
When is a Program an Actual Cause?
Bita Banihashemi*

1
, Shakil M. Khan*

2
and Mikhail Soutchanski

3

1
York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada

2
University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada

3
(Former) Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada

Abstract
Causality plays a central role in reasoning about observations. In many cases, it might be useful to define the conditions

under which a non-deterministic program can be called an actual cause of an effect in a setting where a sequence of programs

are executed one after another. There can be two perspectives, one where at least one execution of the program leads to

the effect, and another where all executions do so. The former captures a “weak” notion of causation and is more general

than the latter stronger notion. In this paper, we give the definition of weak potential causes. Our analysis is performed

within the situation calculus basic action theories and we consider programs formulated in the logic programming language

ConGolog. Within this setting, we show how one can utilize a recently developed abstraction framework to relate causes at

various levels of abstraction. In particular, we prove that under some conditions, causes defined at an abstract and a concrete

level can be related with each other in a kind of commutative diagram.

Keywords
Actual Cause, Abstraction, The Situation Calculus

1. Introduction
Actual or token causation is concerned with identifying

the events or actions in a trace that can be considered

as causes of an observed effect. The seminal work of

Pearl [1] provided the foundations and served as inspi-

ration for research of actual cause in AI. This research

culminated in the book [2] that summarized a number

of previously developed definitions concerning when an

event can be considered as an actual cause of an effect.

These definitions are developed within the framework of

structural equations models (SEM), where a simple event

is understood as assigning a value to an endogenous

variable.

However, this perspective does not facilitate the study

of causation for more complex activities such as control

flow in programs. It can be interesting and important to

define when a non-deterministic program is an actual

cause of an effect in a setting where a sequence of pro-

grams are executed one after another. This immediately

leads to the question when can one intuitively say that a

program is an actual cause? One perspective can be that

a non-deterministic program is a weak potential cause, if

at least one execution of the program leads to a situation

*Contributed equally to this paper

Workshop on Causal Reasoning and Explanation in Logic

Programming - 37th International Conference on Logic Programming

" bita@eecs.yorku.ca (B. Banihashemi*); skhan@cs.uregina.ca

(S. M. Khan*); mes@cs.ryerson.ca (M. Soutchanski)

~ https://www.cs.uregina.ca/~skhan/ (S. M. Khan*);

http://www.cs.ryerson.ca/~mes/ (M. Soutchanski)

� 0000-0002-7147-484X (B. Banihashemi*); 0000-0003-0140-3584

(S. M. Khan*)

© 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

where the effect holds. Another perspective is that a pro-

gram is a strong potential cause if all executions of the

program produce the effect. Note that a strong potential

cause is also weak, but not vice versa. Also, in both cases

we talk about potential causes, since they can manifest

only in some of the situations that are produced by the

execution of the program sequence.

As an example, imagine Suzy buying a lottery ticket

that later wins a reward. If one conceptualizes the com-

plex actions of purchasing the ticket as a highly non-

deterministic program, then it is reasonable to say that

this program was a weak potential cause of the fact that

Suzy won, since there is an execution of this program

that leads to a situation where the effect holds and an-

other to a situation where it doesn’t.

Again, imagine a computer system that involves mul-

tiple interacting agents. The typical examples of such

systems arise in computer security contexts where the

behaviour of the agents is specified by non-deterministic

protocols due to versatility of possible agent interactions.

In this context, one might be interested in determining if

all of the executions of a protocol led to the successful

handling of a security leak. This corresponds to the case

of a strong potential cause.

In this paper, we give a definition of the more inclusive

notion of weak cause. We consider programs formulated

in the high-level logic programming language ConGolog
[3], which is based on action theories specified in the

situation calculus (SC) [4, 5]. We build on a recently

proposed definition of actual cause in the SC [6], which

only considers primitive actions as causes. Since we focus

on programs as causes, a natural question that arises then

is how these two notions can be related. The programs

can be complex, but often they can be conceptualized

mailto:bita@eecs.yorku.ca
mailto:skhan@cs.uregina.ca
mailto:mes@cs.ryerson.ca
https://www.cs.uregina.ca/~skhan/
http://www.cs.ryerson.ca/~mes/
https://orcid.org/0000-0002-7147-484X
https://orcid.org/0000-0003-0140-3584
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

at some abstract high-level (HL) as actions. It turns out

that the abstraction framework proposed in [7] that can

relate programs with primitive actions is also useful for

relating a subclass of weak potential causes (in particular,

weak causes that are also strong) at different levels of

abstraction.

On the semantic level, models of programs can be very

complicated, but reasoning about effects of actions that

serve as their abstractions can be easier since essential

details are encapsulated in a simpler HL model. We argue

that HL and low-level (LL) causes can be related in a kind

of commutative diagram. Namely, if a HL action is found

to be a cause of an effect, this action is associated to a

program 𝛿 defined over a LL theory that implements it,

and this effect is an abstraction of a LL formula 𝜑 (i.e. 𝜑
is a refinement of the effect), then at the LL, 𝛿 must be a

cause of 𝜑. This result is one of our main contributions.

We focus here on semantics and leave computational

issues to future work.

2. Preliminaries
Our base framework for this is the situation calculus (SC)

[4] as formalized in [5]. We assume that there is a finite

number of action types 𝒜. Moreover, we assume that the

terms of object sort are a countably infinite set 𝒩 of

standard names for which we have the unique names as-

sumption and domain closure. For simplicity, and w.l.o.g.,

we assume that there are no functions other than con-

stants and no non-fluent predicates.

A basic action theory (BAT) 𝒟 is the union of the fol-

lowing disjoint sets: the foundational, domain indepen-

dent, (second-order, or SO) axioms of the SC; (first-order,

or FO) precondition axioms; (FO) successor state axioms

(SSAs) describing how fluents change between situations;

(FO) unique names axioms for actions and (FO) domain

closure on action types; (SO) unique name axioms and

domain closure for object constants; and (FO) axioms de-

scribing the initial configuration of the world. A special

predicate Poss(𝑎, 𝑠) is used to state that action 𝑎 is exe-

cutable in situation 𝑠; precondition axioms characterize

this predicate. The abbreviation 𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑠) means

that every action performed in reaching situation 𝑠 was

possible in the situation in which it occurred. A prece-

dence relation on situations 𝑠 and 𝑠′ denoted by 𝑠 ≤ 𝑠′

states that 𝑠′ is a successor situation of 𝑠 and that ev-

ery action between 𝑠 and 𝑠′ is in fact executable. We

write 𝑑𝑜([𝑎1, 𝑎2, . . . , 𝑎𝑛−1, 𝑎𝑛], 𝑠) as an abbreviation

for 𝑑𝑜(𝑎𝑛, 𝑑𝑜(𝑎𝑛−1, . . . , 𝑑𝑜(𝑎2, 𝑑𝑜(𝑎1, 𝑠)) . . .)); for an

action sequence �⃗�, we often write 𝑑𝑜(�⃗�, 𝑠) for 𝑑𝑜([�⃗�], 𝑠).
A SC formula is uniform in 𝑠 iff it does not mention

𝑃𝑜𝑠𝑠, ⊏, or equality on situations, it does not quan-

tify over situations, and whenever it mentions a term of

sort situation then that term is 𝑠. Also, we use upper-

case Greek letters for situation-suppressed SC formulae

and we denote by Φ[𝑠] the formula obtained from Φ
by restoring the situation argument 𝑠 into all fluents in

Φ. To represent and reason about complex actions, vari-

ous high-level programming languages have been defined.

Here we concentrate on (a fragment of) ConGolog [3] that

includes the following constructs:

𝛿 ::=nil | 𝛼 | Φ? |(𝛿1; 𝛿2) |(𝛿1|𝛿2) |(𝜋𝑥.𝛿(𝑥)) |𝛿* |(𝛿1‖𝛿2).

Thus, complex actions can be composed using constructs

that include the empty program (nil), primitive actions

(𝛼), waiting for a condition (Φ?), sequence (𝛿1; 𝛿2), non-

deterministic branch (𝛿1|𝛿2), nondeterministic choice

of arguments (𝜋𝑥.𝛿(𝑥)), nondeterministic iteration (𝛿*),

and concurrent execution (𝛿1‖𝛿2). Intuitively, 𝜋𝑥.𝛿(𝑥)
nondeterministically picks a binding for the variable 𝑥
and performs the program 𝛿 for this binding of 𝑥.

