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Abstract

We present a two dimensional tempo-
ral structure that has an ever changing
present. Relative to each present, there
is a past and future. The main repre-
sentational advantage our two dimensional
structure has over traditional linear tem-
poral structures is the ability to record
when knowledge is added or updated. We
define a first order logic that has this struc-
ture as its temporal ontology.

1 Introduction

Most temporal first order logics in Artificial Intel-
ligence have a linear (i.e., non-branching) temporal
ontology. Examples of logics with a linear structure
are those of Allen [1], Kowalski [4], and Shoham [6].

Even the logic of McDermott [5] uses linear time:

Note that, contrary to what is often stated,
McDermott’s system does not use branch-
ing time: time itself i1s represented by
the linear ordering of the real numbers;
branching only occurs with respect to the
totality of possible states ordered by date.
([2], p. 1178)

Linear time has its drawbacks. There is no dis-
tinguised element in the ontology to represent the
present. Consequently, there is no concept of a past or
future. Another drawback is that a linear time based
logic represents the current state of affairs. There is
no record of when knowledge 1s obtained or updated.

Humans do not view time as being linear. In-
stead, we neatly compartmentalize time into the past,
present, and future. As the present changes, so does
the past and future. For example, we are continually
learning things about our past and revising our future
plans.

We present a two dimensional temporal structure
that captures some of our intuitions about the past,
present and future. It has an ever changing present,
and a past and future relative to each present. We
then formally define a first order logic that has this
structure as its temporal ontology.

2 Proposed logic

Each predicate has two temporal arguments. For ex-
ample, red(1,1,house) and alive(5,10). The two tem-
poral arguments do not specify an interval. For exam-
ple, alive(5,10) is not used to represent the fact that
alive is true over the interval (5,10). Instead, the two
temporal arguments are cartesian coordinates. The
relation alive(s,10) specifies that alive is true at the
point (5,10) on the cartesian plane.

The temporal ontology consists of a cartesian
plane. The line y = @ 1s used to represent the ac-
tual state of the world. Relative to any point (p,p)
on the line y = «, the line segment {y = =, & > p}
represents the actual future, {y = =z, < p} rep-
resents the actual past, {y = p,x > p} represents
the expected future, and {y = p,x < p} represents
the perceived past (see figure 1). What an agent ob-
serves or experiences at time p is recorded at the point
(p,p). Any plans or expectations the agent may have
about the future at time p is recorded on the line
{y = p,x > p}. Similarly, any knowledge the agent
learns or is given about the past at time p is recorded
on the line {y = p, < p}. On the diagonal line y = «,
we record what actually happens in the world. For
example, in figure 2 the house is red at time 10 (i.e.,
red(10,10)). At time 10, we plan to paint the house
white at time 20 (i.e., white(20,10)). But for some
unforeseen reason, the house gets painted earlier at
time 15 (i.e., white(15,15)). We also know that at
time 2, the house is white (i.e., white(2,2)). At time
10, we learn that the house was blue at time 5 (i.e.,
blue(5,10)). Note that blue(5,10) records two items
of information. The first is that the house is blue at
time 5, and the second is that this fact was recorded
(learned) at time 10.

Formulas along a vertical line need not be con-
sistent. Figure 3 shows a situation where at time
10 we plan to go to the movies at time 15 (i.e.,
movies(15,10)). But at time 15, something comes
up that prevents us from going to the movies (i.e.,
not movies(15,15)). Also, at time 5 we thought the
house had been painted red at time 2 (i.e., red(2,5)).
We later learn at time 10 that the house was not red
at time 2 (i.e., not red(2,10)).

The x and y axes of the cartesian plane must be
linear and of the same type. No further restrictions
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Figure 1: The different pasts and futures relative to (p,p)
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Figure 4: Intervals

are placed on the axes. They can be discrete, dense,
points, intervals, points-intervals, etc. If intervals are
allowed, they appear as one of the temporal param-
eters. For example, in figure 4 a 15 year old student
plans to attend university between the ages of 19 and
23 (i.e., university( (19,23), 15)). Also, between the
ages of 15 and 19 the student believes that financing
will be in place when entering university at age 19
(i.e., financing(19, (15,19) )).

