
Towards a Rational Agent Programming Language with
Prioritized Goals

Shakil M. Khan and Yves Lespérance

Department of Computer Science and Engineering
York University, Toronto, ON, Canada
{skhan, lesperan}@cse.yorku.ca

Abstract. Most current approaches to agent programming languages with declar-
ative goals only consider one goal at a time; while planning, they ignore other
concurrent intentions of the agent, and as a consequence, the output of planning
may not be consistent with the other intentions of the agent. In this paper, we
develop a logic-based agent programming language with declarative goals that
addresses this deficiency. We ensure that the agent’s chosen declarative goals and
adopted plans are consistent with each other and with the agent’s knowledge. Our
framework is based on a rich theory of agency that models knowledge and pri-
oritized goals, deals with temporally extended goals, formalizes goal dynamics,
and handles subgoals. We show how agents programmed in our language satisfy
some key rationality requirements.

1 Introduction
Recently, there has been a fair amount of work on establishing a link between agent
logics and agent programming frameworks by incorporating declarative goals in agent
programming languages/frameworks [3, 18, 14, 13, 17, 4]. In addition to defining a set
of plans that can be executed to try to achieve a goal, these programming languages
also incorporate goals as declarative descriptions of the states of the world which are
sought. These declarative goals play an essential role for monitoring goal achievement
and performing recovery when a plan has failed by decoupling plan failure/success
from goal failure/success. Since these goals capture the reason for executing plans, its
not hard to see that they are also necessary to perform rational deliberation and action,
and to react in a rational way to changes in goals that result from communication.

Unfortunately, most of these frameworks suffer from various problems. For in-
stance, some of these frameworks do not provide a formal semantics for declarative
goals. Moreover, most do not formalize temporally extended goals and are restricted
to achievement goals (e.g. [14]). Furthermore, most assume that all the goals of the
agent are equally important (e.g. [3, 18, 13, 17]). The dynamics of these goals are usu-
ally specified using some sort of syntactic manipulation determined by the ‘operational
semantics’ of the language. Generally, there is no requirement for an intended plan to be
consistent with the intended declarative goals (e.g. in all of the frameworks mentioned
above). Thus the execution of such an intended plan can render other contemporary
intentions impossible to bring about.

One of the reasons for these deficiencies in these agent programming languages
(APL) is the fact that it is quite challenging to formalize an APL that is sufficiently
expressive and that can be implemented efficiently. The lack of proper formalizations
of goals and their dynamics in the agent theory literature also contributes to this. Most
existing APLs with declarative goals (APLwDG, henceforth) follow a similar pattern:

they start with an agent theory that has very little expressiveness, and specify an APL
based on this theory. The inherited limited expressiveness of these APLs in turns con-
tributes to the aforementioned deficiencies.

In this paper, we take a different approach : we start with an expressive agent theory,
and provide a specification for an APL on top of this theory. In our agent theory, an
agent can have multiple goals at different priority levels. We support the specification
of general temporally extended goals, not just achievement goals, and specify how these
goals evolve when actions/events occur and the agent’s knowledge changes or when the
agent adopts or drops a goal. We also handle subgoals and their dynamics and ensure
that a subgoal is dropped when its supergoal becomes impossible or is dropped. Based
on this rich theory, we then define a Simple Rational APL that deals with prioritized
goals (SR-APL, henceforth), combining elements from belief-desire-intention APLs
such as [11] and from the situation calculus-based ConGolog APL [2]. While doing this,
we address some of the aforementioned problems of current APLwDG. In particular,
our APL is grounded on a formal theory of goal change. We ensure that our agents’
adopted declarative goals and procedural plans are consistent with each other. Thus, we
investigate how an APL for a rational agent, i.e. one that conforms to a sound theory
of rational agency, should ideally work. We then show that agents programmed in our
language satisfy some key rationality requirements. In future work, we will try to restrict
the expressiveness of this framework to improve its efficiency/tractability.

The paper is organized as follows: in the next section, we outline our base frame-
work. In Section 3, we present our model of prioritized goals, give our formalization of
goal dynamics, and discuss how subgoals change as a result of changes to their parent
goals. In Section 4, we specify the semantics of SR-APL. In Section 5, we use a blocks
world example to discuss how SR-APL compares to existing APLwDGs. In Section 6,
we show that in the absence of external interference, a SR-APL agent behaves in ways
that satisfy some key rationality principles. Then, we conclude by discussing previous
work on APLwDGs, summarizing our results, and pointing to possible future work.

2 Preliminaries
Our base framework for modeling goal change is the situation calculus as formalized
in [9, 12]. In this framework, a possible state of the domain is represented by a situ-
ation. There is a set of initial situations corresponding to the ways the agent believes
the domain might be initially, i.e. situations in which no actions have yet occurred.
Init(s) means thats is an initial situation. The actual initial state is represented by a
special constantS0. There is a distinguished binary function symboldo wheredo(a, s)
denotes the successor situation tos resulting from performing the actiona. Relations
(and functions) whose truth values vary from situation to situation, are called relational
(functional, resp.) fluents, and are denoted by predicate (function, resp.) symbols taking
a situation term as their last argument. There is a special predicate Poss(a, s) used to
state that actiona is executable in situations.

We use a theoryD that includes the following set of axioms: (1) action precondition
axioms, one per actiona characterizing Poss(a, s), (2) successor state axioms (SSA),
one per fluent, that succinctly encode both effect and frame axioms and specify exactly
when the fluent changes [12], (3) initial state axioms describing what is true initially
including the mental states of the agents, (4) unique name axioms for actions, and (5)
domain-independent foundational axioms describing the structure of situations [9].

Following [15], we model knowledge using a possible worlds account adapted to
the situation calculus.K(s′, s) is used to denote that in situations, the agent thinks

that she could be in situations′. UsingK, the knowledge of an agent is defined as:
Know(Φ, s) def= ∀s′. K(s′, s) ⊃ Φ(s′). K is constrained to be reflexive, transitive,
and Euclidean in the initial situation to capture the fact that agents’ knowledge is true,
and that agents have positive and negative introspection. The dynamics of knowledge
is specified by providing a SSA forK that supports knowledge expansion as a result
of sensing actions [15] and someinforming communicative actions [8]. As shown in
[15], the constraints onK continue to hold after any sequence of actions since they are
preserved by the SSA forK. We also assume that the agent is aware of all actions.

To support modeling temporally extended goals, we introduced a new sort ofpaths
along with an axiomatization for paths in [6]. A path is essentially an infinite sequence
of situations, where each situation along the path can be reached by performing some
executableaction in the preceding situation. We use (possibly sub/super-scripted) vari-
ablesp to denote paths. We have a predicate OnPath(p, s), meaning that the situations
is on pathp. Also, Starts(p, s) means thats is the starting situation of pathp. A pathp
starts withs iff s is the earliest situation onp. See [6] for an axiomatization of these.

