Hypothetical Reasoning From Situation Calculus to Event Calculus

Alessandro Provetti*
CIRFID - Universita di Bologna
Via Galliera 3/a, Bologna
[-40121 ITALY
provettiQcirfid. unibo. it

Abstract

Pinto and Reiter have argued that the Sit-
uation Calculus, improved with time han-
dling axioms, subsumes the features of lin-
ear time temporal formalisms such as
Event Calculus and Interval Logic. In this
note we find answers to some of their re-
marks by showing a modified version of
Event Calculus that seems to match Sit-
uation Calculus handling of hypothetical
reasoning and projection. Further consid-
eration on semantics and expressive power
of Event Calculus put forward by Pinto
and Reiter are discussed in the light of re-
cent proposal for an unifying semantics for
languages for time and actions.

1 Introduction

In their very recent production, Reiter and Pinto[7, 8]
have introduced an upgraded version of Situation
Calculus (SC) which makes it possible:

e to represent dates and time-stamp actions and
situations which actually occurred in the world;

e to represent actual situations as a branch of
the tree of possible developments of things that
Situation Calculus handles.

This new features are obtained by adding new pred-
icate definitions and introducing a new sort of con-
stants for representing dates, a convenient ordering,
and functions such as Start(action) or End(action),
linking actions to their dates.

Pinto and Reiter argue that the improved version
matches the so-called linear time formalisms, viz.
Allen’s Interval Logic and the Calculus of Events(EC)
of Kowalski and Sergot[3], on their own ground:
representing actions and change over time.

Nonetheless, the resulting Situation Calculus
maintains intact its native characteristics(set out
in [5]) of dealing with alternative, hypothetical

*Work done during author’s stay at Computer Science
Department of University of Texas at El Paso, which is
gratefully acknowledged.

plans/sequences of actions and projecting their ef-
fects.

Another point raised by Pinto and Reiter is on
semantics: they present a logic programming imple-
mentation of a subset of the formalism which enjoys
a clear completion-based semantics, in contrast with
EC relying on Negation as Failure.

In this paper it will be counter-argued that Situa-
tion Calculus specific -and indeed desirable- features
are easily implementable in a linear-time formalism
like Event Calculus.

In chapter 2 a simple version of EC is presented
which departs from the original version criticized by
Pinto et al. but can be taken as representative of cur-
rent versions of EC. In chapter 3 new predicates are
introduced for allowing reasoning about a fictional
sequence of actions and projecting the value of flu-
ents. This simulation can be either performed in the
future, for exploring the result of alternative plans
or starting from a date in the past, which allows for
counterfactual reasoning.

In chapter 4 the declarative semantics aspect 1s
discussed; if an EC axiomatization is seen as a
logic program, then the most common declarative
semantics agree, yielding what is believed a clear
semantics. Indeed, a new semantics is proposed by
translating EC axiomatizations to the language A of
Gelfond and Lifschitz [1], which enjoys a semantics
conceived for actions and change. A translation from
a domain description EC-style to one in A is proposed
which maps also the closed-world assumption into
the target axiomatization. This technical result is
kept for a full version of the paper, while it would be
necessary to define a similar translation from Pinto
and Reiter’s formalisms to A itself; it will then result
very interesting to compare the two axiomatizations
and their models within the same language. This
approach is specular to that of Kartha in [2] on
translating .A to chosen nonmonotonic formalisms

In the end, the author argues for a substantial
equivalence of the two (improved) formalisms.

In the rest of the paper acquaintance with Situ-
ation Calculus and the semantics of Logic Program-
ming is assumed.

2 The Event Calculus of the 90s

The Event Calculus has been proposed by Kowalski
and Sergot [3] as a system for reasoning about time
and actions in the framework of Logic Programming.

Event Calculus is based on an ontology of events,
assumed as primitive. These events are represented
by means of constants that uniquely identify them:.
The second ontology is that of fluents', which repre-
sents descriptions of the reality being modeled.

A fluent holds over time from the moment when
an event initiates it, i.e. the event makes it true in
the world. Events may also terminate, i.e. make false
in the world, fluents. The Event Calculus is based on
forward default persistence: a fluent holds over time
until a terminating event is recorded.