Although the examples in this paper only use the
north-east corner of the cartesian plane, the whole
plane can be used to represent information. We con-
clude with an outline of the syntax and semantics for
the proposed logic.

2.1 Syntax

The logic has two disjoint sorts called temporal and
non-temporal. All terms are sorted. Predicates have 2
temporal arguments followed by m > 0 non-temporal
arguments. Terms and well formed formulas are de-
fined in the standard fashion.

2.2 Semantics

An interpretation is a tuple {(T,U, o) where T is a
non-empty temporal universe, U is a non-empty non-
temporal universe, and ¢ is an interpretation function
which maps each temporal constant to an element of
T, each non-temporal constant to an element of U,
each n-ary temporal function to an n-ary function
from 1" to T, each n-ary nontemporal function to
an n-ary function from U” to U, and each (2,m)-
ary predicate to an (2, m)-ary predicate on T2 x U™.
Quantified variables range over the appropriate uni-
verse. Well formed formulas are interpreted in the
usual fashion.

3 Examples
3.1 Leave lights on

Information recorded on the line y = # may later be
discovered to be false. For example in figure 5, the
driver of the car believes that he shut off the head-
lights when he left the car at time 5. Upon returning
to the car at time 20, he discovers the battery is dead.
He then checks the light switch and it is in the “on”
position. Therefore, the lights were not shut off at
time 5.

3.2 Course

The proposed logic can be used to model an agent’s
changing expectations or beliefs over time. For ex-
ample, assume a course starts at time 5 and ends at
the end of the term at time 25. At the start of the
course, the student believes he will pass (see figure 6).
At time 10, the student does very poorly on the first
assignment and thinks he will not pass the course.
The student does very well on the midterm at time
15 and now believes that he has a chance of passing.
But, the student does poorly on the second assign-
ment at time 20 and once again believes he will fail.
The story has a happy ending. The student aces the
final exam and passes the course.

3.3 Planning

Assume that at time 5, an agent constructs a plan
to enter a room. The plan consists of going to the
door over the interval (5,10) (i.e., gtd( (5,10), 5)),
opening the door over the interval (10,15) (i.e., od(
(10,15), 5)), and then entering the room over the
interval (15,20) (i.e., er( (15,20), 5)). Note that we
represent the plan along with the time that it was
constructed. The plan is shown in figure 7. Over
the interval (5,10), the agent excutes the first action
of the plan which is to go to the door. Once at the
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door, the agent observes that the door is locked which
is unexpected. The agent cannot execute the next
action which is to open the door. At this point, the
agent must construct another plan which would be
stored on the line {y = 10,2 > 10}. The old plan
constructed at time 5 remains untouched. It can be
used as a guide while re-planning at time 10. It can
also be used to answer queries. For example, if we ask
the agent why he is at the door at time 10 without
a key, the agent can examine the old plan and reply
that he expected the door to be unlocked at time 10.

3.4 Multi-agents

The proposed temporal structure is two dimensional.
Additional dimensions can be added to the structure
to represent and reason about multi-agent problems.
The addition of a third temporal parameter (i.e.,
(z,y,2)) allows us to represent individual knowledge
of an agent and common knowledge. Each agent is
assigned a plane. Information about the n’th agent
is stored on the plane (z,y, n). Information that is
common to all agents is stored on the plane (x,y, 0).
For example, assume there are three agents, and all
three know that block A is on block B at time 5:
on(5,5,0, A,B). Agent 1 also knows that 4 is on B at
time 6: on(6,6,1, A,B). At time 10, agent 2 plans to
move block C' on top of A over the interval (15,20):
move((15,20),10,2, C,A). Agent 3 knows that block
Ais red at time 7: red(7,7,3, A). We could also have
the situation where all three agents know a fact, but
don’t realize it is common knowledge (i.e., not con-
tained on the 0’th plane). For example, each agent
has local knowledge that block B is blue at time 10:

blue(10,10,1, B),

blue(10,10,2, B),

blue(10,10,3, B).
Each agent does not know that the other 2 agents
also have the information that B is blue at time 10.