The semantics of ConGolog is specified in terms of

single-step transitions, using the following two predi-

cates [3]: (i) 𝑇𝑟𝑎𝑛𝑠(𝛿, 𝑠, 𝛿′, 𝑠′), which holds if one step

of program 𝛿 in situation 𝑠may lead to situation 𝑠′ with 𝛿′

remaining; and (ii) 𝐹𝑖𝑛𝑎𝑙(𝛿, 𝑠), which holds if program

𝛿 may legally terminate in situation 𝑠. The definitions

of 𝑇𝑟𝑎𝑛𝑠 and 𝐹𝑖𝑛𝑎𝑙 we use are as in [3], except that

the test construct Φ? does not yield any transition, but

is final when satisfied. The predicate 𝐷𝑜(𝛿, 𝑠, 𝑠′) means

that program 𝛿, when executed starting in situation 𝑠,
has 𝑠′ as its legal terminating situation. It is defined as

𝐷𝑜(𝛿, 𝑠, 𝑠′)
.
= ∃𝛿′.𝑇 𝑟𝑎𝑛𝑠*(𝛿, 𝑠, 𝛿′, 𝑠′) ∧ 𝐹𝑖𝑛𝑎𝑙(𝛿′, 𝑠′)

where Trans
*

denotes the reflexive transitive closure of

Trans. We use 𝒞 to denote the axioms defining ConGolog.

Following [8], we say that a ConGolog program 𝛿 is

situation-determined (SD) in 𝑠 if for every sequence of

transitions, the remaining program is determined by the

resulting situation, i.e.

SituationDetermined(𝛿, 𝑠)
.
=

∀𝑠′, 𝛿′, 𝛿′′.Trans
*(𝛿, 𝑠, 𝛿′, 𝑠′) ∧ Trans

*(𝛿, 𝑠, 𝛿′′, 𝑠′) ⊃ 𝛿′ = 𝛿′′.

Example. Our running example involves a simple res-

cue robot 𝑅𝑜𝑏 that is designed to aid first responders.

Initially 𝑅𝑜𝑏 is at the 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 but as an emergency at

location 𝐿1 exists,𝑅𝑜𝑏 is expected to go to 𝐿1 and assist

in the rescue operations (by removing rubble or by evacu-

ating people). Action 𝑔𝑜𝐿𝐿(𝑟, 𝑙) takes robot 𝑟 to location

𝑙, and is executable if 𝑟 is not already at that location.

Action 𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑟, 𝑙) (resp. 𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑒(𝑟, 𝑙)) can

be performed by robot 𝑟 at location 𝑙 to remove rubble

(resp. evacuate people); these actions are executable if

𝑟 is at location 𝑙. Fluent 𝐴𝑡𝐿𝐿(𝑟, 𝑙, 𝑠) indicates 𝑟’s loca-

tion to be 𝑙 at situation 𝑠. Fluents 𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙, 𝑠) and

𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒𝑑(𝑟, 𝑙, 𝑠) evaluate to true when the robot 𝑟 has

removed rubble and evacuated people at location 𝑙 respec-

tively. Robot 𝑟 is also able to update the software pack-

ages it uses by performing action 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑟, 𝑣),
where 𝑣 indicates the version of the software. Fluent

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐿𝐿(𝑟, 𝑣, 𝑠) indicates if software has been

updated to version 𝑣. Initially, we assume a new version

𝑉 2021 is available.

The BAT for this domain 𝒟𝑒𝑥
𝑙 includes the following

action precondition axioms (throughout, we assume that

free variables are universally quantified from the outside):

𝑃𝑜𝑠𝑠(𝑔𝑜𝐿𝐿(𝑟, 𝑙), 𝑠) ≡ ¬𝐴𝑡𝐿𝐿(𝑟, 𝑙, 𝑠),
𝑃𝑜𝑠𝑠(𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑟, 𝑣), 𝑠)≡¬𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐿𝐿(𝑟, 𝑣, 𝑠),
𝑃𝑜𝑠𝑠(𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑟, 𝑙), 𝑠) ≡ 𝐴𝑡𝐿𝐿(𝑟, 𝑙, 𝑠),
𝑃𝑜𝑠𝑠(𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑒(𝑟, 𝑙), 𝑠) ≡ 𝐴𝑡𝐿𝐿(𝑟, 𝑙, 𝑠).

Moreover, 𝒟𝑒𝑥
𝑙 includes the following SSAs:

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐿𝐿(𝑟, 𝑣, 𝑑𝑜(𝑎, 𝑠)) ≡
𝑎 = 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑟, 𝑣) ∨ 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐿𝐿(𝑟, 𝑣, 𝑠),

𝐴𝑡𝐿𝐿(𝑟, 𝑙, 𝑑𝑜(𝑎, 𝑠)) ≡ 𝑎 = 𝑔𝑜𝐿𝐿(𝑟, 𝑙) ∨
(𝐴𝑡𝐿𝐿(𝑟, 𝑙, 𝑠) ∧ ¬∃𝑙′. 𝑙′ ̸= 𝑙 ∧ 𝑎 = 𝑔𝑜𝐿𝐿(𝑟, 𝑙

′)),
𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙, 𝑑𝑜(𝑎, 𝑠)) ≡
𝑎 = 𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑟, 𝑙) ∨ 𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙, 𝑠),

𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒𝑑(𝑟, 𝑙, 𝑑𝑜(𝑎, 𝑠)) ≡
𝑎 = 𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑒(𝑟, 𝑙) ∨ 𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒𝑑(𝑟, 𝑙, 𝑠).

Thus, e.g., 𝑟 will be located at 𝑙 in 𝑑𝑜(𝑎, 𝑠) iff 𝑎 refers to

𝑟 going to 𝑙, or 𝑟 was already at 𝑙 in 𝑠 and 𝑎 is not the

action of 𝑟 going to a different location 𝑙′.
𝒟𝑒𝑥

𝑙 also includes the following initial state axioms:

𝐴𝑡𝐿𝐿(𝑅𝑜𝑏, 𝑆𝑡𝑎𝑡𝑖𝑜𝑛, 𝑆0),¬𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒𝑑(𝑅𝑜𝑏, 𝐿1, 𝑆0),
¬𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑅𝑜𝑏,𝐿1,𝑆0),¬𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐿𝐿(𝑅𝑜𝑏,𝑉 2021,𝑆0).

3. Theoretical Foundations

3.1. Actual Cause
Given a trace of events, actual achievement causes are the

events that are behind achieving an effect. In this section,

we review previous work on achievement causality in the

SC [6]. An effect here is a SC formula Φ[𝑠] that is uniform

in 𝑠 and that may include quantifiers over object variables.

Given an effect Φ, the actual causes are defined relative

to a causal setting that includes a BAT 𝒟 representing the

domain dynamics, and a ground situation 𝜎, representing

the “narrative” (i.e. trace of events) where the effect was

observed.

Definition 1 (Causal Setting). A causal setting is a tu-

ple ⟨𝒟, 𝜎,Φ[𝑠]⟩, where 𝒟 is a BAT, 𝜎 is a ground situation

term of the form 𝑑𝑜([𝛼1, · · · , 𝛼𝑛], 𝑆0)with ground action

functions 𝛼1, · · · , 𝛼𝑛 such that 𝒟 |= Executable(𝜎),
and Φ[𝑠] is a SC formula uniform in 𝑠 such that 𝒟 |=
¬Φ[𝑆0] ∧ Φ[𝜎].

Since the theory 𝒟 does not change, when referring to a

causal setting we will often suppress 𝒟 and simply write

⟨𝜎,Φ⟩. Also, here Φ is required to hold by the end of

the narrative 𝜎, and thus we ignore the cases where Φ is

not achieved by the actions in 𝜎, since in that case, the

achievement cause truly does not exist.

As all changes in the SC result from actions, the

achievement causes of an effect are contained within

a set of ground action terms occurring in 𝜎. However,

since 𝜎 might include multiple occurrences of the same

action, one also needs to identify the situations where

those actions were executed.

According to [6], if some action 𝛼 of the action se-

quence in 𝜎 triggers the formula Φ to change its truth

value from false to true relative to 𝒟, and if there are no

actions in 𝜎 after 𝛼 that change the value of Φ back to

false, then 𝛼 is an actual cause of achieving Φ in 𝜎. They

showed that using the single-step regression operator 𝜌
(i.e. one-step version of the regression operator defined

in [5]), in addition to the primary action that actually

brings about the effect of interest, one can recursively

compute the chain of actions that build up to the primary

achivement cause. The following inductive definition

formalizes this intuition. Let Π𝑎𝑝𝑎(𝛼, 𝜎) be the r.h.s. of

the precondition axiom for 𝛼 in 𝜎.