Since the first proposal, a number of improved
formalization have steamed, in order to adapt the
calculus to different tasks. Hence, the reduced version
of Shanahan in[11] in presented, since it can be taken
as a common-core definition embedded in the latest
applications?.

Events are represented by sets of instantiations like
the following:

Happens(FE)
Date(El,Tl)
Act(Ey1, Unstack(B))

Notice that there are both event-tokens, labeled
with the constants F1, F5 ... and events-types named
by Unstack, Stack etc. The effect of an action-
type(its meaning) is understood by looking at the
Initiates/Terminates axioms where it appears.

The definitions of Initiates and Terminates are
for expressing domain knowledge. A convenient
example is the Block World, as both Shanahan and
Pinto et al. use it:

Initiates(e,On(z,y)) —
Act(e, Move(x, y))

Initiates(e, Clear(z)) —
Act(e, Move(z, y)),
Date(e, 1),
Holds At(On(x, z),1),
2Fy

Terminates(e, Clear(y)) —
Act(e, Move(x, y))

Terminates(e, On(x,y)) <~
Act(e, Move(z, z)),
2Fy

!Elsewhere called properties or relationships.

2This version is even more simplified, as it assumes
events are recorded in the database in the same order
as they happened in reality. For discussing a fuller
formalization, the reader is invited to consult late works
of Sergot[10] and Sripada[13].

Starting from a database of events and a domain
description by Initiates/Terminates the axioms of
EC makes it possible to derive atoms:

Holds(F,T)

which are understood as "fluent F is true at time
T7. Axiom FECT means that a fluent holds at a
certain time if an event happened earlier initiated the
fluent itself and there is no evidence in the database
of the fluent stopping to hold in the meantime. In
other words, in the interval between the initiation
of the fluent and the time the query is about, no
terminating events must happen. This is made sure
by axiom ECTI. The forward default persistence
rule is implemented by using Negation as Failure on

Clipped in ECI.

(ECI) HoldsAt(f,t) —
Happens(e),
Initiates(e, f),
Date(e, ts),
ty < t,
not Clipped(ts,p,t)

(ECII) Clipped(ts, f,t) —
Happens(e™),
Terminates(e*, f),
Date(e*, t*),
ts < t*,
<t

The predicates < and < establish an ordering
on events. We stipulate that temporal constants
11,15, T5 ... are mapped on naturals, and that the
ordering relations are also mapped on the same rela-
tions on naturals, thus inheriting their properties.

In chapter 3, an improved version of the ax-
ioms will be presented in order to deal with hypo-
thetic events. The hypothetic events have no time-
stamping, so that the problem of integrating the lin-
ear order of actual events and the order on those hy-
pothetical is not addressed directly.

2.1 The Assumption Underlying Event
Calculus

EC is a formalism based on negation-as-failure. This
device implements the implicit assumptions on the
knowledge of the domain that are used by EC.
Techniques are available, viz. explicit negation,
for making these closure assumptions explicit. Let
us list these assumptions, taking advantage of the
discussions in [9, 11]:

o [t is assumed that no events occur other than
those which are known to occur.

o [t is assumed that all the events are time-
stamped.
These two assumptions seems too strong for real
applications such as database updates; in fact,
they are lifted in enriched versions of EC.

o [t is assumed that no types of events can affect
a given fluent other than those which are known
to do so
This assumption can be made explicit by resort-
ing to classical negation with these axioms:

—Initiates(e, f) —
not Initiates(e, f)

—Terminates(e, f) —
not Terminates(e, f)

This approach is semantically founded on the
Answer Sets semantics of Gelfond and Lifschitz
and, for matter or generality, won’t be used in
the rest of the paper.

o [t is assumed that fluents persist until an event
happen that influence them.

o Conversely, It s assumed that every fluent has
an explanation in terms of events.

That is, at least one initiating event is necessary for
making a fluent true. This is particularly interesting
for generating explanations of fluents by abducing
events[11].

