
Structural Caching XML data for Wireless Accesses

Shiu Hin Wang

Department of Computing

The Hong Kong Polytechnic University

Hong Kong

852-97235397

hwshiu@mail.hongkong.com

Vincent Ng

Department of Computing

The Hong Kong Polytechnic University

Hong Kong

852-27667242

cstyng@comp.polyu.edu.hk

Abstract

Recent web cache replacement policies incorporate

information such as document size, frequency, and age in

the decision process. In this paper, we propose a new

caching algorithm, StructCache, for wireless accesses of

XML data. The algorithm is an enhancement of the

Greedy-Dual-Size (GDS) policy and the Greedy-Dual-

Frequency-Size (GDFS) policy. It would consider

document sizes, access frequency and exploits the aging

mechanism to deal with cache pollution. In addition, the

structural information of XML is utilized to achieve better

hit ratios. Experimental results show that the StructCache

algorithm outperforms GDS and GDFS algorithms for

queries which are sub-tree(s) in XML documents of

precedent queries and queries of the same axis and node

tests in XML documents with precedent queries.

1. Introduction

By virtue of the increasing processing power of

embedded computers, wireless computing and Mobile

Commerce (mCommerce) is the wave of the future [7].

Caching and prefetching of XML data in heterogeneous

networks, especially for the mobile environment, reduce

traffics and improve the performance of dissemination of

XML data, which in turns improve the usability of the

Internet as a large and distributed information system.

Very often, user access patterns are helpful for the

customization for specific type of users. The relative

importance of long-term popularity and short-term

temporal correlation of references for web cache

replacement policies has not studied thoroughly. This is

partially due to the lack of accurate characterization of

temporal locality that enables the identification of the

relative strengths of these two sources of temporal locality

in a reference stream [15].

Moreover, better cache policies are equivalent to

several-fold increase in cache size. Efficient cache and

prefetching algorithms reduce the needs of cache sizes to

match the growth rate of web content. The gains from

efficient cache and prefetching algorithms are compounded

through a hierarchy of caches [15].

Existing web caching algorithms capture the

characteristics and differences of paging in file systems.

However, they do not consider the nature and properties of

the objects themselves. In this paper, we try to propose a

caching technique to improve the performance of query

responses. It is our aim to improve the performance of

XML queries against large XML files, which in turn may

improve the usability of wireless applications.

In this paper, our main focus is the benefits brought

from our proposed replacement algorithm to cache XML

documents and the comparison of performance with other

algorithms. The paper is composed of six sections. In

section 2, we first review background study and previous

related work. Section 3 consists of the structure and details

our proposed XMLCache framework. Section 4 gives the

details of our caching algorithm, StructCache, for caching

of XML objects. The procedures and results of the

experiment are presented in section 5. Section 6

summarizes our work and section 7 contains the references.

2. Background and Related Work

Existing web caching algorithms mainly consider

individual documents as the individual objects to be

cached. The larger the document, the greater the overhead

when cache misses. This may pose a problem especially

under a bandwidth and memory constrained environments

such as wireless environments.

Traditional object caching algorithms that have not

considered the syntactic and semantics characteristics of

XML documents may not handle the HTML, XML

contents in an efficient manner. Our suggested caching

algorithms tries to exploit the syntactic structure of XML

documents and the XML based quires to improve the

caching performance in a high latency and low bandwidth

environments.

We develop a caching framework that is used for

caching of both XML and non-XML documents. The

caching technique is done on client-side, which is supposed

to be embedded in wireless computing devices with limited

bandwidth communication connections. We will study the

performance of our proposed caching algorithm that tries to

exploit the schemas of XML and XML queries. It is also

WSS03 Applications, Products and Services of Web-based Support Systems 103

expected that the algorithm will be more effective,

especially in situations in which the object size to cache

size ratio is high, high network latency and low

transmission environment.

2.1. Cost Metrics
Cost metrics [1,5,6] are used as objective measurements

of the effectiveness of the caching algorithms. Three cost

metrics mostly employed are:

1) Bit Model: The cost of a cache miss equals to the size

of the missing item. This measure provides an objective

measure for the effectiveness of our proposed algorithms.

2) Cost Model: The cost of a cache miss is unity. This is

used for evaluating the use of the heuristics of XML

queries in improving the effectiveness of caching.