We will useΦ(s) to denote state formulae in the context of knowledge (andφ(p)
for path formulae in that of goals) each of which has a free situation variables (path
variablep, resp.) in it. Where the intended meaning is clear, we sometimes suppress the
situation variable (path variable) fromΦ (φ, resp.). Note that, by incorporating infinite
paths in our framework, we can evaluate goals over these and handle arbitrary tempo-
rally extended goals; thus, unlike some other situation calculus based accounts where
goal formulae are evaluated w.r.t. finite paths (e.g. [16]), we can handle for example
unbounded maintenance goals.

We next define some useful constructs. A state formulaΦ eventually holdsover the
pathp if Φ holds in some situation that is onp, i.e.: ♦Φ(p) def= ∃s′. OnPath(p, s′) ∧
Φ(s′). Other Temporal Logic operators can be defined similarly, e.g. alwaysΦ: ¤Φ(p).
Secondly, we define when a pathp′ is a suffix of another pathp w.r.t. a situations:

Suffix(p′, p, s)
def
= OnPath(p, s) ∧ Starts(p′, s) ∧ ∀s′. s′ ≥ s ⊃ OnPath(p, s′) ≡ OnPath(p′, s′).

Finally, SameHist(s1, s2) means that the situationss1 ands2 share the same history of
action, but perhaps starting from different initial situations.

3 Our Formalization of Goals
In [6], we proposed a logical framework for modeling prioritized goal change. In that
framework, an agent can have multiple goals/desires at different priority levels, possi-
bly inconsistent with each other. We specify how these goals evolve when actions/events
occur and the agent’s knowledge changes. We define the agent’s chosen goals or inten-
tions, i.e. the goals that the agent is actively pursuing, in terms of this goal hierarchy.
Our agents maximize their “utility”. To this end, we keep all prioritized goals in the
goal base unless they are explicitly dropped. At every step, we compute an optimal set
of chosen goals given the hierarchy of prioritized goals, preferring higher priority goals
such that chosen goals are consistent with each other and with the agent’s knowledge.
Thus at any given time, some goals in the hierarchy are active, i.e. chosen, while others
are inactive. Some of these inactive goals may later become active, e.g. if a higher pri-
ority active goal that is currently blocking an inactive goal becomes impossible.

Prioritized Goals As in [6], we specify eachprioritized goalor p-goal by its own
accessibility relation/fluentG. A pathp is G-accessible at priority leveln in situation
s if all the goals of the agent at leveln are satisfied over this path and if it starts with

a situation that has the same action history ass. The latter requirement ensures that the
agent’sG-accessible paths reflect the actions that have been performed so far. A smaller
n represents higher priority, and the highest priority level is0. Thus here we assume that
the set of p-goals are totally ordered according to priority. We say that an agent has the
p-goal thatφ at leveln in situations iff φ holds over all paths that areG-accessible at
n in s. To be able to refer to all the p-goals of the agent at some given priority level, we
also defineonly p-goals. An agent has the only p-goal thatφ at leveln in situations iff
φ is a p-goal atn in s, and any path over whichφ holds isG-accessible atn in s.

We allow the agent to have infinitely many goals. However in many cases, the mod-
eler will want to specify a finite set of initial p-goals. When a finite number of prioritized
goals is assumed, we use the functionNPGoals(s) to represent the numbern of prior-
itized goals that the agent has in situations.NPGoals(s) = n holds iffn is the highest
priority level such that for alln′ ≥ n, the agent has the trivial only p-goal atn′ that the
history of actions ins has happened.

We use a version of the blocks world for a running example, where each block can
have one of four possible colors: blue, yellow, green, and red. We start with all blocks on
the table. We assume that we only have a stacking actionstack(b, b′) that can be used to
move a block from the table onto another block.b can be stacked onb′ in situations if
b andb′ refer to two different blocks that are both clear ins, and ifb is on the table ins.
Since there are no unstacking actions, the agent cannot use a block to build 2 different
towers at different times.

Assume that our blocks world domain consists of four blocks,BB , BY , BG, and
BR, one of each color. Initially the agent knows thecolor of these blocks, and knows
that all the blocks areon the tableand areclear. Now assume that the agent has only
two p-goals; at the highest priority level, she has the p-goal to eventually construct
a 2 blocks tower that has a green block on top and a non-yellow block underneath,
i.e.♦TowerHPG

Ȳ , where TowerHPGȲ = ∃b, b′. OnTable(b′)∧On(b, b′)∧¬Yellow(b′)∧
Green(b). At level 1 she has a similar p-goal as in level 0, but this time with a blue block
on top and a non-red block underneath, i.e.♦TowerLPB

R̄ . The modeler/programmer will
usually provide some specification of the agent’s initial p-goals at the various priority
levels, using someinitial goal axioms. We assume that our domain theory for the blocks
world exampleDBW includes the following:

(a) Init(s) ⊃ ((G(p, 0, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ ♦TowerHPG
Ȳ)

∧ (G(p, 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ ♦TowerLPB
R̄)),

(b) ∀n, p, s. Init(s) ∧ n ≥ 2 ⊃ (G(p, n, s) ≡ Starts(p, s′) ∧ Init(s′)).

(a) specifies the p-goals of the agent in the initial situations; (b) makesG(p, n, s) true
for every pathp that starts with an initial situation forn ≥ 2. Thus at levelsn ≥ 2, the
agent has the trivial p-goal that she be in an initial situation.

An agent’s c-goals or intentions must be realistic. To filter out the paths that are
known to be impossible fromG, we definerealistic p-goal accessible paths:p is GR-
accessible at leveln in s if it is G-accessible atn in s and if it starts with a situation
that isK-accessible ins. We say that an agent has therealistic p-goalthatφ at leveln
in situations (i.e. RPGoal(φ, n, s)) iff φ holds over allGR-accessible paths atn in s.

Using realistic p-goals, we next definechosen goalsor c-goals. Note that an agent’s
realistic p-goals at various priority levels can be viewed as candidates for her c-goals.
Given the set of realistic p-goals, in each situation we want to compute the agent’s c-

goals such that it is the maximal consistent set of higher priority realistic p-goals. We
do this iteratively starting with a set that contains the highest priority realistic p-goal.
At each iteration we compute the intersection of this set with the next highest priority
p-goal. If the intersection is not empty, we thus obtain a new chosen set of p-goals at
level i. We call a p-goal chosen by this process anactivep-goal. If on the other hand
the intersection is empty, then it must be the case that the p-goal represented by this
level is either in conflict with another active higher priority p-goal/a combination of
two or more active higher priority p-goals, or is known to be impossible. In that case,
that p-goal is ignored (i.e. marked asinactive), and the chosen set of p-goals at leveli is
the same as at leveli− 1. To get the prioritized intersection of the set ofGR-accessible
paths up to leveln, we repeat this until we reachi = n.

We say that an agent has a c-goal at some leveln thatφ (i.e. CGoal(φ, n, s)) if φ
holds over all paths that are in the prioritized intersection of the set ofGR-accessible
paths up to leveln. We define c-goals in terms of c-goals at leveln: the agent has the
c-goal thatφ (i.e. CGoal(φ, s)) if for any level n, φ is a c-goal atn. We can show
that initially our agent has the p-goals/c-goals that♦TowerHPG

Ȳ and♦TowerLPB
R̄ , i.e.:

DBW |= ∀s. Init(s) ⊃ CGoal(♦TowerHPG
Ȳ ∧ ♦TowerLPB

R̄ , s).
To get positive and negative introspection of goals, we impose two inter-attitudinal

constraints on theK andG-accessibility relations in the initial situations. It can be
shown that these constraints then continue to hold after any sequence of actions since
they are preserved by the successor state axioms forK andG. See [5] for details.