If observations on the value of fluents can be intro-
duced in the formalization, 1.e. HoldsAt updates are
allowed, a transformation of the axioms is necessary
for giving consistent answers, at cost of a loss of ele-
gance; Sripada[l3] presents a version of the calculus
for accommodating such updates.

3 Hypothetical Reasoning in EC

In this section we define new predicates (on top of
those already existing) for performing projection of
hypothetical sequences of actions. The purpose is
that effectively illustrated by Pinto and Reiter[7]:

By preserving the branching state
property of the Situation Calculus, we can
express and answer a variety of hypothet-
ical queries, although counterfactuals can-
not be expressed. For example” At time T,
in the past, when you put A on B, could
A have been put on C instead?” can be
simply expressed as:

during(T,, s) A actual(s) D
possible(put(A, (), s).

“TIf T had performed put(A,C), would F

have been true?”

holds(F, do(put(A,C),Sp)) A
possible(put(A4,C), S,).

None of these features is possible in linear
temporal logics. We need the branching
structure of the situation calculus, coupled
with a linear time line in that branching
structure.

In the following, the new axioms and a modified and
enriched version of the old ones will be illustrated, so
that to deal with the sample queries proposed.

3.1 The new predicates

The ideas motivating the new predicates definition
are the following:

e to rewrite situation calculus axioms within EC,
in order to carry out projection;

e to provide a link between the point in time ¢
where the simulation begins and the value of
fluents in the simulation. That is, fluents that
are true at ¢ are still true during the simulation
as long as an event does not terminate them. To
this extent, the effect of the simulation depends
from the time it starts;

e to make it possible both to project in the
future and to reason hypothetically about a
sequence of actions; to this extent, the effect
of a simulation does not depend from the time
it starts.

HypHolds

The new predicate HypHolds is the counterpart
of Situation Calculus Holds and it is understood as
follows:

a) HypHolds(F, E type,T) is true if -has F_type
been performed at time 7- F would be true there-
after.
(EC1)
HypHolds(f, Res(e_type,t)) —

MayH appen(e_type,t),

Initiates(e_type, f,1)

(EC2)

HypHolds(f, Res(e_type,t)) —
MayH appen(e_type,t),
not Terminates(e_type, f, 1),
HoldsAt(f,t)

Now the predicate is defined for an arbitrary sequence
of actions performed starting from 7"

b) HypHolds(F, Res(Ap, Res(..., Res(A1,T)...))
is true if -has the sequence of actions A; ... A, been
performed starting from 7- then F would be true
thereafter. In practice T replaces Sy, thus linking the
chain of actions to the starting point of the simula-
tion.
(EC3)
HypHolds(f, Res(e_type, s)) —
HypMayH appen(e_type, s),
HypInitiates(e_type, f, s)

(EC4)

HypHolds(f, Res(e_type, s)) —
HypMayH appen(e_type, s),
HypHolds(f, s)
not HypTerminates(e_type, f, s)

Starting the simulation with ¢ = 0, where each fluent
is false (by NATF) is a way to study in insulation the
net effect of a plan.

MayHappen

In order to ensure that an action(i.e. a type of
event) can be performed at a certain time or in a
certain state of affairs, the predicate MayHappen
and HypM ayH appen are introduced:

MayHappen(FE type,t) —
Holds At(Cy,1),

HoldsAt(Cy, 1)
For instance:

MayHappen(Move(a,b),t) —
Holds At(Clear(b),t)

For each M ayH appen instantiation, a relative instan-
tiation of HypM ayH appen is made; For instance:

HypMayHappen(Move(a,b),s) —
HypHolds(Clear(b), s)

HoldsAt and Clipped

The modifications to these predicates are not
substantial, some folding operation has been carried
out and the arity of Initiates and Terminates has
been increased to accommodate the parameter time.
As far as i1t goes, this version is expected to give
the same results as Shanahan’s in terms of success
of HoldsAt queries.

