D |= ¬φ(σ′) ∧ ∀s. do(α′, σ′) v s v σ → φ(s),
and either α∗ = α′ and σ∗ = σ′, or σ∗ v σ′ @ σ and the causal setting
〈σ′, ρ[φ(s), α′] ∧ Πapa(α′, σ′)〉 satisfies the achievement condition via the situ-
ation term do(α∗, σ∗). Whenever a causal setting C satisfies the achievement
condition via situation do(α∗, σ∗), we say that the action α∗ executed in situa-
tion σ∗ is an achievement cause in the causal setting C.

Since the process of discovering intermediary achievement causes using ρ can-
not continue beyond S0, it eventually terminates. Moreover, since the narrative
σ is finite, the achievement causes of C also form a finite sequence of situation-
action pairs, which we call the achievement causal chain of C.
Example (cont’d). Let the philosophers P1, P2, P3 sit around the table, with
forks in between. Consider the trace σ1 = do([pickUp(P1, F12), pickUp(P3, F23),
pickUp(P1, F13), eat(P1)], S0). We are interested in computing the actual causes
of the effect φ1 = eating(P1, s). Then according to Def. 2, the causal setting
〈φ1, σ1〉 satisfies the achievement condition φ1 via the situation do(eat(P1), S3),
where S3 = do([pickUp(P1,F12), pickUp(P3,F23), pickUp(P1,F13)], S0), so the ac-
tion eat(P1) executed in S3 is a (primary) achievement cause of φ1.

Moreover, computing ρ[eating(P1, σ1), eat(P1)]∧Poss(eat(P1), S3) yields ∃f,
f ′.hasFork(P1,f,s)∧ hasFork(P1,f

′,s)∧ f 6= f ′∧ ¬eating(P1, s) (let us call this
formula ψ), and leads to a new causal setting 〈S3, ψ〉. This satisfies the achieve-
ment condition via the action pickUp(P1, F13), so pickUp(P1, F13) executed in
S2 =do([pickUp(P1,F12), pickUp(P3,F23)], S0) is a secondary achievement cause.
Similarly, it can be shown that pickUp(P1,F12) executed in S0 is also included
in the causal chain. Notice that the action pickUp(P3,F23) is irrelevant.

We can also handle quantified queries, e.g. the actual causes of 〈σ2,∀p. wait-
ing(p, s)〉, where σ2 =do([pickUp(P1,F12), pickUp(P2,F23), pickUp(P3,F13)], S0).
Note that the integer-valued weight of pasta in the bowl can be easily modelled.

4 Causal Analysis of Protocol Violations

We model the behaviour of the system to be reasoned about as a BAT D, while
we encode an observation or effect using an SC formula φ(s) that is uniform in
s, as above. For reasons explained below, we require the initial theory DS0

to be
complete both for relational and functional fluents. Let the protocol be specified

4 Shakil M. Khan and Mikhail Soutchanski

using a ConGolog program δ [5], but we can work with any programming lan-
guage defined on top of the SC. We are now ready to give our formal definition
of the potential causes of a protocol violation in the SC:
Def 3. Given a system DS = 〈D, δ, φ(s)〉, the causes of violation of DS is the
least set of causal chains VDS such that if there is a ground sequence of actions a
for which D |= Do(δ, S0, do(a, S0)) ∧ φ(do(a, S0)), then VDS includes the causal
chain relative to the causal setting 〈D, do(a, S0), φ(s)〉.

Thus, the causes VDS of violating a non-deterministic protocol δ specified
within a dynamic system D relative to a property φ(s) is the set of causal
chains over all possible undesirable executions of δ, i.e. terminated executions
over which φ(s) holds. Subsequently, we also call VDS a set of conjectures. Each
conjecture specifies what actions in what situations should have been avoided
by the executer, i.e. which paths in the execution tree of δ should have been
prohibited by the protocol in an attempt to avoid failure φ(s). If the number of
possible terminated executions of δ is finite, then VDS is also finite.