Goal Dynamics An agent’s goals change when her knowledge changes as a result of
the occurrence of an action (including exogenous events), or when she adopts or drops
a goal. We introduce two actions for adopting a p-goalφ at some leveln and dropping a
p-goalφ, adopt(φ, n) anddrop(φ), and a third action for adopting a subgoalψ w.r.t. a
supergoalφ, adopt(ψ, φ). When adopting a subgoal relative to a supergoal, the subgoal
is automatically adopted at a priority level just below that of the parent goal.

We specify the dynamics of p-goals as follows (the agent’s c-goals are automatically
updated when her p-goals change). Firstly, to handle the occurrence of a non-adopt/drop
actiona, we progress all p-goals to reflect the fact that this action has occurred. Sec-
ondly, to handle adoption of a p-goalφ at levelm, we add a new proposition containing
the p-goal to the agent’s goal hierarchy atm. To be precise, in addition to progressing
all p-goals at all levels, we insert a new level containing the p-goal thatφ at m and
push all current levels greater or equal tom one level down in the hierarchy. Finally, to
handle the dropping of a p-goalφ, we replace the propositions that imply the dropped
goal in the agent’s goal hierarchy by the trivial proposition that the history of actions in
the current situation has occurred, and thus the agent no longer has the p-goal thatφ.
See [6] for details.

Handling Subgoals We also handle subgoal adoption and model the dependencies
between goals and the subgoals and plans adopted to achieve them. The latter is impor-
tant since subgoals and plans adopted to bring about a goal should be dropped when the
parent goal becomes impossible, or is dropped. We handle this as follows: adopting a
subgoalψ w.r.t. a parent goalφ adds a new p-goal that containsboth this subgoal and
this parent goal, i.e.ψ ∧ φ. This ensures that when the parent goal is dropped, the sub-
goal is also dropped, since when we drop the parent goalφ, we drop all the p-goals at
all G-accessibility levels that implyφ includingψ ∧ φ. Also, this means that dropping
a subgoal does not necessarily drop the supergoal. Note that the parent goalφ could

be a p-goal at multiple levels. We assume that the subgoalψ is always adopted w.r.t.
the highest priority supergoal level, i.e. the highest priority level whereφ holds. We
also assume that the subgoalψ is always adopted at the level immediately below the
supergoalφ’s level. The reason for doing this is that sinceψ is a means to the endφ,
they should have similar priorities. We say thatψ is a subgoal ofφ in situations (i.e.
SubGoal(ψ, φ, s)) iff there exists aG-accessibility leveln in s such thatφ is a p-goal at
n while ψ is not, and for allG-accessibility levels ins whereψ is a p-goal,φ is also a
p-goal. See [7, 5] for details of our formalization of subgoals.

Prioritized Goals for Committed Agents Our formalization of prioritized goal dy-
namics in [6] ensures that the agent always tries to optimize her chosen goals. She will
abandon a c-goalφ if an opportunity to commit to a higher priority but inconsistent
with φ goal arises. As such our account in [6] displays an idealized form of rationality.
This is in contrast to Bratman’s [1] practical rationality that takes into consideration the
resource-boundedness of real world agents. According to Bratman, intentions limit the
agent’s reasoning as it serves as a filter for adopting new intentions. However, the agent
is allowed to override this filter in some cases, e.g. when adoptingφ increases her utility
considerably. Our framework in [6] can be viewed as a theory of intention where the
filter override mechanism is always triggered.

Note that, in this framework, the agent’s c-goals are very dynamic. For instance, as
mentioned earlier, a currently inactive p-goalφ may become active at some later time,
e.g. if a higher priority active c-goal that is currently blockingφ (as it is inconsistent
with φ) becomes impossible. This also means that another currently active c-goalψ
may as a result become inactive, not becauseψ has become impossible or was dropped,
but due to the fact thatψ has lower priority than and is inconsistent with the newly
activated goalφ (see [6] for a concrete example).

Such very dynamic c-goals/intentions are problematic as a foundation for an APL,
as the agent spends a lot of effort in “recomputing” its intentions and plans to achieve
them, and her behavior becomes hard to predict for the programmer. To avoid this, here
we use a modified version of the framework in [6] that eliminates the filter override
mechanism altogether so that agents’ p-goals are dropped as soon as they become in-
active. We can do this with the following simple changes to the framework in [6]: (1)
we require that initially the agent knows that her p-goals are all possible and consistent
with each other, (2) we don’t allow the agent to adopt p-goals that are inconsistent with
her current c-goals/intentions, and (3) we modify the SSA forG so that the agent’s
p-goals are dropped when they become impossible or inconsistent with other higher
priority c-goals. In this modified “committed agent” framework, an agent’s p-goals are
much more dynamic than before. On the other hand, her c-goals are now much more
persistent than before, and are simply the consequential closure of her p-goals.

4 Agent Programming with Prioritized Goals

Our proposed agent programming language SR-APL combines elements from BDI
APLs such as the AgentSpeak APL [11] and from the ConGolog APL [2]. In addition,
to facilitate monitoring of goal achievement and performing plan failure recovery, we
incorporate declarative goals in SR-APL. To specify the operational semantics of/plans
in SR-APL, we will use a subset of the ConGolog APL, which is defined on top of
the situation calculus. This subset includes programming constructs such as primitive
actionsa, wait/test actionsφ?, sequence of actionsδ1; δ2, nondeterministic choice of
argumentsπv. δ, nondeterministic iterationδ∗, and concurrent execution of programs

δ1‖δ2, to mention a few. Also, as in ConGolog, we will use Trans(σ, s, σ′, s′) to denote
that programσ when executed starting in situations can reach situations′ in one ele-
mentary step with the programσ′ remaining to be executed, and Final(σ, s) to mean that
the programσ may legally terminate in situations. Finally, in the following Do(σ, s, s′)
means that programσ when executed starting in situations can legally terminate in sit-
uations′. See [2] for details of how these constructs are defined.

Components of SR-APL First of all, we have a theory specifying actions that can
be done, the initial knowledge and goals of the agent, and their dynamics, as discussed
in the previous section. Moreover, we also have a plan-baseΠ with rules of the form
φ : Ψ ← σ, whereφ is a goal formula,Ψ is a knowledge formula, andσ is a plan; a rule
φ : Ψ ← σ means that if the agent has the chosen goal thatφ and knows thatΨ , then
she should consider adopting the plan thatσ. The plan language forσ is a simplified
version of ConGolog [2] and includes the empty programnil, primitive actionsa, wait-
ing for a conditionΦ?, sequences(σ1;σ2), and the special action for subgoal adoption,
adopt(♦Φ, σ); here♦Φ is a subgoal in a plan that includes this adopt action, andσ is
what remains of the plan after this adopt action has been performed. While our account
of goal change is expressive enough to handle arbitrary temporally extended goals, here
we focus on achievement goals and procedural goals exclusively.