3) Time Model: The cost of a miss equals to the average

time to load such an individual item. Here, it means the

time to retrieve the whole object (time of retrieval due to

page fault) or the user perceived response time (network

Delay). For some wireless application, a user who has part

of the results and progressively getting the remainings may

be more crucial than obtaining the complete results at a

minimum time even though the total time of retrieval is

longer.

2.2. Related Work

Caching algorithms targeting for web have become

more prevalent. GreedyDual [15] web caching algorithm is

one of the typical examples. It is a generalization of

GreedyDual-Size algorithm [5] and a development of the

family of algorithms derived such as GreedyDual

Frequency-Size. Trace driven simulation illustrates that it

has superior performance when compared to other web

cache replacement policies proposed in the literature[15].

There are many factors affecting the performance of a

given cache replacement policy. GreedyDual caching

algorithm exploits the size, miss penalty, temporary locality

and long-term access frequency and captures both

popularity and temporal correlation:

1) Size – Web objects are of various size and caching

smaller objects usually results in higher hit ratios,

especially given the preference for small objects [16].

2) Miss Penalty – The miss penalty varies significantly.

Assigning higher preference to objects with a high retrieval

latency can achieve high latency saving [14]

3) Temporary locality – Web access patterns exhibit the

temporal locality [2]. Similar to the LRU replacement

policies, GreedyDual also assign higher preference to

recently accessed objects.

4) Long-term access frequency – The bursty behavior of

the popularity of web objects were found over short times

scales while it is more smooth over long times scales [3].

Apart from the researches in replacement algorithms

targeting for Web, there are hierarchical and cooperative

caching architectures such as the Harvest project [8],

access driven cache [9], adaptive Web caching [10]. For

distributed caching architecture, there are examples such as

summary cache [11] and Internet cache protocol (ICP)

[13]. With hierarchical caching, caches are placed at

multiple levels of the network. A hierarchical architecture

is more bandwidth efficient, particularly when some

cooperating cache servers do not have high-speed

connectivity. With distributed caching, most of the traffic

flows through low network levels, which allows better load

sharing and are more fault tolerable. However, a large-scale

deployment of distributed caching may encounter the

problems of high connection times, higher bandwidth

usage and administrative issues [12].

Because of the relatively small bandwidth of mobile

environment when compared with that of connected

networks, the gains arising from efficient caching and

prefetching in mobile environments are even apparent.

However, conventional replacement algorithms still have

room for improvements under the Internet and mobile

environment when data objects are having syntactic and

semantic implications.

3. The XMLCache Framewok

Our proposed framework utilizes the conventional

caching algorithms for non-XML documents whilst handles

XML data objects differently. The determination of which

caching strategy is employed depends on the type of

documents requests from clients. A different caching

algorithm (StrcutCache) will exploit the coherency of

similar requests made by clients with the idea of the

structure of XML documents will have impacts on

successive retrieval.

The framework shown in Figure 1 acts as a proxy

between the mobile clients and remote data source. It

mainly divides retrieval objects into XML and non-XML

objects. For XML data queries, it is handled by our

proposed caching algorithm called StructCache in the

caching engine. For non-XML data queries, it is handled by

existing web caching algorithms. Depending on whether

the XML documents fetched from remote servers have the

corresponding DTD (Document Type Definition) or not,

the DTD may need to be extracted by the DTD Extractor.

104

Every XML query sent from clients is evaluated, which

triggers the retrieval of XML documents when the required

fragments do not exist in the cache memory. The client

returns the query result directly when the required objects

are located in cache. Each data object of XML documents

in cache memory is associated with a timestamp and the

corresponding DTD. DTDs of the retrieved XML

documents do not exist will trigger the generation of initial

multiplication factors, which will affect the score updating

process in later phase. Depending on the frequency of

accesses and sizes of objects, a score for each of the data

node of a given DTD will be updated in runtime. More

details will be covered in Section 4.3.

In our framework, there are a number of assumptions:

a) Client computation power, power consumption and

the complexity of the algorithm are not the limiting factors.

b) Since the cache is located on the client wireless

devices (e.g. PDA), the size of the cache as well as the

bandwidth of the wireless networks are the limiting factors.

c) Because of the high latency, and relatively low

transmission rate of the communication channels, the

overhead of retrieving objects from heterogeneous network

is higher than that from the cache. We assume that the

throughput and the latency are averaged constants

throughout our model. We choose a typical transmission

rate reported by mobile network services providers rather

than that derived theoretically from a selected modulation

methods, and carriers.

d) We assume caching can be performed either in the

mobile clients or proxies. Details of switching of

underlying cellular networks are intentionally abstracted to

generalize our proposed algorithm for different kinds of

carriers or application-specific uses.