Definition 2 (Achievement Cause). A causal setting

𝒞 = ⟨𝒟, 𝜎,Φ[𝑠]⟩ satisfies the achievement condition of

Φ via the situation term 𝑑𝑜(𝛼*, 𝜎*) ⊑ 𝜎 iff there is an

action 𝛼′
and situation 𝜎′

such that

𝒟 |= ¬Φ[𝜎′] ∧ ∀𝑠. 𝑑𝑜(𝛼′, 𝜎′) ⊑ 𝑠 ⊑ 𝜎 ⊃ Φ[𝑠],

and either 𝛼* = 𝛼′
and 𝜎* = 𝜎′

, or the causal setting

⟨𝜎′, 𝜌[Φ[𝑠], 𝛼′] ∧Π𝑎𝑝𝑎(𝛼
′, 𝜎′)⟩ satisfies the achievement

condition via the situation term 𝑑𝑜(𝛼*, 𝜎*). Whenever a

causal setting 𝒞 satisfies the achievement condition via sit-

uation 𝑑𝑜(𝛼*, 𝜎*), the action 𝛼*
executed in situation 𝜎*

is said to be an achievement cause of 𝒞.

According to [6], the achievement causes of 𝒞 form a

finite sequence of situation-action pairs, which is called

the achievement causal chain of 𝒞.

Example (Cont’d). Consider causal set-

ting 𝒞𝑒𝑥 = ⟨𝒟𝑒𝑥
𝑙 , 𝜎𝑒𝑥1,Φ𝑒𝑥1⟩, where

Φ𝑒𝑥1 = ∃𝑟, 𝑙. 𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙) and 𝜎𝑒𝑥1 =
𝑑𝑜([𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑅𝑜𝑏, 𝑉 2021), 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1),
𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑅𝑜𝑏, 𝐿1)], 𝑆0). Then by Def-

inition 2, the action 𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑅𝑜𝑏, 𝐿1)
performed in situation 𝑆2 =
𝑑𝑜([𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑅𝑜𝑏, 𝑉 2021), 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1)], 𝑆0)
is an achievement cause of 𝒞𝑒𝑥. This is the case

since 𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑅𝑜𝑏, 𝐿1) is the first action

after which the effect Φ𝑒𝑥1 becomes true and it

remained true till the end of the trace. Moreover,

we can show that 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1) executed in

𝑆1 = 𝑑𝑜(𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑅𝑜𝑏, 𝑉 2021), 𝑆0) is another

achievement cause of 𝒞𝑒𝑥, since the causal setting

⟨𝒟𝑒𝑥
𝑙 ,Φ′, 𝑆2⟩ satisfies the achievement condition Φ′

via the situation term 𝑑𝑜(𝑔𝑜𝐿𝐿(𝑅𝑜𝑏,𝐿1),𝑆1), where

Φ′ = 𝜌[Φ𝑒𝑥1, 𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑅𝑜𝑏, 𝐿1)] ∧

Π𝑎𝑝𝑎(𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑅𝑜𝑏, 𝐿1), 𝑆2). Finally, these are

all the causes, and in particular 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿 (𝑅𝑜𝑏,
𝑉 2021) executed in 𝑆0 is not an achievement cause of

𝒞𝑒𝑥.

3.2. Abstraction
We will use the abstraction framework of [7] for rea-

soning about abstract causes. In this framework, there

is a high-level (HL) or abstract action theory 𝒟ℎ and a

low-level (LL) or concrete action theory 𝒟𝑙 representing

the dynamics of the domain at different levels of detail.

𝒟h (resp. 𝒟l) involves a finite set of primitive action

types 𝒜h (resp. 𝒜l) and a finite set of primitive fluent

predicates ℱh (resp. ℱl). Also, 𝒟h and 𝒟l are assumed

to share no domain specific symbols except for standard

names for objects in 𝒩 .

Definition 3 (Refinement Mapping). A refinement

mapping 𝑚 is a function that associates each HL primi-

tive action type A in 𝒜h to a SD ConGolog program 𝛿𝐴
defined over the LL theory that implements the action, i.e.

𝑚(𝐴(�⃗�)) = 𝛿𝐴(�⃗�). Moreover, 𝑚 maps each situation-

suppressed HL fluent𝐹 (�⃗�) inℱh to a situation-suppressed

formula Φ𝐹 (�⃗�) defined over the LL theory that character-

izes the concrete conditions under which 𝐹 (�⃗�) holds in a

situation.

We extend the notation so that𝑚(Φ) stands for the result

of substituting every fluent 𝐹 (�⃗�) in situation-suppressed

formula Φ by 𝑚(𝐹 (�⃗�)). Also, we apply 𝑚 to action se-

quences with 𝑚(𝛼1, . . . , 𝛼𝑛)
.
= 𝑚(𝛼1); . . . ;𝑚(𝛼𝑛) for

𝑛 ≥ 1 and 𝑚(𝜖)
.
= 𝑛𝑖𝑙, where 𝜖 is the empty sequence

of actions.

To relate the HL and LL models/theories, a variant of

bisimulation [9] is defined as follows.

Definition 4 (𝑚-Bisimulation). Given𝑀ℎ a model of

𝒟ℎ, and 𝑀𝑙 a model of 𝒟𝑙 ∪ 𝒞, a relation 𝐵 ⊆ ∆
𝑀ℎ
𝑆 ×

∆
𝑀𝑙
𝑆 (where ∆𝑀

𝑆 stands for the situation domain of 𝑀)

is an 𝑚-bisimulation relation between 𝑀ℎ and 𝑀𝑙 if

⟨𝑠ℎ, 𝑠𝑙⟩ ∈ 𝐵 implies that: (𝑖) 𝑠ℎ ∼𝑀ℎ,𝑀𝑙
𝑚 𝑠𝑙, i.e. 𝑠ℎ eval-

uates each HL primitive fluent same as the evaluation of

the refinement of the fluent in 𝑠𝑙; (𝑖𝑖) for every HL prim-

itive action type A in 𝒜h , if there exists 𝑠′ℎ s.t. 𝑀ℎ |=
𝑃𝑜𝑠𝑠(𝐴(�⃗�), 𝑠ℎ) ∧ 𝑠′ℎ = 𝑑𝑜(𝐴(�⃗�), 𝑠ℎ), then there exists

𝑠′𝑙 s.t.𝑀𝑙 |= 𝐷𝑜(𝑚(𝐴(�⃗�)), 𝑠𝑙, 𝑠
′
𝑙) and ⟨𝑠′ℎ, 𝑠′𝑙⟩ ∈ 𝐵; and

(𝑖𝑖𝑖) for every HL primitive action type A in 𝒜h , if there

exists 𝑠′𝑙 s.t.𝑀𝑙 |= 𝐷𝑜(𝑚(𝐴(�⃗�)), 𝑠𝑙, 𝑠
′
𝑙), then there exists

𝑠′ℎ s.t.𝑀ℎ |= 𝑃𝑜𝑠𝑠(𝐴(�⃗�), 𝑠ℎ)∧𝑠′ℎ = 𝑑𝑜(𝐴(�⃗�), 𝑠ℎ) and

⟨𝑠′ℎ, 𝑠′𝑙⟩ ∈ 𝐵.

𝑀ℎ is 𝑚-bisimilar to 𝑀𝑙, written 𝑀ℎ ∼𝑚 𝑀𝑙, iff there

exists an 𝑚-bisimulation relation 𝐵 between 𝑀ℎ and

𝑀𝑙 such that (𝑆
𝑀ℎ
0 , 𝑆

𝑀𝑙
0) ∈ 𝐵.

Definition 5 (Sound abstraction). 𝒟ℎ is a sound ab-

straction of 𝒟𝑙 relative to refinement mapping 𝑚 iff for

all models 𝑀𝑙 of 𝒟𝑙 ∪ 𝒞, there exists a model 𝑀ℎ of 𝒟ℎ

s.t. 𝑀ℎ ∼𝑚 𝑀𝑙.

With a sound abstraction, if the HL theory entails that a

sequence of actions is executable and achieves a con-

dition, then the LL must also entail that there exists

an executable refinement of the sequence such that the

“translated” condition holds afterwards. Also, if the LL

considers the executability of a refinement of a sequence

of HL actions is satisfiable after which a refinement of a

condition holds, then the HL also considers executability

of the sequence of HL action satisfiable after which the

condition holds as well.

