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Abstract

Recent web cache replacement policies incorporate 

information such as document size, frequency, and age in 

the decision process. In this paper, we propose a new 

caching algorithm, StructCache, for wireless accesses of 

XML data. The algorithm is an enhancement of the 

Greedy-Dual-Size (GDS) policy and the Greedy-Dual-

Frequency-Size (GDFS) policy. It would consider 

document sizes, access frequency and exploits the aging 

mechanism to deal with cache pollution. In addition, the 

structural information of XML is utilized to achieve better 

hit ratios. Experimental results show that the StructCache 

algorithm outperforms GDS and GDFS algorithms for 

queries which are sub-tree(s) in XML documents of 

precedent queries and queries of the same axis and node 

tests in XML documents with precedent queries. 

1. Introduction 

By virtue of the increasing processing power of 

embedded computers, wireless computing and Mobile 

Commerce (mCommerce) is the wave of the future [7]. 

Caching and prefetching of XML data in heterogeneous 

networks, especially for the mobile environment, reduce 

traffics and improve the performance of dissemination of 

XML data, which in turns improve the usability of the 

Internet as a large and distributed information system.  

Very often, user access patterns are helpful for the 

customization for specific type of users. The relative 

importance of long-term popularity and short-term 

temporal correlation of references for web cache 

replacement policies has not studied thoroughly. This is 

partially due to the lack of accurate characterization of 

temporal locality that enables the identification of the 

relative strengths of these two sources of temporal locality 

in a reference stream [15]. 

Moreover, better cache policies are equivalent to 

several-fold increase in cache size. Efficient cache and 

prefetching algorithms reduce the needs of cache sizes to 

match the growth rate of web content. The gains from 

efficient cache and prefetching algorithms are compounded 

through a hierarchy of caches [15]. 

Existing web caching algorithms capture the 

characteristics and differences of paging in file systems. 

However, they do not consider the nature and properties of 

the objects themselves. In this paper, we try to propose a 

caching technique to improve the performance of query 

responses. It is our aim to improve the performance of 

XML queries against large XML files, which in turn may 

improve the usability of wireless applications.   

In this paper, our main focus is the benefits brought 

from our proposed replacement algorithm to cache XML 

documents and the comparison of performance with other 

algorithms. The paper is composed of six sections. In 

section 2, we first review background study and previous 

related work. Section 3 consists of the structure and details 

our proposed XMLCache framework. Section 4 gives the 

details of our caching algorithm, StructCache, for caching 

of XML objects. The procedures and results of the 

experiment are presented in section 5. Section 6 

summarizes our work and section 7 contains the references. 

2. Background and Related Work 

Existing web caching algorithms mainly consider 

individual documents as the individual objects to be 

cached. The larger the document, the greater the overhead 

when cache misses. This may pose a problem especially 

under a bandwidth and memory constrained environments 

such as wireless environments. 

Traditional object caching algorithms that have not 

considered the syntactic and semantics characteristics of 

XML documents may not handle the HTML, XML 

contents in an efficient manner. Our suggested caching 

algorithms tries to exploit the syntactic structure of XML 

documents and the XML based quires to improve the 

caching performance in a high latency and low bandwidth 

environments. 

We develop a caching framework that is used for 

caching of both XML and non-XML documents. The 

caching technique is done on client-side, which is supposed 

to be embedded in wireless computing devices with limited 

bandwidth communication connections. We will study the 

performance of our proposed caching algorithm that tries to 

exploit the schemas of XML and XML queries. It is also 
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expected that the algorithm will be more effective, 

especially in situations in which the object size to cache 

size ratio is high, high network latency and low 

transmission environment. 

2.1. Cost Metrics
Cost metrics [1,5,6] are used as objective measurements 

of the effectiveness of the caching algorithms. Three cost 

metrics mostly employed are: 

1) Bit Model: The cost of a cache miss equals to the size 

of the missing item. This measure provides an objective 

measure for the effectiveness of our proposed algorithms. 

2) Cost Model: The cost of a cache miss is unity. This is 

used for evaluating the use of the heuristics of XML 

queries in improving the effectiveness of caching. 