Initiates and Terminates

Also for these predicates duplication is necessary
in order to handle both dates and situations. The
new definition of Initiates and Hyplnitiates are like
in this example:

Initiates(e, On(x,y),t) —
Act(e, Move(z, y)),
Date(e, t)

Initiates(e, Clear(z),t) —
Act(e, Move(z, y)),
Holds At(On(x, z),1),
Date(e, 1),
ZFY

HypInitiates(Move(z,y),On(z,y),s)

HypInitiates(Move(z,y), Clear(z),s) —
HypHolds(On(z, z), s),
2Fy
A similar transformation must be applied to the
definition of Terminates.

3.1.1 The new predicates at work
The first question addressed by Pinto and Reiter:

”At time T, in the past, when you
put A on B, could A have been put on
C instead?”

translates into the following:

? — MayHappen(Put(A,C),T,)
Conversely, the second example:

”At time T, in the past, when you
put A on B, could A have been put on
C instead?”

translates into:

7 — HypHolds(On(A, C), Res(Put(A,C),T,))

4 Comparing the Semantics

Pinto and Reiter[7] have compared the standard
“first-order 4+ circumscription” semantics with that

of EC:

One advantage of this is the clean
semantics provided by our axiomatization,
in contrasts to the event calculus reliance
on the Negation as failure feature of logic
programming, whose semantics is not well
understood.

The argument 1s rather appropriate, EC has been
natively defined within Logic Programming [3, 10, 4]
and the use of negation as failure for implementing
default persistence is somehow intrinsic to EC.

It is nonetheless the case to notice that the set of
axioms described in this paper (Pg¢) form together
a stratified logic program in the sense of Apt et al.[6],
under the following stratification :

<p= {HoldsAt, HypHolds, M ayH appen,
HypM ayH appen, Initiates, HypInitiates}
< {Clipped, Terminates, HypTerminates} <
{<<1<
{Happens, Act, Date}

On stratified programs the semantics common in lit-
erature hold a unique minimal model. This is the
case for Przymusinki’s perfects models semantics[6]
by taking the partition as an ordering over predi-
cates; the same goes for Apt et al. [6] iterated Fix-
point technique and for Gelfond and Lifschitz’s Stable
Models semantics. The resulting, minimal and unique
model of these semantics should carry an unambigu-
ous meaning for EC*.

Taking <, as a circumscribing policy, the perfect
model results in a model of prioritized circumscrip-
tion CIRC(Pgrc, <p) for the theory Pgrc; it may be
rewarding to compare the respective circumscriptive

®This stratification is in fact redundant, but fits better
intuition on layers of predicates. To the extent of defining
the declarative semantics predicates < and < can be
defined as a set of ground instances on time constants.

*Notice in passing that Conjecture 1 of Apt et al. in
[6] ascribes to stratified programs the completeness of

SLDNF resolution.

models of two intuitively equivalent theories in EC
and SC. This has not yet been carried out to author’s
knowledge.

4.1 Alternative Semantics

Beside the stratification-based semantics discussed
above, there have been efforts to provide alternative
semantics for event calculi; a first attempt is proba-
bly that of Shanahan[12], who discussed a character-
ization in terms of circumscription. In this section
it 1s proposed an alternative approach by translation
of Event Calculus formalizations to the language A
of Gelfond and Lifschitz[1], which enjoys a declara-
tive semantics purported to actions and fluents.. The
translation 7 transforms a set of event descriptions
in terms of Happens, Date etc. into a correspondent
set of A axioms. The result sought after is soundness
and completeness of the translation of an EC domain
description D and of a query 7 — Holds At(F,T) into
an domain description 7(D) and a v-proposition F'
after Cp(T) such that:

DbFpe HoldsAt(F,T) <= 1(D) =4 F after Cp(T)

where the chronicle Cp(T') is the list of actions
happened before T in D and ordered by means of
their dates. The proof of this proposition will be
included in the full version of paper.

The advantages of the translation are twofold: EC
s given a new semantics and, in principle, at least
a significant class of A axiomatizations might be
effectively computed in Prolog by defining a reverse
translation to EC programs. As soon as a similar
translation from extended SC to A will become
available, it will be possible to compare the two
languages within the same semantical framework.

5 Conclusion

Similarities and differences between Event Calculus
and Situation Calculus have been subject of much
attention in the latest literature[4, 7, 8].