3.1. Queries from clients

In general, requests from mobile computing devices

expressed in URL-like query can be decomposed into two

parts. The first part is the URL that locates the resource to

be retrieved whilst the second part is an XPath expression.

Figure 2 illustrates an example of a client request. In this

example, the first part is the

‘http://www.polyu.edu.hk?/article/author/name’ and the

second part is ‘[firstname=‘Joe’]’.

Our cache engine acts as a proxy between the client

application and remote servers. Items fetched on behalf of

client applications include XML and non-XML files. The

fetched XML documents can also be classified into two

types. The first type is those XML documents have the

corresponding DTD given in advance` whilst the second

type has no knowledge about the document’s DTD. In the

first case, our replacement algorithm can be directly

applied. For the second case, since the corresponding DTD

of a XML document not known in advance, a DTD

extractor is used for the estimation of the structure of the

DTD.

The XMLCache framework has 4 major modules:

a) DTD Extractor – This module is responsible for the

extraction of DTD from a given XML document no DTD

given in advance. It is employed when clients requests

query XML documents that have no predefined DTD.

b) The StructCache Engine – Our proposed engine of

caching XML data under mobile.

c) Cache Memory – The module has two parts. The first

part is a set of mappings that maps the document identifier

(URI) to a given timestamp (Document’s Last Modification

Time). The second part is the repository where individual

cached objects are placed. For XML documents, it should

be the fragments of XML documents whilst it will be

complete binary image for graphics files.

d) Classical Cache Engine – This component

encompasses conventional online replacement algorithms

such as GDFS, which treats the whole file as an individual

object to be cached. This is mainly used for caching of

non-XML documents.

4. StructCache

Fetched XML documents

with DTD as schema

XML documents

without DTD

Fetched non-XML

documents

DTD Extractor

DTD given

Classical

object caching

XML / non-

XML Queries

from clients

XML / non-

XML Queries

results

Cache Memory

Caching engine for

XML data

Figure 1. Internal architecture of StructCache
framework

The syntax of the client request:

[URL]?[XQL]

Key:

[URL] : Universal Resource Locator that locates the resources(XML /

non-XML files)

[XQL] : XQL of the target XML document

Example:

http://www.polyu.edu.hk?/article/author/name[firstname=‘Joe’]

Figure 2. An example request from client
application

WSS03 Applications, Products and Services of Web-based Support Systems 105

StructCache is an algorithm used in the caching engine

for XML data with DTD. The algorithm can be divided

into two phases. The first phase is to determine the

weighting factors, called multiplication factors for a group

of XML documents with the same schemas which are used

in runtime phase. During operations, the score of each

node, which is depended on the multiplication factors

calculated in the first phase, access frequencies, size of

nodes as well as the XPath of the XML queries derived

from subsequent client requests.

Comparing with other classical object caching

algorithms, StructCache adopts an adaptive way rather than

solely relying on frequency, size of objects in cache. It is

adaptive in the sense that the initial multiplication factors

depend on the structure of the associated DTD, and the

object replacements process is affected by the

multiplication factors, XPath, the heuristics of access of

nodes or nodes sets as well as the size of a given node or

nodes sets relative to the whole XML document. Although

we do not quantify the relationship between the factors

considered and their effects in this paper, it is observed that

the factors concerned are correlated with long-term access

patterns. It is because, very often, the design of schema

mostly reflects the relative importance of fragments in

XML documents and the temporal and spatial locality of

accesses.

Normally, systems can either fetch a block in response

to a cache miss (on-demand fetch), or it can fetch a block

before it is referenced in anticipation of a miss

(prefetch)[16]. Fine-grained objects will save more

redundant space but sacrifice the computation power. Our

goal is to find an online policy for on-demand fetching and

caching of XML documents without knowing the

sequences of references in advance. Instead of caching the

whole XML document, the memory objects to be cached

are fragments of XML documents derived from the results

of XML queries in the request stream, which may be of

various sizes. For a limited amount of cache in wireless

computing devices, we try to exploit the heuristic as well as

the semi-structured characteristics of XML documents. Our

problem in fact is a general caching problem [12], when the

pages have varying sizes and costs. This problem arises,

among other places, in cache design for networked file

systems or the world-wide web [12]. In web caching,

popular online caching algorithms such as Least Recently

Used (LRU) has heuristics justification that real-life

sequences often exhibit the property that “the past predicts

the future”. They normally treats the whole file as an

individual object [1]; by contrast, we try to apply a more

fine-grained approach such that individual objects to be

cached are XML fragments from the query results, with a

view to minimize page faults, especially for wireless

communication channels and documents with large size.