3) Time Model: The cost of a miss equals to the average 

time to load such an individual item. Here, it means the 

time to retrieve the whole object (time of retrieval due to 

page fault) or the user perceived response time (network 

Delay). For some wireless application, a user who has part 

of the results and progressively getting the remainings may 

be more crucial than obtaining the complete results at a 

minimum time even though the total time of retrieval is 

longer.

2.2. Related Work 

Caching algorithms targeting for web have become 

more prevalent. GreedyDual [15] web caching algorithm is 

one of the typical examples. It is a generalization of 

GreedyDual-Size algorithm [5] and a development of the 

family of algorithms derived such as GreedyDual 

Frequency-Size. Trace driven simulation illustrates that it 

has superior performance when compared to other web 

cache replacement policies proposed in the literature[15].

There are many factors affecting the performance of a 

given cache replacement policy. GreedyDual caching 

algorithm exploits the size, miss penalty, temporary locality 

and long-term access frequency and captures both 

popularity and temporal correlation: 

1) Size – Web objects are of various size and caching 

smaller objects usually results in higher hit ratios, 

especially given the preference for small objects [16]. 

2) Miss Penalty – The miss penalty varies significantly. 

Assigning higher preference to objects with a high retrieval 

latency can achieve high latency saving [14] 

3) Temporary locality – Web access patterns exhibit the 

temporal locality [2]. Similar to the LRU replacement 

policies, GreedyDual also assign higher preference to 

recently accessed objects. 

4) Long-term access frequency – The bursty behavior of 

the popularity of web objects were found over short times 

scales while it is more smooth over long times scales [3]. 

Apart from the researches in replacement algorithms 

targeting for Web, there are hierarchical and cooperative 

caching architectures such as the Harvest project [8], 

access driven cache [9], adaptive Web caching [10]. For 

distributed caching architecture, there are examples such as 

summary cache [11] and Internet cache protocol (ICP) 

[13]. With hierarchical caching, caches are placed at 

multiple levels of the network. A hierarchical architecture 

is more bandwidth efficient, particularly when some 

cooperating cache servers do not have high-speed 

connectivity. With distributed caching, most of the traffic 

flows through low network levels, which allows better load 

sharing and are more fault tolerable. However, a large-scale 

deployment of distributed caching may encounter the 

problems of high connection times, higher bandwidth 

usage and administrative issues [12]. 

Because of the relatively small bandwidth of mobile 

environment when compared with that of connected 

networks, the gains arising from efficient caching and 

prefetching in mobile environments are even apparent. 

However, conventional replacement algorithms still have 

room for improvements under the Internet and mobile 

environment when data objects are having syntactic and 

semantic implications.  

3. The XMLCache Framewok 

Our proposed framework utilizes the conventional 

caching algorithms for non-XML documents whilst handles 

XML data objects differently. The determination of which 

caching strategy is employed depends on the type of 

documents requests from clients. A different caching 

algorithm (StrcutCache) will exploit the coherency of 

similar requests made by clients with the idea of the 

structure of XML documents will have impacts on 

successive retrieval. 

The framework shown in Figure 1 acts as a proxy 

between the mobile clients and remote data source. It 

mainly divides retrieval objects into XML and non-XML 

objects. For XML data queries, it is handled by our 

proposed caching algorithm called StructCache in the 

caching engine. For non-XML data queries, it is handled by 

existing web caching algorithms. Depending on whether 

the XML documents fetched from remote servers have the 

corresponding DTD (Document Type Definition) or not, 

the DTD may need to be extracted by the DTD Extractor. 
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Every XML query sent from clients is evaluated, which 

triggers the retrieval of XML documents when the required 

fragments do not exist in the cache memory. The client 

returns the query result directly when the required objects 

are located in cache. Each data object of XML documents 

in cache memory is associated with a timestamp and the 

corresponding DTD. DTDs of the retrieved XML 

documents do not exist will trigger the generation of initial 

multiplication factors, which will affect the score updating 

process in later phase. Depending on the frequency of 

accesses and sizes of objects, a score for each of the data 

node of a given DTD will be updated in runtime. More 

details will be covered in Section 4.3.