On the one hand, Pinto and Reiter have success-
fully implemented the treatment of time into SC thus
matching the results obtainable with EC. This work,
on the other hand, has shown an improved version
of EC which performs hypothetical reasoning on the
effect of actions, one of the features that motivated
Situation Calculus at its birth[5].

Far this undertake from being finished, the author
argues for a substantial equivalence of the two for-
malisms on the ground of expressive power, clear se-
mantics and computational properties.

As for flexibility, extended versions of Event Cal-
culus existing in the literature for dealing with com-
pound events, temporal granularities and continuous
processes are quite encouraging, as well as applica-
tions to abductive planning, deductive databases and
process modeling in areas such as engineering and
Law.

As for elegance, tastes probably matter. The
present author feels easier at Event Calculus because
of a more intuitive ontology of events and dates rater
than actions, situations and dates®, because of a plain
computational value of the axiomatization and be-
cause the closed-world based semantics need not care-
ful metatheoretical specifications(circumscription) to
yield the expected results.

This is not to say that all the flaws of EC Pinto and
Reiter point to can be easily fixed. As an instance, the
alm to provide names for intervals of time bounded
by events partially known has resulted in the first
formalization of EC allowing unintended models, as
shown in [7]. The quest for improving EC is helped
by such criticisms, as long as they recognize the long
way EC has gone since 1986.

Acknowledgments

My thanks to Michael Gelfond, Chitta Baral, Stefania
Costantini, Gaetano Lanzarone, Paulo Azevedo and
Angelo Montanari.

References

[1] Michael Gelfond and Vladimir Lifschitz. Rep-
resenting Actions and Change by Logic Pro-
grams. In The Journal of Logic Programming.,

Vol. 17(2,3,4),november 1993. pages 301-355.

[2] G. Neelakantan Kartha. Soundness and Com-
pleteness Theorems for Three Formalizations of
Action. Proc. of IJCAI’93 Conference, 1993.
pages 724-729.

[3] Robert Kowalski and Marek Sergot. A Logic-
based Calculus of Events. New Generation
Computing, volume 4 pages 67-95. Ohmsha Ltd
and Springer Verlag, 1986

[4] Robert Kowalski. Database Updates in the
FEvent Calculus. Journal of Logic Programming,
volume 12, June 1992, pages 121-146.

[5] John McCarthy and Patrick Hayes. Some philo-
sophical problems from the standpoint of artifi-
cial intelligence. In B. Meltzer and D. Michie, ed-
itors, Machine Intelligence, volume 4, pages 463—
502. Edinburgh University Press, Edinburgh,
1969.

[6] Jack Minker, editor. Foundations of Deduc-
tive databases and Logic Programmaing. Morgan
Kaufmann Publ., 1988.

[7] Javier Pinto and Raymond Reiter. Adding a
Time Line to the Sttuation Calculus. Working
Papers of Common Sense "93, The second AAAI
symposium on logical formalizations of common
sense reasoning. Austin(Tx), January 1993.

®See [9] for a discussion on the ontologies of such
formalisms

(8]

Javier Pinto and Raymond Reiter. Temporal
Reasoning in Logic Programming: A Case for
the Situation Calculus. Proceedings of ICLP’93
Conference. Budapest, June 1993.

Alessandro Provetti. Action and Change in
Logic Programming: FEvent Calculus, Situation
Calculus and A . Manuscript. Spring 1993.

Marek J. Sergot. (Some topics in) Logic Pro-
grammang i Al Lecture notes of the GULP ad-
vanced school on Logic Programming. Alghero,

Italy, 1990.

Murray P. Shanahan. Prediction is Deduction
but Ezxplanation 1s Abduction. Proc. of IJCAI’89
Conference. Detroit, 1989. pages 1055-1050.

Murray P. Shanahan. A Circumscriptive Calcu-
lus of Events. Imperial College Dept. of Com-
puting Technical Report.London, 1992.

Sury Sripada. Temporal Reasoning in Deductive
Databases. PhD Thesis in Computing. Imperial
College, London, 1991. A presentation of this
work can be found in the Proc. of IJCAI’93,
pages. 860-865.

