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Abstract 
In this paper, we discuss the degeneration of relevance of 
uncertain temporal information and propose an analytical upper 
bound for the relevance time of information in a restricted class 
of dynamic decision networks with sparse evidence. An empirical 
generalization of this analytical result is presented along with a 
series of experimental results to verify the performance of the 
empirical upper bound. 

I. INTRODUCTION  
Probability theory has historically been used to model uncertainty 
and to make useful inference under uncertainty in various 
application domains. Belief networks (also known as Bayesian 
networks) have successfully exploited probabilistic independence 
to reduce the complexity of representing intricate domains [12]. 
Unfortunately, belief network inference is NP-hard in the worst 
case [1]. To represent variables that change over time, it is possible 
to use a time-sliced network such that a time-slice corresponds to 
time point. These time-sliced networks are known as Dynamic 
belief networks (DBNs) [3]. For each time in which the values of 
variables may change, a new slice is created. Each slice consists of 
a set of nodes representing values at a specific point in time. Nodes 
may be connected to nodes within the same or earlier slices to 
represent the fact that a variable's value may depend on concurrent 
values of other variables (contemporary  influences) and on earlier 
values of the same and other variables (temporal or latent 
influences). 
  
Decision theory extends probability theory to guide decision-
making under uncertainty. Utilities are used to provide a 
quantitative measure of preferences among possible world states. 
To decide among alternative actions, the expected utility of each 
alternative is calculated by taking the sum of the utilities of all 
possible future states of the world that follow from that alternative, 
weighted by the probabilities of those states occurring. Decision 
theory holds that a rational agent chooses the alternative that 
maximizes the expected utility. A belief network, which consists 
entirely of chance nodes, can be extended into a decision network 
(equivalently, an influence diagram) by adding decision and utility 
nodes along with appropriate arcs. A dynamic decision network 
(DDN) is like a DBN except that it has decision and utility nodes 
in addition to chance nodes. DDNs model decisions for situations 
in which decisions, variables or preferences can change over time. 
These networks have been used in a variety of applications 
including traffic scene analysis [7], intelligent tutoring systems 
[11], planning [4], and clinical decision making [9].  
 
Due to the computational complexity of reasoning with dynamic 
decision networks, the performance of an intelligent system that 

uses these graphical structures deteriorates as the amount of 
information available increases. Knowing how an additional piece 
of evidence may affect a decision or a query would determine 
whether it is worth seeking or including [8].  A piece of evidence is 
more valuable if it is likely to change a decision. However, 
information that does not change any decision may still be of some 
value if its effect on utilities is not negligible. The present 
treatment extends the previous results on the degeneration of 
relevance of temporal information over time [13], [14] to dynamic 
decision networks with sparse evidence. 
 
Section II introduces the fundamental notion of probabilistic 
relevance of information as it applies to DDNs.    An analytical 
upper bound on relevance in a simple DDN is presented in Section 
III .    Section IV discusses information relevance to decision 
making as opposed to the effect of information on utilities. Section 
V proposes an empirical generalization for the analytical result in 
Section III. In Section VI, experimental validation of the empirical 
generalization is conducted followed by some conclusions in 
Section VII.  

II. RELEVANT AND IRRELEVANT INFORMATION 
According to [14], relevant information Q of a set of assertions  
and a query Q (possibly a set of queries) can be defined as the 
minimal subset of  such that the query Q follows from  if it 
follows from Q. Moreover, a probabilistic definition of 
irrelevance requires that for all outcomes of the query Q, the 
probability of the query given  and Q remains the same. In other 
words,  

)|()|( QQPQP θθ = .  
This idea can be extended to utilities. A decision theoretic 
definition of irrelevance requires that for all possible choices of the 
action A, the utility of the action given  and Q remains the 
same. In other words, 

)|()|( QAUtilityAUtility θθ = .   
According to the commonsense law of inertia [10] a state persists 
indefinitely. But this idealization is not really useful in practice. In 
a time sliced decision network, the relevance of information 
gradually degenerates as time evolves. Hence time sliced decision 
networks can be divided into two periods namely a relevance 
period and an irrelevance period.  
Independence captures a clear sense of mutual irrelevance. To 
identify a class of irrelevance that captures the relevance 
degeneration with time due to the uncertain dynamic nature of 
change, a weaker relevance criterion is necessary. If the maximum 
change that an assertion j in  at time tj can induce on the utility 
of action al at time ti is less than a small value , then ti and tj are 
temporarily extraneous with respect to al. 
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Definition . For a binary variable (or a conjunction of binary 
variables)  and an action al, the degree of relevance  of  at time 
tj with respect to al at time ti, can be defined as the smallest  that 
satisfies the inequality: 

 δθθ ≤¬− )|()|( jljl ii
aUtilaUtil .   