The heuristics of our approach are based on the XML data

queries generated by the client application(s) or requested

from users.

StructCache is our caching algorithm dedicatedly for

XML data with DTD. It is to work within the caching

engine for XML data in our framework. The algorithm has

two phases. The first phase is the determination of factors

and initialization of variables from a newly fetched DTD. It

is triggered by the cache miss and fetching of XML

documents with undetermined DTD from remote server(s).

The second phase is the runtime phase that fetches objects,

invalidates cache, performs updating of variables and

triggering the initialization phase for any fetched and

undetermined DTD.

4.1. Initialization Phase

In this phase, multiplication factors are generated for

each of the XML, which may affects the cost of updating

and in turns that of replacement. The construction of the

multiplication factors is determined by a DTD of XML

document, which is then stored for use in later phase.

Each node of XML documents is associated with a

score, which is initialized to zero and affected by the access

patterns during runtime. The initial cache plan may affect

the performance of caching as the cost updating process in

runtime phase depends on the multiplication factors

generated in this phase.

<article>

 <title>

 A Relational Model for Large Shared Data Banks

 </title>

<publisher>

<publishername>HKPolyU Publishing Co. Ltd.

 </publishername>

 <address>Honghom, Kowloon

 </address>

 </publisher>

 <author>

 <name>

 <firstname>E.F.</firstname>

 <lastname>Codd</lastname>

</name>

 <age>54</age>

 </author>

</article>

Figure 4. An example XML document

<!ELEMENT article(category, title, publisher, author*)>

<!ENTITY % Address “(#PCDATA)”>

<!ELEMENT title(#PCDATA)>

<!ELEMENT title(#PCDATA)>

<!ELEMENT publisher(publishername,address)>

<!ELEMENT publishername(#PCDATA)>

<!ELEMENT address(#PCDATA)>

<!ELEMENT author(name,age,address?)>

<!ELEMENT name(firstname?,lastname?)>

<!ELEMENT age(#PCDATA)>

<!ELEMENT firstname(#PCDATA)>

<!ELEMENT lastname(#PCDATA)>

Figure 3. An example DTD

106

The initial phase consists of three steps. The first step is

the construction a directed graph from a DTD of that XML

documents. By expanding all entities definitions within the

directed graph, a tree is generated. Figure 3 shows a sample

DTD and Figure 4 shows an instance of the DTD. Figure 5

shows the tree constructed from the DTD.

The second step is the assignment of weightings to each of

the leaf nodes of the directed graph. Table 1 shows the

relative weightings of properties observed from common

DTDs for XML documents. The weights represent the

relative strength of the relationship among nodes of a DTD

from design view. The higher is the weighting, the stronger

is the relationship.

The assignment of multiplier and replacement cost is

based on the expected probabilities of occurrences of those

nodes in instances of the DTD. Basic replacement cost

depends on the occurrence notation of a node. The cost

implies the relatively importance of that node derived from

the DTD whilst multiplier is a factor that depends on the

elements’ content specifications.

We model the relationship with three kinds of factors.

The first one is the common design characteristics of a

DTD. An example is that a node with mandatory notation

is more important than optional one. The second one is the

probable inter-relationship among nodes. In this paper, we

classify this kind of relationship into mutual exclusive, co-

occurrence, sub-typing, and no relationship at all. The third

one is the relative size of the actual instantiation of the

nodes. Therefore, the model of relationship can be

constructed as:

R ~ (T + I) / S

where R is the relative strength of importance, T is the

common design characteristics of a DTD, I is the type of

inter-relationship, and S is the relative size of the probable

instantiation of a node.