Note that Def. 3 may produce unintuitive results if the initial theory is in-
completely specified. To see this, consider the non-deterministic program (A|B),
where the preconditions of A is F (s) and that of B is ¬F (s), and both A and
B executed in S0 have the effect that φ(s). Suppose that D does not specify
the truth value of F in S0. Although both A and B are the causes for φ(s), the
theory D entails neither executable(do(A,S0)), nor executable(do(B,S0)), and
therefore, according to our definition, the set of conjectures is empty, which is
unintuitive. To avoid this issue, we require D to be initially complete.
Example (cont’d). Consider a simple protocol δ1 specified in ConGolog:

(pickUp(P1, F12) | pickUp(P2, F12)); (pickUp(P1, F13) | pickUp(P2, F23));

(eat(P1) | eat(P2) | πf. [Poss(pickUp(P3, f), now)?; pickUp(P3, f)]).

That is, first, either philosopher P1 or P2 non-deterministically picks up the
fork F12 that is between them, then either of them picks up another available
fork, and finally either P1 eats, or P2 eats, or P3 picks up a fork. We would like
to check if δ1 violates the property that φ3(s) = ¬∃p. eating(p, s).

It is easy to see that there are only six possible executions of δ1 and only
in two of these cases, a philosopher is eating. For instance, no philosopher
is eating in do(a1,S0), where a1 = [pickUp(P1,F12), pickUp(P2,F23), pickUp(P3,
F13)]. As such, VDS for our example includes the causal chain relative to set-
ting 〈D, do(a1, S0), φ3(s)〉. Note that the information provided by the causes of
violation can be used by the protocol designer to reason about and improve on
the protocol, in this case e.g. by ensuring that the second pickUp action is only
performed by the philosopher who is already holding another fork, etc.

Notice our approach can detect improperly synchronized inter-component in-
teractions, as can be seen even in this simple example: while none of the philoso-
phers failed to perform, in all four cases suggested by our causes of violation
their actions are not synchronized relative to the fulfillment of ¬φ3.

We now show that our formalization has some intuitively desirable properties.
First, a conjecture for a given complete execution of a protocol is unique:

Towards Causal Analysis of Protocol Violations 5

Th 1. If K1 and K2 are two conjectures of a particular execution a of protocol
δ specified over a system DS=〈D, δ, φ(s)〉, then K1 =K2.

Moreover, the set of actions in a conjecture is sufficient for the effect to hold.
Th 2. If K is a conjecture of an execution a of protocol δ specified over a system
DS=〈D, δ, φ(s)〉, and σK is the situation obtained by performing the actions in K
in the order they appear in a starting from S0, then D |= executable(σK)∧φ(σK).

Th. 1, 2, and Def. 3 together imply that our notion of causes of protocol violation
is sound in the sense that each conjecture represents one or more undesirable
executions of δ and correctly identifies the underlying reasons for the effect.

However, perhaps somewhat surprisingly, we can show that not every action

in a conjecture is necessary for the effect to follow. Let σa′,s′
a denote the situation

that can be obtained by executing the exact sequences of actions as in a starting
in S0, except for action a′ in situation s′.
Th 3. There is a system DS = 〈D, δ, φ(s)〉, an action a′, and a situation s′, s.t. if
K is a conjecture in VDS of a particular execution a of protocol δ and a′ executed

in s′ is a cause in the conjecture K, then: D 6|= ¬(executable(σa′,s′
a)∧φ(σa′,s′

a)).

Thus, removing a cause a′ in s′ from the execution/trace a itself may not have
any effect on φ(s) as it may be the case that another action on the trace restores
the executability and/or brings about the effect, e.g. one that is currently being
preempted by the cause. In fact this shows that our base framework does not
choose an action as a cause when its effects are preempted by some earlier action.

Furthermore, we can show that the notion of modularity from [8] can be
adapted to protocol violations, if one sub-divides the system into constituents.