  
If j or ¬ j contain disjunctions of mutually exclusive outcomes 
such as the distinct values of variables in j are not binary, it is 
more efficient and convenient to perform pairwise comparisons of 
each two of these outcomes. Hence, we extend the definition of 
relevance to use pairwise comparisons as follows: 
 
Definition 2. The degree of relevance of factor j with respect to 
action al is δ iff for all possible assignments of j, the maximum 
change in the utility Util(al | j) is less than δ.  
  
In the above definition, δ represents the strength of the degree of 
relevance. Since our interest is in weak temporal relevance with 
reasonably small δ values, we will give another definition that 
allows us to ignore very weak relevance: 
 
Definition 3. The theory Θ can be divided into a relevant subset ΘQ 
and an extraneous subset ΘE. ΘQ answers the query Q with 
accuracy δ iff for any conjunction (possibly singleton),  

δ≤Θ−Θ⊂ )|()|(, QqUtilqUtilQq . 

 
In this study of irrelevance, our goal it to identify the irrelevant 
information and define the relevant subtheory ΘQ. By precisely 
identifying ΘQ, it is possible to improve the performance of 
intelligent systems by reducing the size of the knowledgebase that 
must be considered before answering the query.   

III. AN UPPER BOUND FOR TIME SLICED DECISION NETWORKS 
An upper bound on the time duration T for a single variable time 
sliced belief network is presented in [14]. Here we proceed with a 
similar analysis to show that there exists a time duration T such 
that the utility of an action a at time t > t0 + T changes by at most 
δ depending on the evidences available at time t0. 
 
Theorem 
In a time sliced decision network, consider a fluent Ci with states 
Ci and ¬Ci and the four transition probabilities:  
             1)|( pCCP ii =¬ ∆+ ,  2)|( pCCP ii =¬∆+ , 
            11)|( pCCP ii −=∆+ , and 21)|( pCCP ii −=¬¬ ∆+  

 such that 1,0 21 << pp . If the system is in state Ci then the 
fluent is true at time i. Let the utility of the decision D at time t is 
Ut (D) and let the probability of the fluent is in state Ct at time t be 
P(Ct ). We claim that for any  << 1, there exists T such that 

.)|()|(, 00 δ<¬−≥∀ CDUCDUTt tt
 

Proof. 
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Now, 
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Using the iteration method, we can solve this recurrence relation 
and get, 
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Summing the geometric series and substituting for )|( 01 CCP we 
have,  
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By Substituting for )|( 0CCP t  , we have, 
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Similarly, we have, 
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Substituting by the above two expressions and taking the absolute 
value, we have, 

t
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from the above equation, we have, 
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Intuitively, this theorem implies that information at a particular 
time may not help in taking a decision at another later time if the 
period between the two is long enough. Here, 

)|()|( 00 CDUCDU tt ¬−  measures the effect of C0 on the utility of 

D at time t. In other words, having Ut(D|C0)  Ut- (D|C0) implies 
that Ut(D|C0) has converged. 
   

IV. CONVERGENCE OF DECISIONS 
So far we have considered utility convergence. Here we turn our 
attention to decision convergence. In a time-sliced decision 
network, our goal at time t is to pick a decision D that maximizes 
the utility Ut. Here, the question is that when does D become 
extraneous of C0 (a set of evidence variables at time t0)? In other 



words, for a one variable binary system what is the value of T’ so 
that we can pick a D such that, 'Tt ≥∀ , 
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We claim that decision converges faster than utilities in most 
cases. In this Section, we give some arguments supporting this 
claim. In Section VI, we present some experimental results 
comparing decision and utility convergence.  
 

 
 
 
 
Consider the dynamic decision network in Figure 1. Suppose that 
in the above network, all the variables have two states and we have 
two choices of decisions namely D and ¬D. Our goal is to find a 
time duration T’ such that the decision is not changed by evidence 
at time t0. In the present discussion we assume stationarity of the 
probability distribution as well as the rewards used to calculate the 
utility of the value nodes.   
 
Stationarity is a common assumption in Markov decision 
processes. This assumption implies that the probability distribution 
and rewards do not change with time. Consequently, if we only 
have evidence at t0, the utilities will be either monotonically 
increasing or monotonically decreasing with time according to the 
qualitative probability model in [15]. Given that the utilities 
Ut(D|C0) and Ut(D|¬C0) converge and so do the utilities Ut(¬D|C0) 
and Ut(¬D|¬C0), we have all four utilities monotonically evolving 
over time. They can all be evolving in the direction (e.g. all 
increasing) or they may evolve in different directions (e.g. three 
increasing and one decreasing). Here, we examine three examples 
to illustrate the convergence behavior of decisions with respect to 
that of utilities. It is obvious that whenever utilities converge, the 
decision also converges because typically, a rational agent selects 
the decision that maximizes the expected utility. 
 