For easier operation, the size of the probable

instantiation of a node is replaced with the number of

options of that node and the common design characteristics

into either no implication, optional or mandatory, which is

normalized to 1, 1/2 and 1 respectively. For the type of

inter-relationship, we normalize the co-occurrence, sub-

typing, no relationship and mutual exclusive relationship

into numerical values 1, 1, 1/2, 1/n where n is the number

of options.

Table 1. Assignment of weighting factors

Element with Occurrence

Notation

Basic replacement cost(Q)

?(Optional) 1/2

*(Zero or More) 1

+(One or More) number of options

|(OR) 1/number of options

No Notation 1

ATTLIST Basic replacement cost(Q)

Element(s) with attribute

ID

1

Element(s) with fixed

attribute

1

Element’s ContentSpec Multiplier(T)

PI 1

ANY 1

Mixed Sum of all possible

weightings/number of options

Comment 1/2

Fixed 2

PCDATA 2

Basic replacement cost (Qi) is multiplied by the

corresponding multiplier(Ti) to obtain the multiplication

factor that leaf node. Assignment process is then performed

in a bottom-up manner. The score of a non-leaf node is the

aggregated sum of its descendent nodes multiplied by the

multiplier of that node. The assignment process iterates

until the root node is reached. The multiplication factor for

a given node W1 is:

Wi = Ti * Qi

 = Ti * Wi-1

 = Ti * Wi-1* Wi-2*……* W1

The multiplication factor reflects the relatively

importance of a given node within a DTD for a given XML

document. The value of a factor derived from the DTD is a

numerical representation for manipulation in the later

phase. It is expected that nodes having higher values are

more important as they appear more often in instances of

that DTD. Figure 6 illustrates the weighted directed graph

of the example DTD.

article

title author

name age

firstname lastname

publisher

address addresspublishern

ame

Figure 5. A directed graph constructed from the
DTD

WSS03 Applications, Products and Services of Web-based Support Systems 107

In step 3, the multiplication factors constructed in step 2

are derived. Apart from these factors, each node of the

selected XML document has an associated score. Although

both the score and multiplication factor are derived and

initialized in this phase and used afterwards, the differences

between them is that the latter reflects the schema

characteristics of the DTDs while the former is a set of

variables for manipulation in runtime phase. The associated

score of each node Ci is initialized to zero for each DTD

fetched from remote server.

Ci {Ci = 0}

As such, a mapping of DTD and the multiplication

factors, in additional to the set of initialized scores are

generated in this phase.

4.2. Runtime Phase
4.2.1. Score Updating

For each of the XML query requested by the client, the

timestamp of the corresponding local document is

compared with that of remote server to check for data

coherency. The invalidation of data triggered by the

discrepancies of these two timestamps results in the

retransmission of the corresponding XML document and

updating of local timestamp. For a cache hit, the score of

the selected node(s) Ci is/are re-calculated by the

corresponding adjustment factor i:

Ci=Ci + i

The updating of cost in each node is affected by the size

of the element, access frequency and the difference

between fan-out and fan-in of a node within the actual

XML instantiations of the DTD. Hence, the cost, i is

defined as:

i = * ln(Wi * S/Si * Fi/F * Ei/E)

where a is a constant, Wi is the Multiplication Factor

derived from initial phase, Si is the size of node(s), S is size

of the XML object fragment, Fi is the access count of that

node in the cache, F is the total hit count of the XML

object fragment, and Ei is a fan-out factor which is

determined by the number of edges connected to children

nodes Ui and that of parent nodes Vi:

Ej = Ui - Vi iff Ui - Vi >= 0

Ej = 1 if Ui - Vi < 0

All other unaffected nodes {Ci} are deducted by an

adjustment factor j:

Cj=Cj - j

The adjustment factor j of unaffected node is

determined by:

j = i / |Cj|

4.2.2. Object Replacement

Object replacement process encompasses three steps:

a) When the required XML document fragments are

stored in the cache memory, the local copy is returned to

client and no object replacement occurs.

b) Whenever cache miss or cache incoherency occurs,

the requested object(s) retrieved from remote servers will

be stored in local cache memory as long as the maximum

available cache size is not exceeded.

c) Whenever cache miss or cache incoherency occurs

and the space available in local cache memory is not

enough to accommodate the requested object(s) retrieved

from remote servers, object replacement process will begin

and each queries will be evaluated by accumulating the

score of the nodes(Ci) across the axis for the corresponding

XPath. The cached query and object pair having the least

evaluated total value will be evicted and the process

iterates until the space available can accommodate the

executed query and fetched XML fragment.