Definition 6 (Complete abstraction). 𝒟ℎ is a com-

plete abstraction of 𝒟𝑙 relative to refinement mapping

𝑚 iff for all models 𝑀ℎ of 𝒟ℎ, there exists a model 𝑀𝑙 of

𝒟𝑙 ∪ 𝒞 s.t. 𝑀𝑙 ∼𝑚 𝑀ℎ.

With a complete abstraction, if the LL theory entails that

some refinement of a sequence of HL actions is executable

and achieves a “translated” HL condition, then the HL

also entails that the action sequence is executable and

the condition holds afterwards. Also, if the HL considers

the executability of sequence of actions is satisfiable after

which a condition holds, then the LL also considers exe-

cutability of the refinement of the sequence of HL action

satisfiable after which a “translated” condition holds as

well.

Note that 𝒟ℎ is a sound and complete abstraction of 𝒟𝑙

relative to refinement mapping 𝑚 iff 𝒟ℎ is both a sound

and a complete abstraction of 𝒟𝑙 relative to 𝑚. Also,

this approach supports the use of ConGolog programs to

specify the possible dynamics of the domain at both the

HL and LL; this is done by following [10] and “compil-

ing” the program into the BAT 𝒟 to get a new BAT 𝒟′

whose executable situations are exactly those that can

be reached by executing the program.

Example (Cont’d). In our example, we define a HL

BAT 𝒟𝑒𝑥
ℎ that abstracts over some details of 𝒟𝑒𝑥

𝑙 . At

the HL, we abstract over details of rescue actions.

Action 𝑟𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙) abstracts over the process of ei-

ther clearing rubble or evacuating people. The flu-

ent 𝐴𝑖𝑑𝑒𝑑𝐼𝑛𝑅𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙, 𝑠) indicates if robot 𝑟 has

aided in rescue at location 𝑙. For simplicity, actions

𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐻𝐿(𝑟, 𝑣) and 𝑔𝑜𝐻𝐿(𝑟, 𝑙) are defined similar

to 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑟, 𝑣) and 𝑔𝑜𝐿𝐿(𝑟, 𝑙) respectively.

𝒟𝑒𝑥
ℎ includes the following precondition axioms:

𝑃𝑜𝑠𝑠(𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐻𝐿(𝑟, 𝑣), 𝑠)≡¬𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐻𝐿(𝑟, 𝑣, 𝑠),
𝑃𝑜𝑠𝑠(𝑔𝑜𝐻𝐿(𝑟, 𝑙), 𝑠) ≡ ¬𝐴𝑡𝐻𝐿(𝑟, 𝑙, 𝑠),
𝑃𝑜𝑠𝑠(𝑟𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙), 𝑠) ≡ 𝐴𝑡𝐻𝐿(𝑟, 𝑙, 𝑠).

The HL BAT also includes the following SSAs:

𝐴𝑖𝑑𝑒𝑑𝐼𝑛𝑅𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙, 𝑑𝑜(𝑎, 𝑠)) ≡
𝑎 = 𝑟𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙) ∨𝐴𝑖𝑑𝑒𝑑𝐼𝑛𝑅𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙, 𝑠).

𝐴𝑡𝐻𝐿 and 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐻𝐿 have SSAs similar to their

LL counterparts respectively.

𝒟𝑒𝑥
ℎ contains the following initial state axioms:

𝐴𝑡𝐻𝐿(𝑅𝑜𝑏, 𝑆𝑡𝑎𝑡𝑖𝑜𝑛, 𝑆0),
¬𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐻𝐿(𝑅𝑜𝑏, 𝑉 2021, 𝑆0),
¬𝐴𝑖𝑑𝑒𝑑𝐼𝑛𝑅𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1, 𝑆0).

Refinement Mapping 𝑚𝑒𝑔
We specify the relation-

ship between the HL and LL BATs through a refinement

mapping 𝑚𝑒𝑔
which is defined as follows:

𝑚𝑒𝑔(𝑔𝑜𝐻𝐿(𝑟, 𝑙)) = 𝑔𝑜𝐿𝐿(𝑟, 𝑙),
𝑚𝑒𝑔(𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐻𝐿(𝑟, 𝑣)) = 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑟, 𝑣),
𝑚𝑒𝑔(𝑟𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙)) =

𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑒(𝑟, 𝑙) | 𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑟, 𝑙),
𝑚𝑒𝑔(𝐴𝑡𝐻𝐿(𝑟, 𝑙)) = 𝐴𝑡𝐿𝐿(𝑟, 𝑙),
𝑚𝑒𝑔(𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐻𝐿(𝑟, 𝑣)) = 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑆𝑊𝐿𝐿(𝑟, 𝑣),
𝑚𝑒𝑔(𝐴𝑖𝑑𝑒𝑑𝐼𝑛𝑅𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙)) =

𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙) ∨ 𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒𝑑(𝑟, 𝑙).

By using Theorem 9 in [7], it is straightforward to

confirm that 𝒟𝑒𝑥
ℎ is a sound abstraction of 𝒟𝑒𝑥

𝑙 relative

to the mapping 𝑚𝑒𝑔
.

4. Programs as Actual Causes
We now return to our discussion of abstract causes. As

seen in Section 3, Definition 2 appeals to regression, a

syntactic notion, and this requires the effect formula Φ[𝑠]
to be uniform in 𝑠. However, this is too restrictive for us

as it is hard to adapt for abstract causes. Specifically, it

is hard to define regression over programs; recall Reiter

defined regression over primitive actions.
1

Therefore, we

start by introducing the notion of dynamic effect formulae

in the SC.

Definition 7 (Dynamic Effect Formula). Let �⃗� and

𝜃�⃗� respectively range over object terms and a sequence of

action terms. The class of situation-suppressed dynamic ef-

fect formulae 𝜓 is defined inductively using the following

grammar:

𝜓 ::=𝑃 (�⃗�) |ExecSeq(𝜃�⃗�) |After(𝜃�⃗�, 𝜓) |¬𝜓 |𝜓1∧𝜓2 |∃�⃗�.𝜓.

That is, a dynamic effect formula can be a situation-

suppressed fluent, a formula that says that some sequence

of actions 𝜃�⃗� is executable, a formula that indicates some

dynamic effect formula holds after some sequence of ac-

tions has occurred, or one that can be built from other dy-

namic effect formulae using the usual connectives. Note

that 𝜓 can have quantification over object variables, but

1
Note that, previously [11] has proposed an extension of re-

gression for programs; investigating whether their definition can

be adapted for our purpose is future work.

must not include quantification over situations or the

precedence operator ⊏. We use lower-case Greek letters

for dynamic effect formulae. 𝜓[𝑠] is the formula obtained

from 𝜓 by restoring the appropriate situation argument

into all fluents in 𝜓.

Definition 8.

𝜓[𝑠]
def

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃 (�⃗�, 𝑠) if 𝜓 is 𝑃 (�⃗�)

∃𝑠′. 𝐷𝑜(𝜃�⃗�, 𝑠, 𝑠′) if 𝜓 is ExecSeq(𝜃�⃗�)

𝜓′[𝑑𝑜([𝜃�⃗�], 𝑠)] if 𝜓 is After(𝜃�⃗�, 𝜓
′)

¬(𝜓′[𝑠]) if 𝜓 is (¬𝜓′)

𝜓1[𝑠] ∧ 𝜓2[𝑠] if 𝜓 is (𝜓1 ∧ 𝜓2)

∃�⃗�. (𝜓′[𝑠]) if 𝜓 is (∃�⃗�. 𝜓′)

We generalize causal settings by allowing effects in our

framework to be any dynamic effect formula 𝜓, i.e. we

no longer require the effect to be uniform in 𝑠. Also, we

do not require the trace to be a ground situation term, so

it can now include arbitrary (non-ground) action terms.

This allows for the modeling of abstract causes.

Definition 9 (Generalized Causal Setting). A gener-

alized causal setting is a tuple ⟨𝒟, 𝛿, 𝜓⟩, where 𝒟 is a

BAT, 𝛿 is a ConGolog program, and 𝜓 is a dynamic effect

formula s.t.:

𝒟 ∪ 𝒞 |= ¬𝜓[𝑆0] ∧ ∃𝑠′. 𝐷𝑜(𝛿, 𝑆0, 𝑠′) ∧ 𝜓[𝑠′].