Returning to our blocks world example, we can use the plan-baseΠ below, which
has only two rules:

1. ♦TowerHPG
Ȳ : [OnTable(b) ∧OnTable(b′) ∧ b 6= b′ ∧ Clear(b) ∧ Clear(b′)

∧ ColorOf(b) 6= Yellow ∧ ColorOf(b′) = Green]← stack(b′, b),

2. ♦TowerLPB
R̄ : [OnTable(b) ∧OnTable(b′) ∧ b 6= b′ ∧ Clear(b) ∧ Clear(b′)

∧ ColorOf(b) 6= Red∧ ColorOf(b′) = Blue]← stack(b′, b).

This says that if the agent has the goal to have a green and non-yellow tower and knows
about a non-yellow blockb and a green blockb′ that are both clear and are on the table,
then she should adopt the plan of stackingb′ on b, and similarly for the goal of having
a blue and non-red tower.

Semantics of SR-APL Before giving the formal semantics of SR-APL, let us go over
some useful notations. We will use various standard list operations, e.g. nil (represent-
ing the empty list), First (representing the first item of a list), Rest (representing the
sublist that contains all but the first item of a list), Cons (for constructing a new list
from an item and a list), Member (for checking membership of an item within a list),
Remove (for removing a given item from a list), Replace (for replacing a given item
with another item in a list), etc.

A SR-APL agent can work on multiple goals at the same time, i.e. can interleave
hierarchical decomposition of goals by committing to subgoals/plans, and execution
of plans for multiple goals. Thus at any time, an agent might be committed to several
plans that she will execute in an interleaved fashion. One way of specifying an agent’s
commitment to execute a planσ next is to say that she has the intention that Starts(s)∧
∃s′. OnPath(s′) ∧ Do(σ, s, s′), i.e. that each of her intention-accessible pathsp is such
that it starts with some situations, it has the situations′ on it, ands′ can be reached
from s by executingσ. However, this does not allow for interleaving of actions in plans,
since Do requires that the agent executeσ before executing any other actions/plans.

A better alternative is to represent the procedural goal as Starts(s)∧∃s′. OnPath(s′)∧
DoAtleast(σ, s, s′), which says that the agent has the intention to execute at least the

programσ next, and possibly more. DoAtleast(σ, s, s′) holds if there is an execution
of programσ, possibly interleaved with other actions by the agent herself, starting in
situations and terminating ins′, which we define as:1

DoAtleast(σ, s, s′)
def
= Do(σ‖(πa. Agent(a, agt)?; a)∗, s, s′).

However, a new problem with this approach is that it allows the agent to procrastinate in
the execution of the intended plans. For instance, suppose that the agent has the goal at
leveln1 to execute the programσ1 and at leveln2 to executeσ2 next. Then, according
to our definition of DoAtleast, the agent has the intention at leveln1 to executeσ1 and
at leveln2 to executeσ2, possibly concurrently with other actions, next. The “other
actions” at leveln1 (n2, resp.) are meant to be actions from the planσ2 (σ1, resp.).
However, nothing requires that the additional actions that the agent might execute are
indeed fromσ1/σ2, and thus this allows her to perform actions that are unnecessary as
long as they do not perturb the execution ofσ1/σ2.

To avoid this, we include an additional component, aprocedural intention-baseΓ ,
to the declarative specification of SR-APL.Γ is a list of plans that the agent has adopted
and is currently actively pursuing. To avoid procrastination, we will require that any
action that the agent actually performs comes fromΓ (as specified in the transition rule
Astep below). In the following, we will useΓ ‖ to denote the concurrent composition of
the programs inΓ : Γ ‖ def= if (Γ = nil) then nil else First(Γ)‖(Rest(Γ))‖.

In SR-APL, a program configuration〈σ, s〉 is a tuple consisting of a programσ and
a ground situations. An agent configuration on the other hand is a tuple〈Γ, s〉 that
consists of a list of plansΓ and a ground situations. The initial agent configuration is
〈nil, S0〉.

The semantics of SR-APL are defined by transition rules that specify how an agent
may evolve from one configuration to another. We have a two-tier transition system.
Object/program level transition rules specify how a program written in our plan lan-
guage may evolve. On top of this, we use meta/agent level transition rules to specify
how an SR-APL agent may evolve.

Our program-level transition rules are simply a subset of the ConGolog transition
rules [2] limited to our plan language; see [2] for details. We use〈σ, s〉 → 〈σ′, s′〉 as an
abbreviation for Trans(σ, s, σ′, s′) in the ConGolog definition.

Agent-Level Transition Rules These transition rules are given in Table 1 and are
similar to those of a typical BDI APL.2 First of all, we have a rule Asel for selecting
and adopting a plan using the rule-baseΠ for some realistic p-goal♦Φ. It states that
if: (a) there is a rule in the plan libraryΠ which says that the agent should adopt an
instance of the planσ if she has♦Φ as her p-goal and knows that some instance ofΨ ,
(b) ♦Φ is a previously unhandled realistic p-goal at some leveln in s for which the
agent hasn’t yet adopted any subgoal, (c) the agent knows ins thatΨ ′, (d) θ unifiesΨ
andΨ ′, and (e) the agent does not intend not to adopt DoAtleast(σθ) w.r.t. ♦Φ next,
then she can adopt the planσθ, adding DoAtleast(σθ) as a subgoal of♦Φ to her goals,

1 We will use this construct to specify the procedural goals of an agentagt. Note that, while
our theory accommodates exogenous actions performed by other agents, we assume that all
actions in the plans ofagt that specify her behavior must be performed byagt herself.

2 We use CGoal(∃s′. DoAtleast(σ, now, s′), s) or CGoal(DoAtleast(σ, now, then), s) or sim-
ply CGoal(DoAtleast(σ), s) as a shorthand for CGoal(∃s′. Starts(now) ∧ OnPath(s′) ∧
DoAtleast(σ, now, s′), s).

and addingσθ to Γ (here Handled(φ, s) is defined as∃ψ. SubGoal(ψ, φ, s)).3

Member(♦Φ : Ψ ← σ,Π), D |= RPGoal(♦Φ, n, s),
D |= ¬Handled(♦Φ, s) ∧ Know(Ψ ′, s), mgu(Ψ, Ψ ′) = θ,

Asel D |= ¬CGoal(¬∃s′. Do(adopt(DoAtleast(σθ),♦Φ), now, s′), s)
〈Γ, s〉 ⇒ 〈Cons(σθ, Γ), do(adopt(DoAtleast(σθ),♦Φ), s)〉

Member(σ, Γ), D |= RPGoal(DoAtleast(σ), n, s),
Astep D |= 〈σ, s〉 → 〈σ′, do(a, s)〉 ∧ ¬CGoal(¬∃s′. Do(a, now, s′), s)