In our framework, there are a number of assumptions:  

a) Client computation power, power consumption and 

the complexity of the algorithm are not the limiting factors.  

b) Since the cache is located on the client wireless 

devices (e.g. PDA), the size of the cache as well as the 

bandwidth of the wireless networks are the limiting factors. 

c) Because of the high latency, and relatively low 

transmission rate of the communication channels, the 

overhead of retrieving objects from heterogeneous network 

is higher than that from the cache. We assume that the 

throughput and the latency are averaged constants 

throughout our model. We choose a typical transmission 

rate reported by mobile network services providers rather 

than that derived theoretically from a selected modulation 

methods, and carriers. 

d) We assume caching can be performed either in the 

mobile clients or proxies. Details of switching of 

underlying cellular networks are intentionally abstracted to 

generalize our proposed algorithm for different kinds of 

carriers or application-specific uses. 

3.1. Queries from clients 

In general, requests from mobile computing devices 

expressed in URL-like query can be decomposed into two 

parts. The first part is the URL that locates the resource to 

be retrieved whilst the second part is an XPath expression. 

Figure 2 illustrates an example of a client request. In this 

example, the first part is the 

‘http://www.polyu.edu.hk?/article/author/name’ and the 

second part is ‘[firstname=‘Joe’]’. 

Our cache engine acts as a proxy between the client 

application and remote servers. Items fetched on behalf of 

client applications include XML and non-XML files. The 

fetched XML documents can also be classified into two 

types. The first type is those XML documents have the 

corresponding DTD given in advance` whilst the second 

type has no knowledge about the document’s DTD. In the 

first case, our replacement algorithm can be directly 

applied. For the second case, since the corresponding DTD 

of a XML document not known in advance, a DTD 

extractor is used for the estimation of the structure of the 

DTD.

The XMLCache framework has 4 major modules: 

a) DTD Extractor – This module is responsible for the 

extraction of DTD from a given XML document no DTD 

given in advance. It is employed when clients requests 

query XML documents that have no predefined DTD.  

b) The StructCache Engine – Our proposed engine of 

caching XML data under mobile. 

c) Cache Memory – The module has two parts. The first 

part is a set of mappings that maps the document identifier 

(URI) to a given timestamp (Document’s Last Modification 

Time). The second part is the repository where individual 

cached objects are placed. For XML documents, it should 

be the fragments of XML documents whilst it will be 

complete binary image for graphics files.  

d) Classical Cache Engine – This component 

encompasses conventional online replacement algorithms 

such as GDFS, which treats the whole file as an individual 

object to be cached. This is mainly used for caching of 

non-XML documents. 

4. StructCache

Fetched XML documents 

with DTD as schema 

XML documents 

without DTD

Fetched non-XML 

documents 

DTD Extractor 

DTD given 

Classical

object caching 

XML / non-

XML Queries  

from clients 

XML / non-

XML Queries 

results

Cache Memory 

Caching engine for 

XML data 

Figure 1. Internal architecture of StructCache 
framework 

The syntax of the client request: 

[URL]?[XQL] 

Key:

[URL] : Universal Resource Locator that locates the resources(XML / 

non-XML files) 

[XQL] : XQL of the target XML document 

Example: 

http://www.polyu.edu.hk?/article/author/name[firstname=‘Joe’]

Figure 2. An example request from client 
application
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StructCache is an algorithm used in the caching engine 

for XML data with DTD. The algorithm can be divided 

into two phases. The first phase is to determine the 

weighting factors, called multiplication factors for a group 

of XML documents with the same schemas which are used 

in runtime phase. During operations, the score of each 

node, which is depended on the multiplication factors 

calculated in the first phase, access frequencies, size of 

nodes as well as the XPath of the XML queries derived 

from subsequent client requests.  

Comparing with other classical object caching 

algorithms, StructCache adopts an adaptive way rather than 

solely relying on frequency, size of objects in cache. It is 

adaptive in the sense that the initial multiplication factors 

depend on the structure of the associated DTD, and the 

object replacements process is affected by the 

multiplication factors, XPath, the heuristics of access of 

nodes or nodes sets as well as the size of a given node or 

nodes sets relative to the whole XML document. Although 

we do not quantify the relationship between the factors 

considered and their effects in this paper, it is observed that 

the factors concerned are correlated with long-term access 

patterns. It is because, very often, the design of schema 

mostly reflects the relative importance of fragments in 

XML documents and the temporal and spatial locality of 

accesses.