Thus, there is at least one execution of the program 𝛿
starting in the initial situation 𝑆0 after which the effect

𝜓 holds.

As discussed in Section 3, the definition of actual

achievement cause given by [6] only deals with narratives

that are linear sequences of actions. Consequently, their

causes are actions (or more precisely, action-situation

pairs).
2

To facilitate the modeling of abstract causes, we

extend this by allowing narratives to be linear sequences

of ConGolog programs. This allows programs to be iden-

tified as causes of observed effects. In the following, we

progressively define what it means for a ConGolog pro-

gram to be a weak potential cause, starting with primary

causes. Note that, given a generalized causal setting there

can be more than one primary potential cause of the effect

as the program can have multiple possible executions.

Definition 10. Given a generalized causal setting 𝐶 =
⟨𝒟, (𝛿1; · · · ; 𝛿𝑛), 𝜓⟩ and a model𝑀 of 𝒟∪𝒞, a program

𝛿𝑖+1 ∈ {𝛿1, · · · , 𝛿𝑛} is called a primary weak potential

cause of 𝜓 relative to 𝐶 and 𝑀 if and only if:

𝑀 |= ∃𝑠𝑖, 𝑠𝑖+1, 𝑠𝑛. 𝐷𝑜((𝛿1; . . . ; 𝛿𝑖), 𝑆0, 𝑠𝑖) ∧ ¬𝜓[𝑠𝑖]
∧𝐷𝑜(𝛿𝑖+1, 𝑠𝑖, 𝑠𝑖+1) ∧𝐷𝑜((𝛿𝑖+2; . . . ; 𝛿𝑛), 𝑠𝑖+1, 𝑠𝑛)

∧ ∀𝑠′. 𝑠𝑖+1 ≤ 𝑠′ ≤ 𝑠𝑛 ⊃ 𝜓[𝑠′].

The triple (𝑠𝑖, 𝑠𝑖+1, 𝜓) is called a witness for this.

2
Here and in the sequel, for brevity, we omit the terms actual

and achievement when we talk about causes, since we exclusively

consider actual achievement causes in this paper.

That is, a program 𝛿𝑖+1 in the scenario (𝛿1; . . . ; 𝛿𝑛) is

a primary weak potential cause relative to a model 𝑀 of

theory 𝒟∪𝒞 and causal setting𝐶 if and only if there is an

execution of the prefix (𝛿1; . . . ; 𝛿𝑖) that ends in situation

𝑠𝑖 in which 𝜓 is false, situation 𝑠𝑖+1 can be reached

by executing 𝛿𝑖+1 starting from 𝑠𝑖, situation 𝑠𝑛 can be

reached by executing the remaining programs starting

from 𝑠𝑖+1, and 𝜓 holds in all situations from 𝑠𝑖+1 up to

𝑠𝑛. Essentially, this is a straightforward generalization

of the base case of Definition 2 and ensures that there is

an execution of the scenario over which 𝜓 was achieved

by some action in 𝛿𝑖+1 and 𝜓 persisted till the end of

the trace, i.e. it was not later made false by a subsequent

action.

Moreover, we define what it means for a program to

be a primary weak potential cause relative to a causal

setting.

Definition 11 (Primary Weak Potential Cause).
Given a generalized causal setting 𝐶 =
⟨𝒟, (𝛿1; · · · ; 𝛿𝑛), 𝜓⟩, a program 𝛿𝑖 ∈ {𝛿1, · · · , 𝛿𝑛} is

called a primary weak potential cause relative to 𝐶 if

and only if for all models 𝑀 of 𝒟 ∪ 𝒞, 𝛿𝑖 is a primary

weak potential cause of 𝜓 relative to 𝐶 and 𝑀 .

Next, we define weak potential causes in general. These

include both primary and non-primary causes reflecting

both base and inductive cases of Definition 2.

Definition 12. Given a generalized causal setting 𝐶 =
⟨𝒟, (𝛿1; · · · ; 𝛿𝑛), 𝜓⟩ and a model𝑀 of 𝒟∪𝒞, a program

𝛿𝑖 ∈ {𝛿1, · · · , 𝛿𝑛} is called a weak potential cause of 𝜓
relative to 𝐶 and 𝑀 if and only if:

1. 𝛿𝑖 is a primary weak potential cause wrt𝐶 and𝑀
with witness (𝑠′, 𝑠′′, 𝜓′), where 𝜓′ = 𝜓, or

2. 𝛿𝑗 (where 𝑖 < 𝑗 ≤ 𝑛) is a weak poten-

tial cause relative to setting 𝐶 and 𝑀 with wit-

ness (𝑠𝑗−1, 𝑑𝑜([𝑎�⃗�], 𝑠𝑗−1), 𝜓𝑗), and 𝛿𝑖 is a pri-

mary weak potential cause relative to the setting

⟨𝒟, (𝛿1; · · · ; 𝛿𝑗−1), 𝜓
′⟩ and model 𝑀 with wit-

ness (𝑠′, 𝑠′′, 𝜓′), where 𝜓′ = 𝐸𝑥𝑒𝑐𝑆𝑒𝑞(𝑎�⃗�) ∧
𝐴𝑓𝑡𝑒𝑟(𝑎�⃗� , 𝜓𝑗).

We call (𝑠′, 𝑠′′, 𝜓′) a witness for 𝛿𝑖 being a weak potential

cause wrt 𝐶 and 𝑀 .

Thus, 𝛿𝑖 is a weak potential cause relative to model 𝑀
and generalized causal setting 𝐶 if and only if it is either

a primary weak potential cause wrt 𝐶 and 𝑀 , or it is a

primary weak potential cause of another weak potential

cause 𝛿𝑗 , i.e. it enables 𝛿𝑗 by ensuring that the appropriate

execution path 𝑎�⃗� of 𝛿𝑗 that brought about 𝛿𝑗 ’s own effect

𝜓𝑗 is executable (i.e. that𝐸𝑥𝑒𝑐𝑆𝑒𝑞(𝑎�⃗�)) and by fulfilling

the conditions under which the execution of 𝑎�⃗� achieved

𝜓𝑗 (i.e. that 𝐴𝑓𝑡𝑒𝑟(𝑎�⃗� , 𝜓𝑗)).

Definition 13 (Weak Potential Cause). Given a gen-

eralized causal setting 𝐶 = ⟨𝒟, (𝛿1; · · · ; 𝛿𝑛), 𝜓⟩, a pro-

gram 𝛿𝑖 ∈ {𝛿1, · · · , 𝛿𝑛} is called a weak potential cause

of 𝜓 relative to𝐶 if and only if for all models𝑀 of 𝒟∪𝒞,

𝛿𝑖 is a weak potential cause of 𝜓 relative to 𝐶 and 𝑀 .

Moreover, if 𝒟 is initially completely specified, there is

only one model; in that case, we call 𝜓′
from the witness

(𝑠′, 𝑠′′, 𝜓′) in Definition 12 a witness to the fact that 𝛿𝑖 is

a weak potential cause of 𝜓 relative to 𝐶 .

Thus, we only call a program a weak potential cause

relative to a generalized causal setting if it is a weak

potential cause in all models of the theory.

Example (Cont’d). Consider the setting

⟨𝒟𝑒𝑥
𝑙 , (𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑅𝑜𝑏, 𝑉 2021); 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1);

𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1)), ∃𝑟, 𝑙.𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙)⟩, where

𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙) = 𝑚𝑒𝑔(𝑟𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙)). Then accord-

ing to our definitions, 𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1) is the

primary weak potential cause relative to the above

setting, as in all models, 𝒟𝑒𝑥
𝑙 ∪ 𝒞 |= ∃𝑠2, 𝑠3.

𝐷𝑜((𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑅𝑜𝑏, 𝑉 2021); 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1)), 𝑆0,
𝑠2) ∧ ¬∃𝑟, 𝑙.𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙)[𝑠2] ∧ 𝐷𝑜(𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏,
𝐿1), 𝑠2, 𝑠3) ∧ ∃𝑟, 𝑙.𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙)[𝑠3], and by the SSA

for 𝐶𝑙𝑒𝑎𝑟𝑒𝑑, the effect persists until the end of scenario.

Note that, as only in some executions of the

scenario ∃𝑟, 𝑙.𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙) is true, 𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1)
is considered weak. If we instead consider the

effect ∃𝑟, 𝑙.𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙) ∨ 𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒𝑑(𝑟, 𝑙), then

𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1) can be considered as the primary

strong potential cause in the sense that in all executions

of the scenario 𝛿𝑟𝑒𝑠𝑐𝑢𝑒 achieves the effect.