〈Γ, s〉 ⇒ 〈Replace(σ, σ′, Γ), do(a, s)〉

Aexo D |= Exo(a) ∧ Poss(a, s)
〈Γ, s〉 ⇒ 〈Γ, do(a, s)〉

Aclean Member(σ, Γ), D |= ¬∃n. RPGoal(DoAtleast(σ), n, s)

〈Γ, s〉 ⇒ 〈Remove(σ, Γ), s〉

D |= ¬∃s′. 〈Γ ‖, s〉 → 〈Γ ′, s′〉, D |= ¬Final(Γ ‖, s),
For allσ s.t. Member(σ, Γ) we have:
D |= RPGoal(DoAtleast(σ), s) ∧ Handled(DoAtleast(σ), s),

D |= ¬CGoal(¬∃s′. Do(adopt(Do(
→
a), NPGoals(s)), now, s′), s),

Arepair D |= Agent(
→
a) = agt ∧ Do(

→
a , s, s′) ∧ 〈Γ ‖, s′〉 → 〈Γ ′, s′′〉

〈Γ, s〉 ⇒ 〈Cons(
→
a , Γ), do(adopt(Do(

→
a), NPGoals(s)), s)〉

Table 1.Agent Transition Rules

In our framework, it can be shown that if an agent does not have the chosen goal in
s not to adopt a subgoalψ w.r.t. a supergoalφ, then she does not have the chosen goal
that¬ψ next ins, i.e.:

Theorem 1. D |= ¬CGoal(¬∃s′. Do(adopt(ψ, φ), now, s′), s) ⊃
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(ψ, φ), s′)) ∧ ψ(p′), s).

Theorem 1 and condition (e) above imply that the agent does not have the chosen
goal not to executeσθ concurrently withΓ ‖ and possibly other actions next, i.e.: (i).
¬CGoal(¬∃s′, s′′. Do(adopt(DoAtleast(σθ),♦Φ), now, s′) ∧ DoAtleast(σθ ‖ Γ ‖, s′,
s′′), s). Moreover, it can be shown that in our framework, an agent acquires the c-goal
thatψ after she adopts it as a subgoal ofφ in s, provided that she has the realistic p-goal
at some leveln in s thatφ, and that she does not have the c-goal ins that¬ψ next, i.e.:

Theorem 2. D |= ∃n. RPGoal(φ, n, s) ∧
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(ψ, φ), s′)) ∧ ψ(p′), s)

⊃ CGoal(ψ, do(adopt(ψ, φ), s)).

From (b), (i), and Theorem 2, we have that: (ii). CGoal(∃s′. DoAtleast(σθ ‖ Γ ‖, now,
s′), do(adopt(DoAtleast(σθ),♦Φ), s)). (i) ensures that the adopted subgoalσθ is con-
sistent withΓ ‖ in the sense that they can be executed concurrently, possibly along with
other actions ins. (ii) confirms thatσθ is indeed intended after the adopt action has

3 Note that, following [17], we allow the agent to adopt plans for parts of her goals.

happened. Note that this notion of consistency is a weak one, since it does not guaran-
tee that there is an execution of the program(σθ ‖ Γ ‖) after the adopt action happens,
but rather ensures that the program DoAtleast(σθ ‖ Γ ‖) is executable. In other words,
σθ and the programs inΓ alonemight not be concurrently executable, and additional
actions might be required. We’ll come back to this issue later.

Secondly, we have a transition rule Astep for single stepping the agent program by
executing an intended action fromΓ . It says that if: (a) a programσ in Γ can make
a program-level transition ins by performing a primitive actiona with programσ′

remaining indo(a, s) afterwards, (b) DoAtleast(σ) is a realistic p-goal at some leveln
in s, and (c) the transition is consistent with the agent’s goals in the sense that she does
not have the c-goal not to executea in s, then the agent can executea andΓ can be
updated to reflect this.

Once again we have a weak consistency requirement in condition (c) above. Ideally,
we would have added to (c) that the agent can continue fromdo(a, s) in the sense that
she does not have the c-goal not to execute the remaining programσ′ concurrently with
the other programs inΓ in do(a, s), i.e. that¬CGoal(¬∃s′. Do(a; (σ′ ‖ Γ ‖), now, s′), s).
However, note thatΓ may not be complete in the sense that it may include plans that
have actions that trigger the adoption of subgoals, for which the execution ofΓ ‖ waits;
but Γ does not have any adopted plans yet that can achieve these subgoals. ThusΓ ‖

by itself might currently have no complete execution, and will only become completely
executable when all such subgoals have been fully expanded.

For example, consider a new agent for our block’s world domain who has a goal to
eventually build a 3 blocks tower, i.e.♦3Tower, where 3Tower= ∃b, b′, b′′. OnTable(b)∧
On(b′, b)∧On(b′′, b′). Also, in addition to the above rules, her rule-baseΠ includes the
following rule:

♦3Tower: [OnTable(b) ∧OnTable(b′) ∧OnTable(b′′) ∧ b 6= b′ ∧ Clear(b) ∧ Clear(b′)

∧ Clear(b′′) ∧ ColorOf(b) 6= Yellow ∧ ColorOf(b′) = Green∧ ColorOf(b′′) = Yellow]← σ1,

where σ1 = adopt(♦TowerHPG
Ȳ ,DoAtleast(σ2));σ2,

and σ2 = TowerHPG
Ȳ ?; stack(b′′, b′).

This says that, if the agent knows about a non-yellow blockb, a distinct green blockb′,
and a yellow blockb′′ that are all clear and on the table, then her goal of building a 3
blocks tower can be fulfilled by adopting the plan that involves adopting the subgoal to
eventually build a green non-yellow tower, waiting for the achievement of this subgoal,
and then stackingb′′ on b′. Suppose that in response to♦3Tower, the agent adoptedσ1

as above as a subgoal of this goal using the Asel rule, and thusσ1 is added toΓ . In the
next few steps, she will step through the adopted planσ1, executing one action at a time
in an attempt to achieve her goal that♦3Tower.

Note that, in SR-APL, the hierarchical decomposition of a subgoal (e.g.σ1 above)
is a two step process. In the first step, in response to the execution (via Astep) of
the adopt(♦TowerHPG

Ȳ ,DoAtleast(σ2)) action in her planσ1 in Γ , the agent adopts
♦TowerHPG

Ȳ as a subgoal w.r.t. the parent goal of executing the remaining program of
σ1 (i.e. of the progression ofσ1, which in this case isσ2), possibly along with other ac-
tions, i.e. w.r.t DoAtleast(σ2). Then in the second step, she uses the Asel rule to select
and adopt a plan for the subgoal♦TowerHPG

Ȳ . We assume that the subgoal♦TowerHPG
Ȳ

must always be achieved before the supergoal. To do this, we suspend the execution of
the supergoal by waiting for the achievement of the subgoal♦TowerHPG

Ȳ . This can be

specified by the programmer by having the supergoalσ2 start with the test/wait action
TowerHPG

Ȳ ? that waits for the subgoal to complete. But this means thatσ2 and thus
σ1 by itself (i.e. without the DoAtleast construct) might not have a complete execu-
tion as it might get blocked when it reaches TowerHPG