In other words, the following two criteria must be met

for the occurrence of object replacement:

(i) Ck { Ci > Ck }

(ii) Size(Ci) <= Size(Ck)

where Ci {sets of the retrieved nodes} and Ck {sets of

the nodes of the path expression to be replaced}. Figure 7

is the summary of our proposed algorithm StructCache:

4.3. Comparisons

Figure 7. Summary of StructCache

Find Wi for all nodes of a given XML document

Ci 0.0

For each request query p do

If p is in cache

then

Ci=Ci + i where i = * ln(Wi * S/Si * Fi/F * Ei/E) for all affected nodes

Cj=Cj - j where j = j / |Ci| for other nodes

else fetch p

While there is not enough free cache for p

Evict fragment(s) with min{ Ci (q)|q} are the nodes of the axis of XQL data query

in cache}

article

6+3+7.5=

16.5

title

3*1=3

author

3+3+1.5=

7.5

name

6*1/2=3

age

3*1=3

publisher

3+3=6

address

3*1=3

address

3*1=3

publisher

name

3*1=3

lastname

3*1=3

firstname

3*1=3

Figure 6. The weighted directed graph constructed
from DTD

108

Figure 8. Hit counts versus cache Size for
different evaluated algorithms

Figure 9. Byte hit versus cache Size for different
evaluated algorithms

GDFS employs the dynamic aging mechanism or

inflation value to simulate the reference correlation of web

traffic. Instead, our proposed algorithm uses the reward and

punishment mechanism in updating and does not need to

determine the base value during the reset step of cache hit.

Utility value reflects the normalized expected cost saving if

the object stays in the cache. Given the long-term reference

pattern is stable, GDFS uses f(p) * c(p) / s(p) that consider

the reference count, cost of fetching and size of object as

well as the aging factor to approximate the utility value. By

contrast, the StructCache algorithm considers the structure

of XML document, in additional to the temporal locality,

spatial locality, cost of fetching and size of object.

5. Experiment Results

To facilitate our evaluations of different caching strategies,

we have performed a simulation to test the performance of

StructCache against the GDS and GDFS algorithms. We

model the clients’ requests of XML by a list of predefined

XML objects queries, which is executed sequentially.

Different algorithms are implemented in proxy between the

client and remote servers. The proxy is responsible for

handling the clients’ requests and returning the results to

clients. In this experiment, our focus is on the performance

gain by caching the queries' result of XML fragments

instead of whole documents and the study the effects of the

incorporation of the structure of DTD and the XPath in

replacement algorithms.

During the experiment, the execution sequence of the batch

of queries remains unchanged throughout the experiment.

In our experiment, the predefined queries can be classified

into the following four types:

1) Queries have similar XPath but different predicates.

/article/author/name[firstname='Peter'] and

/article/author/name[firstname='Tom'] are example of

this type of queries

2) Queries have results that are subsets of results of

previous queries

/article/author and /article are example of this type of

queries

3) Queries randomly select nodes and have no predicate

/article/author/name/firstname and

/article/publisher/publishername are example of this

type of queries

4) Queries randomly select nodes and have arbitrary

predicates

/article/author/name[firstname='Tom'] and

/article/publisher[publishername='ABC Publisher'] are

example of this type of queries

We compare the effectiveness and relative gain of

performance of StructCache with GreedyDual Size(GDS)

and GreedyDual Frequency-Size (GDFS) algorithms in

terms of the Bit Model and the Cost Model.

Figure 8 shows the plot of hit counts versus cache size

for the three algorithms. Figure 9 shows the plot of the

corresponding byte hit versus the cache size. Both results

illustrate that larger cache sizes give higher hit counts and

byte hits and the StructCache algorithm outperforms the

GDS and GDFS algorithm in terms of the Bit Model and

Cost Model for XQL queries. The improvement in hit

count is up to 20% and 22% in byte hit. The gain of

performance is highly related to the types of queries. The

result is particularly apparent for XML documents with

relatively large document size to cache size ratio. For

retrieving of large size XML documents, the fetch cost is

relatively large and caching of XML fragments not only

reduces the size of cache objects, but also reduces the page

faults.

The incorporation of syntactic features of DTD as a

parameter in cost updating function and replacement

algorithm gives additional information about the objects to

be cached. One reason is the design of schema usually

considers the relatively importance of a node and the

relationship among various nodes. For the sub-typing

relationship and the occurrence notation can be exploited.