Moreover, we can also show that 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1)
is a weak potential cause, since it is a pri-

mary weak potential cause wrt the setting

⟨𝒟𝑒𝑥
𝑙 , (𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑅𝑜𝑏, 𝑉 2021); 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1)),

𝐸𝑥𝑒𝑐𝑆𝑒𝑞(𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑅𝑜𝑏, 𝐿1)) ∧
𝐴𝑓𝑡𝑒𝑟(𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑏𝑏𝑙𝑒(𝑅𝑜𝑏, 𝐿1), ∃𝑟, 𝑙.𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙))⟩.

On the other hand, 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑅𝑜𝑏, 𝑉 2021) can-

not be shown to be a weak potential cause.

Our notion of programs as actual cause above is a weak

and more inclusive one. We consider a program as a cause

if there is at least one execution where the program is

a cause. In some cases, it might be useful to consider a

stronger version, where a program is considered to be

a cause if it is a cause according to all executions of the

program. A thorough investigation of such a variant is

future work.

When the program 𝛿 is finite, terminating, and com-

posed of ground actions only, one can show that the in-

termediate effects (i.e. [ExecSeq(�⃗�) ∧After(�⃗�, 𝜑)]) can

be straightforwardly computed using Reiter’s regression.

Also, and in particular, when 𝛿 is a finite sequence of

ground actions, the causes computed using our defini-

tion and the definition in [6] are the same.

Theorem 14. Let 𝛿 = 𝛼1; · · · ;𝛼𝑛 be a finite sequence

of ground actions. Then (𝛼𝑖, 𝑑𝑜([𝛼1,· · ·, 𝛼𝑖−1], 𝑆0)) is a

cause relative to the causal setting ⟨𝒟, 𝑑𝑜([𝛿], 𝑆0),Φ⟩ ac-

cording to Definition 2 iff 𝛼𝑖 is a potential cause relative to

the generalized causal setting ⟨𝒟, 𝛿,Φ⟩ according to Def-

inition 13.
3

Given the above, it is easy to see that when 𝛿 is a finite

sequence of ground actions, all properties shown for [6]’s

framework also hold in ours. These include the proper

handling of preemption and switches.

5. Reasoning about Abstract
Causes

We now focus on investigating how reasoning about ab-

stract causes can be simplified. In particular, we will show

that under some conditions, a subclass of weak potential

causes at various levels of abstraction can be related. This

subclass involves weak causes that are also strong in the

sense that all executions of the cause achieve the effect

(see the corollary below). This reduces reasoning about

abstract causes (i.e. programs) at the LL to that of actions

as causes at the HL when said conditions are met.

We start by formalizing some of these conditions. First,

we assume that every HL action 𝛼𝑖 is mapped via 𝑚 to a

LL program 𝛿𝑖 that may take part in a LL scenario; in this

way, any abstract scenario can be refined by a concrete

one.

Moreover, we assume only action sequences that refine

some HL action sequence are executed in the LL BAT:

Assumption 1 (LL behaviours refine HL actions).

𝒟𝑙∪𝒞 |=∀𝑠.𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑠)⊃∃𝛿.𝑇𝑟𝑎𝑛𝑠*(anyseqhl,𝑆0,𝛿,𝑠),

where anyseqhl

def

= (|𝐴𝑖∈𝒜ℎ
𝜋�⃗�.𝑚(𝐴𝑖(�⃗�)))

*,
i.e. do any sequence of refinements of HL actions.

Furthermore, we require that LL effects are non-

transient wrt HL actions:

Assumption 2 (Non-transiency of LL Effects).
Suppose the set 𝐹𝐹𝑖

𝑅 includes all the fluent literals in a

refinement of a HL fluent 𝐹𝑖. We assume that:

𝒟𝑙 ∪ 𝒞 |= ∀𝑠.𝐷𝑜(anyseqhl, 𝑆0, 𝑠) ⊃⋀︀
𝐴𝑖∈𝒜ℎ

⋀︀
𝐹𝑖∈ℱℎ

⋀︀
𝐹𝐿∈𝐹

𝐹𝑖
𝑅

∀𝑠′, 𝑠′′, �⃗�, �⃗�.

𝐹𝐿(�⃗�)[𝑠] ∧𝐷𝑜(𝑚(𝐴𝑖(�⃗�)), 𝑠, 𝑠
′) ∧ 𝐹𝐿(�⃗�)[𝑠

′]
∧ 𝑠 < 𝑠′′ < 𝑠′ ⊃ 𝐹𝐿(�⃗�)[𝑠

′′]

The above essentially requires the LL theory to entail

that if a fluent literal 𝐹𝐿 that is in a refinement of a

HL fluent 𝐹𝑖 is true in both the situations before and

after execution of the refinement of a HL action 𝐴𝑖(�⃗�),
then it should remain true in all intermediate situations

3
Note that, a SC formula Φ is also a dynamic effect formula.

of execution of the refinement of 𝐴𝑖(�⃗�) as well. This

condition must hold after any sequence of refinements

of HL actions, i.e. 𝐷𝑜(anyseqhl, 𝑆0, 𝑠). To see why

this is necessary, consider the following example. Sup-

pose that at the HL, we have the generalized causal set-

ting ⟨𝒟ℎ, (𝛼;𝛽), 𝐹ℎ𝑙⟩ in which 𝛼 is the only primary

weak potential cause. Assume the following mapping:

𝑚(𝛼) = 𝑎 and 𝑚(𝛽) = 𝑏1; 𝑏2, and 𝑚(𝐹ℎ𝑙) = 𝐹𝑙𝑙. At

the LL, after performing 𝑎, 𝐹𝑙𝑙 becomes true, and af-

ter performing 𝑏1 and 𝑏2, 𝐹𝑙𝑙 becomes false and true re-

spectively. Hence, in the setting ⟨𝒟𝑙,𝑚(𝛼;𝛽),𝑚(𝐹ℎ𝑙)⟩,
𝑚(𝛽) is considered the only primary weak potential

cause if the analysis is done at the LL using Definition 13.

To achieve correspondence of potential causes between

HL and LL, we need to rule out such cases.

To investigate how causes at the abstract and concrete

levels are related, we first consider sound abstractions. For

this, and when complete information is assumed, we can

show that if an action 𝛼 is a weak potential cause wrt the

generalized casual setting 𝐶ℎ = ⟨𝒟ℎ, (𝛼ℎ⃗),Φ𝐻⟩ at the

HL, the refinement of 𝛼 can be considered a weak poten-

tial cause wrt the setting 𝐶𝑚 = ⟨𝒟𝑙,𝑚(𝛼ℎ⃗),𝑚(Φ𝐻)⟩
at the LL.

4

Theorem 15. Suppose that 𝒟ℎ is a sound abstraction of

𝒟𝑙 wrt some refinement mapping 𝑚, and that Assump-

tions 1 and 2 hold. Then for any ground HL action se-

quence �⃗� and for any HL situation suppressed formula Φ
such that 𝒟ℎ |= 𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑑𝑜(�⃗�, 𝑆0)) ∧ ¬Φ[𝑆0] ∧
Φ[𝑑𝑜([�⃗�], 𝑆0)], we have:

1. 𝒟𝑙 ∪ 𝒞 |= ¬𝑚(Φ)[𝑆0]∧ ∃𝑠. 𝐷𝑜(𝑚(�⃗�), 𝑆0, 𝑠)∧
𝑚(Φ)[𝑠].