Ȳ ?. Moreover, before a plan has
been adopted for handling♦TowerHPG

Ȳ , the execution ofΓ ‖ might get blocked due to
the fact thatσ2 is a member ofΓ . In other words,Γ ‖ will have a complete execution
only when all the subgoals inΓ have been fully expanded. Thus, in general for any
procedural plan-baseΓ in which there is a programσ s.t.σ allows subgoal expansion
of some goal♦Φ, Γ ‖ might not have a complete program level execution in a given
configuration, since there might be no currently adopted plan inΓ that can be used to
achieveΦ. To deal with this, we use a weak consistency check that does not perform
full lookahead overΓ ‖. However, our semantics ensures that any actiona performed
by the agent must be consistent with DoAtleast(Γ ‖), since Astep requires that doinga
must be consistent with all her DoAtleast procedural goals in her goal hierarchy, i.e.
that¬CGoal(¬∃s′. Do(a, now, s′), s). Note that, since we do not perform full looka-
head, it is possible that the agent might get stuck, e.g. if she adopts a plan that includes
the subgoal♦Φ, but there is no applicable plan rule in her plan-baseΠ that achieves
Φ. This is a common problem in many BDI APLs, and can be solved using the usual
techniques for plan failure handling [18]. In future work, we will examine how to avoid
this by incorporating full lookahead in SR-APL.

Thirdly, we have a rule Aexo to accommodate exogenous actions, i.e. actions oc-
curring in the agent’s environment that are not under her control. It states that when an
executable exogenous actiona occurs ins, the agent must update her goals by progress-
ing the situation component of her configuration todo(a, s).

Fourthly, the Aclean rule synchronizes the procedural goal-baseΓ and its declara-
tive counter-part (i.e. the hierarchy of goals/plans specified byD). This might be re-
quired when the occurrence of an exogenous action forces the agent to drop a realistic
p-goal/plan by making it impossible to achieve/execute or inconsistent with her higher
priority realistic p-goals. Recall that such an impossible/inconsistent plan is automati-
cally dropped from the agent’s set of p-goals (by the SSA forG). We use Aclean to clean
up the procedural goal-baseΓ by dropping such programs fromΓ that are no longer
intended. It says that if there is a programσ in Γ , and executingσ possibly along with
other actions is no longer a realistic p-goal, thenσ should be dropped fromΓ .

Finally, we have a rule Arepair that allows the agent to repair her plans in case
she gets stuck, i.e. when for all programsσ in Γ , the agent has the realistic p-goal
that DoAtleast(σ) at some leveln (and thus all of these DoAtleast(σ) are still indi-
vidually executable and collectively consistent), but together they are not concurrently
executable without any non-σ actions in the sense thatΓ ‖ has no program-level transi-
tion in s. This could happen as a result of an exogenous action or as a side effect of our
weak consistency check, as discussed below. The Arepair rule says that if: (a)Γ ‖ does
not have a program level transition ins (which ensures that Astep can’t be applied), (b)
Γ ‖ is not considered to be completed ins, (c) every program inΓ is currently a realistic
p-goal that has been handled (which ensures that Aclean and Asel can’t be applied), (d)
there is a sequence of actions

→
a that the agent does not intend not to execute next, and

(e)
→
a repairsΓ in the sense that there is a program level transition ofΓ ‖ after

→
a has

been executed ins, then in an attempt to repairΓ the agent should adopt
→
a at the lowest

priority level (i.e. atNPGoals(s)).

As mentioned above, the agent could get stuck due to the occurrence of an exoge-
nous actione, for instance whene makes the preconditions of some planσ in Γ false;
note that, DoAtleast(σ) might still be executable after the occurrence ofe, e.g. if there
is an actionr (encoded by the DoAtleast construct) that can be used to restore the pre-
conditions ofσ.

Moreover this could also happen when exogenous actions are absent, since we only
perform a partial lookahead when executing actions via Astep. Consider the following
example: assume that we have only 3 actions in this domain,a, b, andr. All of these
actions are initially possible. The execution ofb makes the precondition ofa false. On
the other hand, the execution ofr restores the precondition ofa. Suppose that an agent
has two adopted plans, DoAtleast(a) at level0 and DoAtleast(b) at level1. ThusΓ
is of the form[a, b]. Its easy to see thatb; a is not a valid execution ofΓ ‖, since the
execution ofb makes the preconditions ofa false. Butb; r; a is indeed a valid execu-
tion of (DoAtleast(a) ∧ DoAtleast(b)). Since we only do partial consistency checking,
our semantics allows the agent to performb as the first action.4 In other words, to
executeb using the Astep transition rule, we only need to ensure thatb has a program-
level transition ins and that this transition is consistent with the agent’s goals, i.e. with
(DoAtleast(a) ∧ DoAtleast(b)), both of which hold. After the execution ofb, the agent
will get stuck, as there is no action in the progression ofΓ that she can perform. To
deal with this, we include a repair rule that makes the agent plan for and commit to a
sequence of actions that can be used to repairΓ , which for our example isr. Note that,
we could have avoided the need for repairing plans in this case by strengthening the
conditions of the Astep rule to do full lookahead by expanding all subgoals inΓ . How-
ever, this requires modeling the plan selection/goal decomposition process as part of the
consistency check, which we leave for future work. We could have also relied on plan
failure recovery techniques [18]. Finally, note that our repair rule does a form of confor-
mant planning; more sophisticated forms of planning such as synthesizing conditional
plans that include sensing actions could also be performed.

When the agent has complete information, we believe that there must be a repair
plan available to the agent if her goals are consistent. In our framework, since the
SSA forG drops all inconsistent goals/plans, the agent’s p-goals are always consis-
tent, and thus if complete information is assumed, it is always possible to repair the
remaining plans. Consider our previous example: if the agent has DoAtleast(a) and
DoAtleast(b) as her realistic p-goals,Γ = [a, b], and if she has the c-goal not to execute
an action fromΓ ‖ (i.e. CGoal(¬∃s′. 〈Γ ‖, now〉 → 〈Γ ′, s′〉, s)), then it must be the
case that she does not have the c-goal not to executeΓ ‖ along with other actions (e.g.
r), i.e.¬CGoal(¬∃s′. DoAtleast(a‖b, now, s′), s). Otherwise, one of DoAtleast(a) or
DoAtleast(b) would have been dropped by the SSA forG as an agent’s p-goals are al-
ways consistent with each-other. Thus there must be a plan

→
a that can repairΓ . Since

the agent has complete information, this plan must work in all her epistemic alternatives
(our repair rule does a form of conformant planning). Also, since by definition, the agent
of the “other actions” in the DoAtleast construct is the agent herself, this means that she
is also the agent of

→
a . If on the other hand the agent has only incomplete information,

then a repair plan may need to perform sensing actions and branch on the results. We
leave this kind of conditional planning for future work.

4 Note that this does not mean that Astep allows the agent to perform an action that makes one
of her goals impossible, e.g. to executeb when such a repair actionr is not available.