Finally, we show that our notion of causes of protocol violation is complete
with respect to a class of protocols, where each protocol δf has the following
properties: each complete execution of δf is finite, and there is a finite number
n of terminated executions of δf . The above assumptions can apply even if the
underlying object domain is infinite, e.g., if in our example, there are fluents
for the weight or the number of pasta in a bowl. If a is a sequence of actions,
then let a! denote any subsequence of this sequence that possibly omits some
actions from a but does not alter the order of the actions in a. Also, if VDS is
the causes of violation of a system DS, let Vact

DS be the set that replaces each
conjecture/causal chain in VDS with the sequential composition of the actions
in the causal chain without changing the order of occurrence of these actions.
We can prove the following:
Th 4 (Completeness). If VDS is the causes of violation of a system DS =
〈D, δf , φ(s)〉, then there are no sequences of actions a and subsequence a! such
that D |= Do(δf , S0, do(a, S0)) ∧ φ(do(a, S0)) and a! /∈ Vact

DS .

5 Discussion

We emphasize that our formalization supports domains with infinitely many ob-
jects. This makes our work fundamentally different from approaches based on
model checking [1]. Perhaps the closest work to ours that can be found in the

6 Shakil M. Khan and Mikhail Soutchanski

literature is by Datta et al. [4], who proposed a framework for determining ac-
countability of security violations for tasks and protocols such as authentication
and key exchange. Like us, they also use actual causes to determine accountabil-
ity. A key difference between our work and theirs is that while their analysis is
tied to the underlying application (simple programs, threads, etc.), our work is
based on a formal model of causality in the SC; thus, it is more general.

In addition, there has been work on automatic verification of partial correct-
ness of (Con)Golog programs, e.g., [10, 3], and [6]. These are mostly theoretical
work. In contrast, our approach is more practical, since one can implement our
causal analysis with the one-step regression operator using any off the shelf Con-
Golog interpreter that produces terminated executions.

Besides these, there has been practical work on checking partial correctness
of Golog programs. For instance, [11] proposed mechanisms for automated ver-
ification of partial correctness of Golog programs using the notion of extended
regression. The method has been implemented [11]. Examining how their ap-
proach would compare with our causal analysis-based approach is future work.

One limitation of our framework is that we assume that the initial state is
completely specified. Also, currently we only deal with deterministic actions and
discrete dynamic domains. Going beyond these limitations is future work.
Acknowledgement: This work was supported in part by the NSERC Canada.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
2. Batusov, V., Soutchanski, M.: Situation Calculus Semantics for Actual Causality.

In: Proc. of AAAI Conf. on Artificial Intelligence, pp. 1744–1752 (2018)
3. Claßen, J., Lakemeyer, G.: On the Verification of Very Expressive Temporal Prop-

erties of Non-terminating Golog Programs. In: Proc. of ECAI, pp. 887–892 (2010)
4. Datta, A., Garg, D., Kaynar, D.K., Sharma, D., Sinha, A.: Program Actions as

Actual Causes: A Building Block for Accountability. In: Proc. of IEEE Comp.
Security Foundations Symp. (CSF), pp. 261–275 (2015)

5. De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, A Concurrent Pro-
gramming Language based on the Situation Calculus. Artificial Intelligence 121(1-
2), 109–169 (2000)

6. De Giacomo, G., Lespérance, Y., Patrizi, F., Sardiña, S.: Verifying ConGolog Pro-
grams on Bounded Situation Calculus Theories. In: Proc. of AAAI Conf. on Arti-
ficial Intelligence, pp. 950–956 (2016)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
8. Khan, S.M., Soutchanski, M.: Diagnosis as Computing Causal Chains from Event

Traces. In: Proc. AAAI Fall Symp. on Integ. Plan., Diag., and Causal Res. (2018)
9. Leitner-Fischer, F., Leue, S.: Causality Checking for Complex System Models. In:

VMCAI, Lecture Notes in Computer Science, v. 7737, pp. 248–267 (2013)
10. Liu, Y.: A Hoare-Style Proof System for Robot Programs. In: Proc. of AAAI/IAAI,

pp. 74–79 (2002)
11. Mo, P., Li, N., Liu, Y.: Automatic Verification of Golog Programs via Predicate

Abstraction. In: Proc. of ECAI, pp. 760–768 (2016)
12. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-

menting Dynamical Systems. MIT Press (2001)