2. If �⃗� = �⃗�𝑘−1𝛼𝑘�⃗�𝑘+1 and 𝛼𝑘 is the primary weak

potential cause wrt the generalized causal setting

𝐶ℎ = ⟨𝒟ℎ, (�⃗�),Φ⟩, then 𝑚(𝛼𝑘) is the unique

primary weak potential cause wrt the generalized

causal setting 𝐶𝑚 = ⟨𝒟𝑙,𝑚(�⃗�),𝑚(Φ)⟩.
3. If �⃗� = �⃗�𝑘−1𝛼𝑘�⃗�𝑘+1𝛼𝑗�⃗�𝑗+1, 𝛼𝑗 is a weak

potential cause wrt the generalized causal setting

𝐶ℎ = ⟨𝒟ℎ, (�⃗�),Φ⟩ with witness Φ𝑗 , and 𝛼𝑘 is

the primary weak potential cause wrt the setting

𝐶′
ℎ = ⟨𝒟ℎ, (�⃗�𝑘−1𝛼𝑘�⃗�𝑘+1),ExecSeq(𝛼𝑗) ∧

After(𝛼𝑗 ,Φ𝑗)⟩, and moreover, 𝒟𝑙 is ini-

tially completely specified, and 𝑚(𝛼𝑗) is a

weak potential cause wrt the causal setting

𝐶𝑚 = ⟨𝒟𝑙,𝑚(�⃗�),𝑚(Φ)⟩ with witness 𝑚(Φ𝑗)
then, 𝑚(𝛼𝑘) is the unique primary weak po-

tential cause wrt the generalized causal setting

𝐶′
𝑚 = ⟨𝒟𝑙,𝑚(�⃗�𝑘−1𝛼𝑘�⃗�𝑘+1), 𝜑

′
𝐿⟩, where 𝒟𝑙 ∪

𝒞 |= ∃𝑠*, 𝑎�⃗� . 𝐷𝑜(𝑚(�⃗�𝑘−1𝛼𝑘�⃗�𝑘+1), 𝑆0, 𝑠
*) ∧

4
In the following, we will quantify over action sequences and

so we need to encode sequences as first-order terms as in [3]. For

notational simplicity, we suppress this encoding and use sequences

as terms directly. Also, we conjecture that these results also hold

when the initial state is incomplete; proving this is future work.

𝐷𝑜(𝑚(𝛼𝑗), 𝑠
*, 𝑑𝑜([𝑎�⃗�], 𝑠

*)) and 𝜑′
𝐿 =

ExecSeq(𝑎�⃗�) ∧After(𝑎�⃗� ,𝑚(Φ𝑗)).

Example (Cont’d). Consider the HL

setting 𝐶ℎ = ⟨𝒟𝑒𝑥
ℎ , (�⃗�), 𝜑𝑒⟩, where

�⃗� = [𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐻𝐿(𝑅𝑜𝑏, 𝑉 2021),
𝑔𝑜𝐻𝐿(𝑅𝑜𝑏, 𝐿1), 𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1)] and 𝜑𝑒 = ∃𝑟, 𝑙.
𝐴𝑖𝑑𝑒𝑑𝐼𝑛𝑅𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙). Using similar reasoning as

before, we can show that 𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1) is the

primary weak potential cause relative to 𝐶ℎ. Moreover,

𝑔𝑜𝐻𝐿(𝑅𝑜𝑏, 𝐿1) is another cause relative to 𝐶ℎ.

By Theorem 15, we have that

𝑚𝑒𝑔(𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1)) = 𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1) is

the primary weak potential cause relative to setting

𝐶𝑚 = ⟨𝒟𝑒𝑥
𝑙 ,𝑚𝑒𝑥(�⃗�),𝑚𝑒𝑥(𝜑𝑒)⟩, where 𝑚𝑒𝑥(𝜑𝑒) =

∃𝑟, 𝑙.𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙) ∨ 𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒𝑑(𝑟, 𝑙) and 𝑚𝑒𝑥(�⃗�) =
𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐿𝐿(𝑅𝑜𝑏, 𝑉 2021); 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1);
𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1). Moreover, the action 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1)
is considered another weak potential cause relative to

𝐶𝑚.

Notice that since the number of actions and fluents that

a reasoner needs to consider are typically higher at the

LL, Theorem 15 can yield important efficiency benefits.

In Corollary 5 of [7] ([BDL17]), the authors showed

that if 𝒟ℎ is a sound abstraction of 𝒟𝑙 wrt 𝑚, then the

different sequences of LL actions that are refinements

of a given HL action sequence all have the same effects

on the HL fluents, and more generally on HL situation-

suppressed formulae, i.e. from the HL perspective they

are deterministic:

Corollary 16 (from BDL17). If 𝒟ℎ is a sound abstrac-

tion of 𝒟𝑙 wrt 𝑚, then for any sequence of ground HL ac-

tions �⃗� and for any HL situation-suppressed formula 𝜑, we

have:

𝒟𝑙 ∪ 𝒞 |= ∀𝑠, 𝑠′.𝐷𝑜(𝑚(�⃗�), 𝑆0, 𝑠) ∧𝐷𝑜(𝑚(�⃗�), 𝑆0, 𝑠′) ⊃
(𝑚(𝜑)[𝑠] ≡ 𝑚(𝜑)[𝑠′]).

This indicates that the weak potential causes in Theorem

15 are in fact strong in the sense that in all executions of

the program, the effect is achieved.

With complete abstractions, and when complete infor-

mation is assumed, we can show that if the refinement

of a HL action 𝛼 is a weak potential cause wrt the LL

setting ⟨𝒟𝑙,𝑚(𝛼ℎ⃗),𝑚(Φ𝐻)⟩, then 𝛼 can be considered

a weak potential cause wrt the setting ⟨𝒟ℎ, (𝛼ℎ⃗),Φ𝐻⟩
at the HL.

Theorem 17. Suppose that 𝒟ℎ is a complete abstraction

of 𝒟𝑙 wrt some refinement mapping 𝑚. Then for any

ground HL action sequence �⃗� and for any HL situation

suppressed formula Φ such that 𝒟𝑙 ∪ 𝒞 |= ¬𝑚(Φ)[𝑆0]∧
∃𝑠. 𝐷𝑜(𝑚(�⃗�), 𝑆0, 𝑠) ∧𝑚(Φ)[𝑠], we have that:

1. 𝒟ℎ |= ¬Φ[𝑆0] ∧ 𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒(𝑑𝑜([�⃗�], 𝑆0)) ∧
Φ[𝑑𝑜([�⃗�], 𝑆0)].

2. If �⃗� = �⃗�𝑘−1𝛼𝑘�⃗�𝑘+1 and 𝑚(𝛼𝑘) is the primary

weak potential cause wrt the generalized causal

setting 𝐶𝑚 = ⟨𝒟𝑙,𝑚(�⃗�),𝑚(Φ)⟩ then 𝛼𝑘 is the

unique primary weak potential cause wrt the set-

ting 𝐶ℎ = ⟨𝒟ℎ, (�⃗�), 𝑆0),Φ⟩.
3. If 𝒟𝑙 is initially completely specified,

�⃗� = �⃗�𝑘−1𝛼𝑘�⃗�𝑘+1𝛼𝑗�⃗�𝑗+1, 𝑚(𝛼𝑗) is a

weak potential cause wrt the generalized causal

setting 𝐶𝑚 = ⟨𝒟𝑙,𝑚(�⃗�),𝑚(Φ)⟩ with witness

𝑚(Φ𝑗), and 𝑚(𝛼𝑘) is the unique primary weak

potential cause wrt the generalized causal setting

𝐶′
𝑚 = ⟨𝒟𝑙,𝑚(�⃗�𝑘−1𝛼𝑘�⃗�𝑘+1), 𝜑

′
𝐿⟩, where 𝒟𝑙 ∪

𝒞 |= ∃𝑠*, 𝑎�⃗� . 𝐷𝑜(𝑚(�⃗�𝑘−1𝛼𝑘�⃗�𝑘+1), 𝑆0, 𝑠
*) ∧

𝐷𝑜(𝑚(𝛼𝑗), 𝑠
*, 𝑑𝑜([𝑎�⃗�], 𝑠

*))) and 𝜑′
𝐿 =

ExecSeq(𝑎�⃗�) ∧ After(𝑎�⃗� , 𝑚(Φ𝑗)), and

moreover, 𝛼𝑗 is a weak potential cause wrt

the causal setting 𝐶ℎ = ⟨𝒟ℎ, �⃗�,Φ⟩, then,

𝛼𝑘 is the unique primary weak potential

cause wrt the setting 𝐶′
ℎ = ⟨𝒟ℎ, (�⃗�𝑘−1𝛼𝑘

�⃗�𝑘+1),ExecSeq(𝛼𝑗) ∧After(𝛼𝑗 ,Φ𝑗)⟩.