Also, note that this rule allows the agent to procrastinate in the sense that in addition
to the plan that actually repairsΓ , she is allowed to adopt and execute actions that are
unnecessary. This could be avoided by constraining the repair plan

→
a , e.g. by requiring

it to be the shortest or the least costly plan etc. We leave this for future work.
Now that we have specified the semantics of SR-APL, let us define some useful

notions of program execution in SR-APL. Alabeled execution traceT is a (possibly

infinite) sequence of configurations〈Γ0, s0〉 l0⇒ 〈Γ1, s1〉 l1⇒ 〈Γ2, s2〉 l2⇒ 〈Γ3, s3〉 l3⇒ · · ·,
s.t.Γ0 = nil, s0 = S0 is the actual initial configuration, and for all〈Γi, si〉, the agent
level transition ruleli can be used to obtain〈Γi+1, si+1〉. Hereli is one of Asel, Astep,
Aexo, Aclean, and Arepair, and in the absence of exogenous actions,li can be one of
Asel, Astep, or Arepair. We sometimes suppress these labels.

A complete traceT is a finite labeled execution trace〈Γ0, s0〉 l0⇒ · · · ln−1⇒ 〈Γn, sn〉,
s.t.〈Γn, sn〉 does not have an agent level transition, i.e.〈Γn, sn〉;, and the concurrent
execution of the programs inΓn is final insn, i.e.D |= Final(Γ ‖n , sn).

5 An Example
In this section, we use our blocks world example to discuss how our proposed APL
compares to existing APLwDGs. Consider a typical BDI APLwDG. In this APL, there
is a procedural goal-baseΓ that is a list of plans that the agent is committed to execute.
In addition, there is a declarative goal-base that is a list of declarative achievement goals
that the agent is committed to bring about. Unlike in SR-APL, the rules in this APL just
select plans for the agent’s goals and eventually execute them in an attempt to achieve
her goals (it should be possible to specify such an APL as a variant of SR-APL with
modified semantic rules). We claim that such an APL is not always sound and rational.
Now, note that one way of building a blue non-red (and a green non-yellow) tower is to
construct a blue-green (a green-red, resp.) tower. While these two plans are individually
consistent, they are inconsistent with each-other, since the agent has only one green
block. Thus a rational agent should not consider adopting the plan of building a blue-
green tower. However, we claim that the following would be a legal trace of a blocks
world domain in such an APL (here, we assume that SR-APL and this APL share the
same rule names and configuration elements):

〈nil, s0〉 Asel⇒ 〈[stack(BB , BG)], s1〉 Asel⇒ 〈[stack(BG, BR), stack(BB , BG)], s2)〉 Astep⇒
〈[stack(BG, BR), nil], do(stack(BB , BG), s2)〉.

where,s1 = do(adopt(DoAtleast(stack(BB , BG)),♦TowerLPB
R̄), s0), ands2 = do(a-

dopt(DoAtleast(stack(BG, BR)),♦TowerHPG
Ȳ), s1). The above trace ends in a config-

uration where the agent is stuck and cannot complete successfully. Thus, in this frame-
work, not only the agent is allowed to adopt two inconsistent plans, but the execution
of one of these plans makes other concurrent goals impossible (e.g. the execution of
stack(BB , BG) makes the higher priority goal♦TowerHPG

Ȳ impossible to achieve).
The problem arises in part because actions are not reversible in this domain; there

is no action for moving a block back to the table or for unstacking it. We believe that
non-reversible actions are common in real world domains. But, even if we assume that
the effects of actions can always be reversed, the agent might have a deadline and thus
reusing the same block to build two towers could render some of her goals impossible.
Note that, while one could argue that such irrational behavior could be avoided by using
appropriate conditions in the antecedent of the plan-selection rules (e.g. by stating that

the agent should only adopt a given plan if she does not have certain other goals),
we think that this puts an excessive burden on the agent programmer. Ideally, such
reasoning about goals should be delegated to the agent. It should be noted that, to the
best of our knowledge, all existing APLwDGs suffer from this problem.

In contrast, it can be shown that our SR-APL agent for this blocks world domain
will not adopt such inconsistent plans and will in fact achieve all her goals. Note that,
when arbitrary exogenous actions can occur, even the best laid plans can fail. Here we
will only consider the case of where exogenous actions are absent. To model this, we
use the following axiom, which we callNoExo: ∀a. ¬exo(a). Thus:

Proposition 1 (a). There exists a complete traceT for our blocks world program. (b).
For all complete tracesT = 〈Γ0, s0〉 ⇒ 〈Γ1, s1〉 ⇒ · · · ⇒ 〈Γn, sn〉, we have:

DBW ∪NoExo |= TowerHPG
Ȳ (sn) ∧ TowerLPB

R̄(sn).

Thus when exogenous actions cannot occur, any execution of our SR-APL blocks world
agent achieves all her goals.

6 Rationality of SR-APL Agents
In this section, we prove some properties that are preserved by an SR-APL agent, and
that together ensure the rationality of the agent. Once again, we will only consider
the case when exogenous actions do not occur. We could have considered exogenous
actions, but in that case we would have to complicate the framework further, e.g. by as-
suming a fair environment that gives a chance to the agent to perform actions. Moreover,
it is not obvious what rational behavior means in the context of external interferences.

To this end, we first show that in each situation, for all domainsD that are part of a
SR-APL agent, the knowledge and goals as specified byD must be consistent:5

Theorem 3 (Consistency of Knowledge and CGoals).

D |= ∀s. ¬Know(false, s) ∧ ¬CGoal(false, s).

We next show that in the absence of exogenous actions, for each configuration of a
SR-APL agent trace, the procedural componentΓ is consistent with the declarative and
procedural goals inD:
Theorem 4 (Consistency ofΓ and D ∪ NoExo). If T = 〈Γ0, s0〉 ⇒ 〈Γ1, s1〉 ⇒
· · · ⇒ 〈Γn, sn〉 is a trace of a SR-APL agent, then for alli s.t.0 < i ≤ n, and for all
σ, if Member(σ, Γi), then we have:D ∪NoExo |= CGoal(DoAtleast(σ), si).

Thus for any configuration〈Γi, si〉, the agent intends to execute each programσ of Γi

in si, possibly interleaved by other actions. It follows that the agent intends to execute
the programs inΓi concurrently starting insi, possibly with other actions, i.e.D ∪
NoExo |= CGoal(∃s′. DoAtleast(Γ ‖i , now, s

′), si).
We next show that our agent evolves in a rational way, i.e. in the absence of exoge-

nous actions, the actions produced by a SR-APL agent are consistent with her knowl-
edge and goals in the theoryD:

Theorem 5 (Rationality of Actions in a Trace). If T = 〈Γ0, s0〉 l0⇒ 〈Γ1, s1〉 l1⇒
· · · ln−1⇒ 〈Γn, sn〉 is a trace of a SR-APL agent, then for alli s.t. 0 < i ≤ n and
si = do(a, si−1), we have:

5 Note that, this independently follows from the underlying agent theory. Also, see [6] for a list
of other desirable properties of our formalization of prioritized goals.

(a). D ∪NoExo |= ¬CGoal(¬∃s′. Do(a, now, s′), si−1).

(b). If li−1 = Astep thenD ∪NoExo |= CGoal(∃s′. DoAtleast(a, now, s′), si−1).