Example 1. 
 First assume that Ut(D|C0) and Ut(D|¬C0)  are both monotonically 
increasing while Ut(¬D|C0) and Ut(¬D|¬C0)  are monotonically 
decreasing. This situation is depicted in Figure 2. 
Here we can see that decision converges between time slices 8 and 
9; also notice that the utility converges between time slices 18 and 
19. So clearly, decision converges faster than utility in this case. 
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Figure 2. Monotonically increasing and decreasing utilities 
 
Example 2.  
Consider the case when Ut(D|C0) and Ut(¬D|C0) are increasing 
while Ut(D|¬C0) and Ut(D|C0)  are decreasing. This situation can 
be depicted as in Figure 3. In this case, the decisions are 
converging approximately at time slice 16 while utilities converge 
after time slice 22. Hence, this case also supports fast decision 
convergence. 
 

1 3 5 7 9 11 13 15 17 19 21 23 25
time

ut
ili

ty

U(D|C)
U(D|~C)
U(~D|C)
U(~D|~C)

 Figure 3. Decision converges faster than utilities 
 
Example 3.  
We can see from the two examples above that in many cases, 
decision converges faster than utility. However, there are cases 
where decision and utility both takes the same time to converge. 
An example of this is presented in Figure 4. Here, Ut(¬D|C0) and 
Ut(¬D|¬C0)  converge very quickly. On the other hand, Ut(D|C0) 
and Ut(D|¬C0) take a long time to converge. By looking at the 
graph we can see that in this case utility and decision both are 
converging almost at the same time (approximately at time slice 
18). 
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Figure 4. Utilities and decision converge at the same time 

Figure1. A simple decision network  



To summarize, most of the time, decision converges faster than 
utility, but not necessarily. Section VI presents some test results to 
verify the validity of an empirical generalization of the theorem in 
Section III to general dynamic decision networks.  

V. EMPIRICAL GENERALIZATION 
The analytical bound on information relevance in dynamic 
decision networks derived in Section III describes the behavior of a 
single variable system. Applying the analytical approach used in 
Section III to generalized networks results in complex recurrence 
relations that do not lend themselves to analytical solutions. To 
generalize the result in Section III we adopt an empirical approach. 
The present work is somewhat related to the study of the cutoff 
phenomenon in Markov chains. This phenomenon characterized by 
the rather sudden and fast convergence of some chains after a 
certain time continues to be an area of mathematical research since 
it was introduced in [3]. Mathematicians have developed bounds 
on the convergence of random walks, diffusion models, card 
shuffles …, etc.  
 
The present study adopts a more heuristic, computationally 
efficient, and empirical approach to the problem. 
To find a general upper limit on relevance time, let us consider the 
limit for the binary case presented in Section III 
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This bound depend on the chosen accuracy level , the values of 
the rewards Ut(D|Ct) and Ut(D|¬Ct)  as well as the transition 
probabilities. It is expected that any sensible generalization should 
depend on all three entities. Moreover, we require that the 
proposed generalization supports the results in Section 3 as a 
special case. Keeping in mind that we are looking for an upper 
bound, we chose to use the following expression for the empirical 
time bound: 

.
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The notation Max( U) represents the maximum difference in the 
utility table and Max( P) represents the maximum difference in 
any conditional probability table associated with a temporal edge. 
To assess the quality of this measure, we have conducted extensive 
experimental evaluation and the initial results are promising. 

VI. EXPERIMENTAL EVALUATION 
We have conducted several sets of experiments using five dynamic 
decision network models, namely Generic, Weather Forecast, Car 
Sales, POMDP and Time Critical. The generic network shown in 
Figure 1 has been used to study the behavior of multivalued 
networks. In these networks each node has more than two values. 
The weather network shown in Figure 5  represents two slices of 
this network that is slightly more complex than the generic 
network as the decision node (umbrella) depends on two nodes 
(forecast and weather). The car sales network extends the network 
in [2] by including a decision node representing the profit margin 
and a utility node representing the net gains. This network has four 
chance nodes in each time slice representing price, supply, 
demand, and state of the economy. Temporal edges connect supply 
nodes and the state of economy nodes. Figure 6 shows a time slice 
of this network. The POMPD network represents a partially 

observable Markov process with an observable chance node and an 
unobservable state that determines the reward. Figure 7 depicts a 
time slice of this network. The time critical network [6], shown in 
Figure 8 represents a medical intervention scenario. 
 