Example (Cont’d). Let �⃗� = [𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑊𝐻𝐿(𝑅𝑜𝑏,
𝑉 2021), 𝑔𝑜𝐻𝐿(𝑅𝑜𝑏, 𝐿1), 𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1)] and 𝜑𝑒 =
∃𝑟, 𝑙. 𝐴𝑖𝑑𝑒𝑑𝐼𝑛𝑅𝑒𝑠𝑐𝑢𝑒(𝑟, 𝑙). Suppose at the LL, 𝒟𝑒𝑥

𝑙 ∪
𝒞 |= ¬𝑚𝑒𝑥(𝜑𝑒)[𝑆0] ∧ ∃𝑠. 𝐷𝑜(𝑚𝑒𝑥(�⃗�), 𝑆0, 𝑠) ∧
𝑚𝑒𝑥(𝜑𝑒)[𝑠]. Moreover, suppose that 𝛿𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1)
is the primary weak potential cause wrt setting 𝐶𝑚 =
⟨𝒟𝑒𝑥

𝑙 ,𝑚𝑒𝑥(�⃗�),𝑚𝑒𝑥(𝜑𝑒)⟩, which brings about the ef-

fect 𝑚𝑒𝑥(𝜑𝑒) = ∃𝑟, 𝑙.𝐶𝑙𝑒𝑎𝑟𝑒𝑑(𝑟, 𝑙) ∨ 𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑒𝑑(𝑟, 𝑙).
Also, 𝑔𝑜𝐿𝐿(𝑅𝑜𝑏, 𝐿1) is another cause wrt 𝐶𝑚.

Then by Theorem 17, we have that 𝑟𝑒𝑠𝑐𝑢𝑒(𝑅𝑜𝑏, 𝐿1)
is the primary weak potential cause wrt the setting

𝐶ℎ = ⟨𝒟𝑒𝑥
ℎ , (�⃗�), 𝜑𝑒⟩, which brings about the effect 𝜑𝑒.

Moreover, the action 𝑔𝑜𝐻𝐿(𝑅𝑜𝑏, 𝐿1) can be considered

another weak potential cause wrt 𝐶ℎ.

Depending on requirements of the domain, a modeler

can decide among sound, complete, or sound and com-

plete abstractions, each providing efficiency benefits.

6. Discussion
Since we build on a robust approach to computing actual

causes in the SC [6] we can also handle correctly tricky

cases of preemption and over-determination that were

problematic for the previous approaches. For example,

in the well-known Switch example, a switch action is

not an actual cause as shown in [6]. Moreover, as proved

in [12], their own counterfactual based approach turns

out to be equivalent to the first principles approach of

[6]. Also, the paper [12] argued that an actual cause can

be correctly determined in the difficult Bottle example

without appealing to physically impossible interventions.

While there has been a lot of work on actual causation,

to the best of our knowledge, our account is the first and

the only proposal that investigates programs as actual

causes. Perhaps the closest to our work is the one by

[13], who identified a subset of actions (program steps)

of a set of interacting programs as an actual cause for a

violation of specific properties in a security domain. Our

approach however, focuses on formalizing abstract actual

causes as programs in the settings where the actions that

led to the observed effect are only incompletely speci-

fied. Our framework is based on an expressive first-order

logic language for representing and reasoning about dy-

namic domains. In addition to non-deterministic pro-

grams, we allow for incomplete information that is repre-

sented through multiple models of a BAT. Furthermore,

we investigate how abstraction may be used to facilitate

representation and reasoning.

In this paper, we do not study how one can obtain an

abstraction given ConGolog programs. Instead, we study

causal reasoning that can be accomplished if we are given

a sound and/or a complete abstraction of our causal the-

ory. [14] proposed forgetting (of LL fluent and action

symbols) to obtain a sound and complete abstraction of

a LL BAT for a given mapping. Also, [7] identifed the

necessary and sufficient conditions for a (given) HL BAT

to be a sound abstraction of a LL BAT under a mapping.

For simplicity, we focused on a single layer of abstraction,

but the framework supports extending the hierarchy to

several levels. In future work, we plan to investigate

methodologies for designing abstract theories and refine-

ment mappings with respect to given observed effects, as

well as automated synthesis techniques to support this.

Extending the current framework to support probabilis-

tic actions [15] and approximate abstractions, and how

such extensions facilitate reasoning about causality are

important avenues for future research.

References
[1] J. Pearl, Causality: Models, Reasoning, and Infer-

ence, Cambridge University Press, 2000.

[2] J. Y. Halpern, Actual Causality, MIT Press, 2016.

[3] G. De Giacomo, Y. Lespérance, H. J. Levesque, Con-

Golog, a concurrent programming language based

on the situation calculus, Artif. Intell. 121 (2000)

109–169.

[4] J. McCarthy, P. J. Hayes, Some Philosophical Prob-

lems From the Standpoint of Artificial Intelligence,

Machine Intelligence 4 (1969) 463–502.

[5] R. Reiter, Knowledge in Action. Logical Founda-

tions for Specifying and Implementing Dynamical

Systems, The MIT Press, 2001.

[6] V. Batusov, M. Soutchanski, Situation calculus se-

mantics for actual causality, in: Proceedings of

the Thirty-Second AAAI Conference on Artificial

Intelligence, AAAI Press, 2018, pp. 1744–1752.

[7] B. Banihashemi, G. De Giacomo, Y. Lespérance, Ab-

straction in situation calculus action theories, in:

S. P. Singh, S. Markovitch (Eds.), Proceedings of the

Thirty-First AAAI Conference on Artificial Intelli-

gence, AAAI Press, 2017, pp. 1048–1055.

[8] G. De Giacomo, Y. Lespérance, C. J. Muise, On super-

vising agents in situation-determined ConGolog, in:

International Conference on Autonomous Agents

and Multiagent Systems, AAMAS 2012, IFAAMAS,

2012, pp. 1031–1038.

[9] R. Milner, Communication and concurrency, PHI

Series in computer science, Prentice Hall, 1989.

[10] G. De Giacomo, Y. Lespérance, F. Patrizi, S. Sardiña,

Verifying ConGolog programs on bounded situa-

tion calculus theories, in: Proceedings of the Thir-

tieth AAAI Conference on Artificial Intelligence,

AAAI Press, 2016, pp. 950–956.

[11] P. Mo, N. Li, Y. Liu, Automatic verification of

golog programs via predicate abstraction, in:

G. A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier,

V. Dignum, F. Dignum, F. van Harmelen (Eds.),

ECAI 2016 - 22nd European Conference on Artifi-

cial Intelligence, 29 August-2 September 2016, The

Hague, The Netherlands - Including Prestigious

Applications of Artificial Intelligence (PAIS 2016),

volume 285 of Frontiers in Artificial Intelligence and

Applications, IOS Press, 2016, pp. 760–768.

[12] S. M. Khan, M. Soutchanski, Necessary and suffi-

cient conditions for actual root causes, in: ECAI

2020 - 24th European Conference on Artificial In-

telligence, 2020, pp. 800–808.

[13] A. Datta, D. Garg, D. K. Kaynar, D. Sharma, A. Sinha,

Program actions as actual causes: A building block

for accountability, in: C. Fournet, M. W. Hicks, L. Vi-

ganò (Eds.), IEEE 28th Computer Security Foun-

dations Symposium, CSF 2015, Verona, Italy, 13-

17 July, 2015, IEEE Computer Society, 2015, pp.

261–275. URL: https://doi.org/10.1109/CSF.2015.25.

doi:10.1109/CSF.2015.25.

[14] K. Luo, Y. Liu, Y. Lespérance, Z. Lin, Agent ab-

straction via forgetting in the situation calculus, in:

ECAI 2020 - 24th European Conference on Artificial

Intelligence, volume 325 of Frontiers in Artificial

Intelligence and Applications, IOS Press, 2020, pp.

809–816. URL: https://doi.org/10.3233/FAIA200170.

doi:10.3233/FAIA200170.

[15] V. Belle, H. J. Levesque, Regression and pro-

gression in stochastic domains, Artificial In-

telligence 281 (2020) 103247. URL: https://doi.

org/10.1016/j.artint.2020.103247. doi:10.1016/j.
artint.2020.103247.

https://doi.org/10.1109/CSF.2015.25
http://dx.doi.org/10.1109/CSF.2015.25
https://doi.org/10.3233/FAIA200170
http://dx.doi.org/10.3233/FAIA200170
https://doi.org/10.1016/j.artint.2020.103247
https://doi.org/10.1016/j.artint.2020.103247
http://dx.doi.org/10.1016/j.artint.2020.103247
http://dx.doi.org/10.1016/j.artint.2020.103247

	1 Introduction
	2 Preliminaries
	3 Theoretical Foundations
	3.1 Actual Cause
	3.2 Abstraction

	4 Programs as Actual Causes
	5 Reasoning about Abstract Causes
	6 Discussion