Instead of assigning a plane to each agent, we can
add a fourth temporal parameter to the structure and
assign a cube to each agent. In agent ¢’s cube (i.e.,
(z,y,2,1)), information agent ¢ has about agent n is
stored on the n’th plane (i.e., (#,y,n,)), and i’s per-
sonal information is stored on plane i (i.e., (z,y,,19)).
For example, agent 1 knows that block B is blue at
time 10, and also believes that agent 2 has this infor-
mation:

blue(10,10,1,1, B),

blue(10,10,2,1, B).
Information common to all agents i1s stored on the
plane (x,y,0,0).

A fifth dimension can be used to represent groups
of agents. FEach group consists of one or more
agents. Information about group n is stored using
(x,y,z,a,n). The first four parameters are used to
store information about a particular agent in group
n. For example, information about the third agent in
group 2 is stored in (z,y, z, 3, 2).

Other dimensions can be added as needed.

4 Persistence

If the house is blue at time 10, is it also blue at time
157 Given no knowledge of the house changing color,
it seems reasonable to assume that the color of the
house persists from time 10 to 15, and we conclude
the house is blue at time 15. This is called the persis-
tence problem. Traditional linear temporal structures
only need to deal with persistence along a single axis.
Here, we must consider two dimensional persistence.

In figure 8, the house is blue at time 10 (i.e.,
blue(10,10)). As discussed above, persistence should
be allowed into the future (i.e., along the line {y =
10,z > 10}). Using a similar argument, persistence
into the past should also be allowed (i.e., along the
line {y = 10,2 < 10}). For example, if the house
is blue at time 10, it was probably also blue at time
9. We also need persistence in the upward direction
(i.e., along the line {y > 10,2 = 10}). For example,
at the point (11,11), we should remember that the
house was blue at time 10 (i.e., blue(10,11)). Upward
persistence models the agent’s memory. We do not
allow persistence in the downward direction. The re-
lation blue(10,10) also records the fact that the color
of the house was learnt at time 10. Therefore at time
9, we have no information about the color of the house
(i.e., the truth value of blue(70,9) is unknown).

To summarize, we have horizontal bi-directional
persistence and vertical upward persistence. Persis-
tence is not allowed in the vertical downward direc-
tion.

In either of the three directions where persistence
is allowed, standard algorithms can be used. Prob-
lems arise when vertical and horizontal persistence
are inconsistent. For example in figure 9, at time
20 we know the house was not blue at time 5, and
at time 15 we know the house was blue at time 10.
At time 20, was the house blue at time 10 (i.e., is
blue(10,20) true)? Using horizontal persistence and
not blue(5,20) we can conclude not blue(10,20). We
can also conclude the opposite using vertical persis-
tence and blue(10,15). Which answer do we prefer?
The preference between vertical and horizontal per-
sistence depends on the particular situation. In this
case, either answer is reasonable. In the future, we
will investigate algorithms for resolving persistence
conflicts.

5 Conclusions

We presented a general first order logic that has
a unique two dimensional temporal structure. The
structure consists of a cartesian plane. The present
moves along the line y = z. At any point on the line
y = &, we can record plans or expectations about the
future, and information about the past or present.
The proposed temporal structure has the appear-
ance of being a branching one. But, it 1s not. Time
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moves along the single line y = . The branches em-
anating from each point on the line y = z are used to
store information about the past or future obtained
at that point in time.

The main representational advantage our two di-
mensional structure has over traditional linear tem-
poral structures is the ability to record when knowl-
edge is added or updated. For example, simple En-
glish sentences like “Last night T planned to go to
the movies tonight, but now I don’t feel like going”
cannot be represented using a linear structure. A lin-
ear structure can either represent the fact that the
person is going to the movies or not. It cannot rep-
resent the fact that going to the movies tonight was
true yesterday and false today. The sentence is easily
represented in the proposed logic:

movies(tonight, yesterday) A
not movies(tonight, tonight).

Instead of using the proposed logic, it is possible to
extend the syntax and semantics of traditional linear
time logics so that they use a two dimensional struc-
ture. For example, RGCH [3] uses the real numbers.
We can easily add another temporal argument to the
logic.
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