 
Figure 5. The Weather Network 

 

 
Figure 6. The car sales network 

 

 
Figure 7. POMDP network  

 
Figure 8. Time-critical Network 



A. Utility Convergence Results  
In each set of experiments, we use several thousands of randomly 
generated dynamic decision networks as indicated in Table 1 and 
Table 2. These test networks use randomly generated conditional 
probabilities and utilities. The random values are checked to 
eliminate inconsistent networks including networks that have 
utilities that differ by values smaller than the chosen . All possible 
observations are set as evidence at time zero, one at a time, and 
propagated. The evaluation algorithm keeps track of the pairwise 
differences in utilities due to different initial evidence. The 
algorithm reports the relevance time by comparing these pairwise 
differences to .  
 
In the following discussion, the proposed predictor is considered to 
have under-estimated or under-predicted the relevance time if the 
predicted time is shorter than the actual time. 
 
As we have mentioned previously, the complexity of decision 
network reasoning is in general NP-hard. So is the complexity of 
reasoning in DDNs. Since we use a straightforward 
implementation of DDNs, we have to limit our experiments in the 
following manner. When calculating the actual bound, we only 
allow a DDN to have up to C time slices, where C is a variable that 
depends on the nature of the network model under consideration. 
The more complex the network, the less number of time slices are 
allowed. DDNs that take more than C to converge have been 
eliminated from the evaluation after verifying that the predicted 
convergence time exceeds C. This turned out to be true in all test 
cases. 
 
For the first set of experiments, we use the Generic network with 
binary valued nodes to show that our proof in the Section III, and 
our software implementation are indeed correct. The results were 
as expected. None of these tests produced a case where our 
prediction is lower than the actual time steps needed for the utility 
to converge. However, most practical applications use more 
complex multi-node networks. The next four sets of experiments 
consider more realistic networks. It is clear from Table 1 that the 
proposed bound performed well in these test cases. More than 
several thousands randomly generated Time Critical, POMDP and 
Car Sales networks failed to produce a single case where the 
formula was under-predicted. Moreover, the formula was under-
predicted rarely for the Weather Forecast network. 

 
Table 1. Performance of Proposed Predictor 

 

Network 
Number of  
nodes per 

slice 
Delta Number 

of tests  
Under- 
Estimated Percentage

Generic 2 0.001 5500 0 0% 

Weather 2 0.001 5129 47 0.92% 
POMDP 2 0.1 2718 0 0% 

Time 
Critical 6 0.1 1705 0 0% 

Car Sales 4 0.001 5161 0 0% 
 
 

Figure 9 shows the performance of the predicted bound for the 
Weather Forecast network (when delta=0.001 and the variables are 
binary). 

 
For the last three sets of experiments, we used the Generic 
network, but this time instead of being strictly binary valued, the 
variables that we used are multivalued. Unfortunately, when more 
values are allowed, the general formula under-predicts in some 
cases. However, under-prediction occurred for less than 4% of all 
tests. Moreover, in the cases where the bound is exceeded, it was 
exceeded by a small number of steps. Hence, the formula might 
still be useful in situations where absolute certainty is not required. 
Since almost all the underpredictions were off by 7 or less time 
slices, a ‘slush factor’ can be added to the result of the formula to 
guaranty zero underestimation. 

The Weather Network (delta=0.001)
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Figure 9. Convergence time of the weather forecast network 
 

Table 2. Relevance Time for Multivalued Networks 
 

Network Number
 of States Delta Iteration Under- 

Estimated Percentage

Generic 3 0.001 1124 12 1.07% 

Generic 3 0.01 2551 65 2.55% 
Generic 3 0.1 5677 174 3.06% 

B. Decision versus Utility Relevance 
To verify the intuitions concerning relevance of information for 
decision making presented earlier, the experimental evaluation 
results are reexamined here to test our claims. The results of this 
reexamination are in Table 3. As expected, in most cases, decision 
converges faster than utilities. Here we used the Generic network 
with binary valued nodes. 
 

 Decision Utility 

Max. 12 17 

Min. 1 2 

Avg. 1.68 4.67 

Median 2 4 

Table 3. Decision versus Utility Convergence 
 
From Table 3, we can see that the average decision convergence is 
much faster than the average utility convergence. Moreover, there 
are some cases where decision and utility takes the same time to 
converge.    



VII. CONCLUSION 
An analytical bound on the duration of information relevance in 
dynamic decision network introduced in this work, has been 
generalized empirically. Initial experimental results show that the 
proposed generalization works well for dynamic decision network 
with sparse evidence. This bound should allow us to ignore weakly 
relevant evidence to improve computational performance without 
compromising the quality of the decision.   
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