(c). D ∪NoExo |= ∀φ, ψ, n. a = adopt(ψ, φ) ∨ a = adopt(ψ, n) ⊃
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(a, s′)) ∧ ψ(p′), si−1).

This states that SR-APL is sound in the sense that any trace produced by the APL
semantics is consistent with the agent’s chosen goals. To be precise, (a) if a SR-APL
agent performs the actiona in situationsi−1, then it must be the case that she does
not have the intention not to executea next in si−1. Moreover, (b) ifa is performed
via Astep, thena is indeed intended insi−1 in the sense that she has the intention to
executea possibly along with some other actions next. Finally, (c) ifa is the action of
adopting a subgoalψ w.r.t. a supergoalφ or that of adopting a goalψ at some leveln,
then the agent does not have the c-goal insi−1 not to bring aboutψ next. Note that,
Theorem 5(a) is a general property and applies for any type of transitions. 5(c) applies
to actions performed via Asel and Arepair; moreover, it also applies toadopt actions
performed via Astep. Finally, 5(b) is a stronger property than 5(c) for Astep and applies
to any actions performed via this rule.

7 Related Work, Discussion, and Future Work
There has been much work on agent programming languages with declarative goals
where the dynamics of goals and intentions and the dependencies between goals and
subgoals are modeled (e.g. [18] and the references therein). However, most of these
only handle achievement goals and do not provide a semantic formalization of goal
dynamics. Since these do not support temporally extended goals, they often need to
accommodate inconsistent desire-bases to allow the agent to achieve conflicting goals
at different time points; e.g., in [17], the authors formalized two semantics for repre-
senting such conflicting goals/desires using propositional and default logic. Unlike us
however, they do not handle goals with different priorities. In [14], the authors present
a situation calculus based APL where the agent executes a program while maximiz-
ing the achievement of a (possibly inconsistent) set of prioritized goals. However, they
do not formalize goal dynamics and goals are not modeled as mental attitudes. In [4],
the authors present an extension of the GOAL APL [3] to incorporate temporally ex-
tended goals. In this account, the agent’s beliefs consist of a (complete) valuation of
atomic propositions and a set of LTL formulae that encode the action theory and that
includes action precondition axioms and successor state axioms. They assume that the
agent’s beliefsΣ are a subset of her goalsΓ . While they specify progression of beliefs
semantically using the aforementioned action theory, the progression of goal formulae
χ s.t. χ ∈ Γ\Σ is defined by using a syntactic transformation of LTL formulae. In
contrast, we specify goal dynamics using a semantic approach. As in the GOAL APL,
this language also specifies (primitive) action selection rules that based on some mental
state conditions, allow the agent to concurrently execute a set of primitive actions in
each state. Thus it does not allow complex plans or hierarchical decomposition of goals
to be directly specified. To the best of our knowledge, none of these APLs maintains
consistency between chosen declarative goals and adopted procedural goals.

In this paper, we first presented a variant of our theory of prioritized goal dynamics
[6] that is suitable for agents that commit strongly to their intentions. Then based on
this theory, we developed a specification of an APL that handles prioritized goals and

maintains the consistency of adopted declarative and procedural goals. We showed that
an agent specified in this language satisfies some strong rationality properties.

Our proposed APL was designed in the spirit of BDI APLs; agents in SR-APL
rely on a user-specified plan library, and interleave plan selection, hierarchical plan
decomposition, and plan execution. Note also that our agents can achieve a goal even if
such user-defined plans are not available. Indeed the Arepair rule can be used as a first
principles planner for goals that can be achieved using sequential plans. Thus, given a
goal♦Φ, all the programmer needs to do to trigger the planner is to add a plan of the
form (♦Φ : true← Φ?) to the plan-baseΠ.

In this paper, we have focused on developing an expressive agent programming
framework that yields a rational/robust agent without worrying about tractability. Thus
our framework is more of a specification of an ideal APL rather than a practical APL.
In the future, we would like to investigate restricted versions of SR-APL that improve
its efficiency/tractability. Also, it would be desirable to study a version where the agent
fully expands an abstract plan and checks its executability before adopting it. Finally,
while our agent theory supports arbitrary temporally extended goals, in SR-APL we
only consider achievement goals. We would like to relax this in the future.

References
1. M. E. Bratman.Intentions, Plans, and Practical Reason. Harvard Univ. Press, MA, 1987.
2. G. De Giacomo, Y. Lesṕerance, and H. J. Levesque. ConGolog, a Concurrent Programming

Language Based on the Situation Calculus.Artificial Intelligence, 121:109–169, 2000.
3. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent Programming

with Declarative Goals. InIntelligent Agents VII, LNAI v. 1986, pp. 228–243, Springer, 2000.
4. K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk. Agent Programming with

Temporally Extended Goals. InAAMAS-09, pp. 137–144, 2009.
5. S. M. Khan.Rational Agents : Prioritized Goals, Goal Dynamics, and Agent Programming

Languages with Declarative Goals (in preparation). PhD thesis, York Univ., Canada, 2010.
6. S. M. Khan and Y. Lesṕerance. A Logical Framework for Prioritized Goal Change. To

appear inAAMAS-10, 2010.
7. S. M. Khan and Y. Lesṕerance. Prioritized Goals and Subgoals in a Logical Account of Goal

Change – A Preliminary Report. InDALT-09, LNAI v. 5948, pp. 119–136. Springer, 2010.
8. S. M. Khan and Y. Lesṕerance. ECASL: A Model of Rational Agency for Communicating

Agents. InAAMAS-05, pp. 762-769, Utrecht, The Netherlands, 2005.
9. H. J. Levesque, F. Pirri, and R. Reiter. Foundations for a Calculus of Situations.Electronic

Transactions of AI (ETAI), 2(3–4):159–178, 1998.
10. F. Pirri and R. Reiter. Some contributions to the metatheory of the situation calculus.J. of

ACM, 46(3):325–361, 1999.
11. A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In

Agents Breaking Away, LNAI v. 1038, pp. 42–55. Springer-Verlag, 1996.
12. R. Reiter.Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, 2001.
13. S. Sardina, L. de Silva, and L. Padgham. Hierarchical Planning in BDI Agent Programming

Languages: A Formal Approach. InAAMAS-06, pp. 1001–1008, Hakodate, Japan, 2006.
14. S. Sardina and S. Shapiro. Rational Action in Agent Programs with Prioritized Goals. In

AAMAS-03, pp. 417–424, Melbourne, Australia, 2003.
15. R. Scherl and H. Levesque. Knowledge, Action, and the Frame Problem.Artificial Intelli-

gence, 144(1–2), 2003.
16. S. Shapiro and G. Brewka. Dynamic Interactions Between Goals and Beliefs. InIJCAI-07,

pp. 2625–2630, India, 2007.
17. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals in Conflict : Semantic Foun-

dations of Goals in Agent Programming.J. of AAMAS, 18(3):471–500, 2009.
18. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and Procedural Goals

in Intelligent Agent Systems. InKR&R-02, pp. 470–481, Toulouse, France, 2002.