The stream of XQL queries are also exploited by our

proposed algorithm. In StructCache algorithm, the XPath

of XQL queries are used in score updating and the

determination of objects replacement. We found that the

WSS03 Applications, Products and Services of Web-based Support Systems 109

following two kinds of XQL queries are well handled with

our proposed algorithm:

a) Subsequent queries are specific sub-tree(s) of

precedent queries

b) Subsequent queries are of the same level and path

with precedent queries

In other words, it performs well when the stream of

queries exhibits the spatial locality characteristics and the

user access preference is 'moving from general to specific'.

Results also indicate that the performance is still

comparable to traditional caching algorithms even though

the two above criteria cannot be met.

6. Conclusion

In this paper, we present a XMLCache caching

framework for XML data under the mobile environment. It

takes care of both XML and non-XML data and the

replacement algorithm considers the syntactic

characteristics of the XML schema in additional to the

access pattern of XML queries, the long-term access

frequencies and fragment size. By using the Cost Model

and the Hit Model as the metrics, preliminary experiments

show that our proposed algorithm outperforms the GDS

and GDFS for the same configurations of cache sizes and

user queries.

Acknowledgement
The work reported in this paper was partially supported by

Hong Kong CERG Grant – PolyU 5094/00E.

7. References

[1] Saied Hossenini-Khayat, "Replacement algorithms for object

caching", Proceedings of the ACM symposium on Applied

Computing, Atlanta, GA USA, Mar 1998.

[2] R. Wooster and N. Abrams. "Proxy caching that estimates

page load delays". In Proceedings of the 6th International

WWW Conference, 1997.

[3] Steve D. Gribble and Eric A. Brewer. "System design issues

for Internet middleware services : Deductions from a large

client trace". In Proceedings of the 1997 USENIX

Symposium on Internet Technology and Systems, 1997.

[4] Pei Cao, Edward W. Felten, Anna R. Karlin and Kai Li. "A

study of integrated prefetching and caching strategies",

Proceedings of the 1995 ACM SIGMETRICS joint

international conference on Measurement and modeling of

computer systems, May 1995.

[5] Susanne Albers, Sanjeev Arora and Sanjeev Khanna. "Page

Replacement for General Caching Problems", In Proceedings

of the Tenth ACM-SIAM Symposium on Discrete

Algorithms, 1999.

[6] S. Irani. "Page replacement with mult-size pages and

applications to Web caching". Proceedings 29th Annual

ACM Symposium on Theory of Computing, 701-710, 1997.

[7] Ed Sutherland. "Predicting M-Commerce Trends for 2002:

Part II" . http://www.mcommercetimes.com/Industry/211,

Jan 2002.

[8] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.

Schwartz, and J. Worrel, "A hierarchical Internet Object

Cache", Usenix'96, January 1996.

[9] J. Yang, W. Wang, R. Muntz, and J. Wang, "Access Driven

Web Caching", UCLA Technical Report #990007.

[10] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd

and V. Jacobson, "Adaptive Web Caching: towards a new

caching architecture", Computer Network and ISDN

Systems, November 1998.

[11] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder,

"Summary Cache: A Scalable Wide-Area Web Cache

Sharing Protocol", IEEE/ACM Transactions on Networking,

Vol. 8 No.3, June 2000.

[12] Jia Wang, "A Survey of Web Caching Schemes for the

Internet", Cornell Network Research Group(C/NRG), 2000.

[13] D. Wessels and K. Claffy, "Internet Cache Protocol(ICP)",

version 2, RFC 2186.

[14] Anja Feldmann, Ram?n Cáceres, Fred Douglis, Gideon

Glass, and Michael Rabinovich. "Performance of Web Proxy

Caching in Heterogeneous Bandwidth Environments".

AT&T Labs-Research, Florha Park, NJ, USA, 1999.

[15] Shudong Jin and Azer Bestavros, "GreedyDual Web Caching

Algorithm - Exploiting the Two Sources of Temporal

Locality in Web Request Streams", Boston University, 2000.

[16] Virgílio Almeida, Azer Bestavros, Mark Crovella, and

Adriana de Oliveira. "Characterizing Reference Locality in

the WWW". Department of Computer Science, Boston

University, 1996.

110