Normally, systems can either fetch a block in response 

to a cache miss (on-demand fetch), or it can fetch a block 

before it is referenced in anticipation of a miss 

(prefetch)[16]. Fine-grained objects will save more 

redundant space but sacrifice the computation power. Our 

goal is to find an online policy for on-demand fetching and 

caching of XML documents without knowing the 

sequences of references in advance. Instead of caching the 

whole XML document, the memory objects to be cached 

are fragments of XML documents derived from the results 

of XML queries in the request stream, which may be of 

various sizes. For a limited amount of cache in wireless 

computing devices, we try to exploit the heuristic as well as 

the semi-structured characteristics of XML documents. Our 

problem in fact is a general caching problem [12], when the 

pages have varying sizes and costs. This problem arises, 

among other places, in cache design for networked file 

systems or the world-wide web [12]. In web caching, 

popular online caching algorithms such as Least Recently 

Used (LRU) has heuristics justification that real-life 

sequences often exhibit the property that “the past predicts 

the future”. They normally treats the whole file as an 

individual object [1]; by contrast, we try to apply a more 

fine-grained approach such that individual objects to be 

cached are XML fragments from the query results, with a 

view to minimize page faults, especially for wireless 

communication channels and documents with large size. 

The heuristics of our approach are based on the XML data 

queries generated by the client application(s) or requested 

from users.  

StructCache is our caching algorithm dedicatedly for 

XML data with DTD.  It is to work within the caching 

engine for XML data in our framework. The algorithm has 

two phases. The first phase is the determination of factors 

and initialization of variables from a newly fetched DTD. It 

is triggered by the cache miss and fetching of XML 

documents with undetermined DTD from remote server(s). 

The second phase is the runtime phase that fetches objects, 

invalidates cache, performs updating of variables and 

triggering the initialization phase for any fetched and 

undetermined DTD. 

4.1. Initialization Phase

In this phase, multiplication factors are generated for 

each of the XML, which may affects the cost of updating 

and in turns that of replacement. The construction of the 

multiplication factors is determined by a DTD of XML 

document, which is then stored for use in later phase. 

Each node of XML documents is associated with a 

score, which is initialized to zero and affected by the access 

patterns during runtime. The initial cache plan may affect 

the performance of caching as the cost updating process in 

runtime phase depends on the multiplication factors 

generated in this phase. 

<article> 

 <title> 

 A Relational Model for Large Shared Data Banks 

 </title> 

<publisher>

<publishername>HKPolyU Publishing Co. Ltd. 

  </publishername> 

  <address>Honghom, Kowloon 

  </address> 

 </publisher> 

 <author> 

  <name> 

   <firstname>E.F.</firstname> 

   <lastname>Codd</lastname> 

</name>

  <age>54</age> 

 </author> 

</article>

Figure 4. An example XML document 

<!ELEMENT article(category, title, publisher, author*)> 

<!ENTITY % Address “(#PCDATA)”> 

<!ELEMENT title(#PCDATA)> 

<!ELEMENT title(#PCDATA)> 

<!ELEMENT publisher(publishername,address)>

<!ELEMENT publishername(#PCDATA)> 

<!ELEMENT address(#PCDATA)> 

<!ELEMENT author(name,age,address?)> 

<!ELEMENT name(firstname?,lastname?)> 

<!ELEMENT age(#PCDATA)> 

<!ELEMENT firstname(#PCDATA)> 

<!ELEMENT lastname(#PCDATA)> 

Figure 3. An example DTD
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The initial phase consists of three steps. The first step is 

the construction a directed graph from a DTD of that XML 

documents. By expanding all entities definitions within the 

directed graph, a tree is generated. Figure 3 shows a sample 

DTD and Figure 4 shows an instance of the DTD. Figure 5 

shows the tree constructed from the DTD. 

The second step is the assignment of weightings to each of 

the leaf nodes of the directed graph. Table 1 shows the 

relative weightings of properties observed from common 

DTDs for XML documents. The weights represent the 

relative strength of the relationship among nodes of a DTD 

from design view. The higher is the weighting, the stronger 

is the relationship. 

The assignment of multiplier and replacement cost is 

based on the expected probabilities of occurrences of those 

nodes in instances of the DTD. Basic replacement cost 

depends on the occurrence notation of a node. The cost 

implies the relatively importance of that node derived from 

the DTD whilst multiplier is a factor that depends on the 

elements’ content specifications. 

We model the relationship with three kinds of factors. 

The first one is the common design characteristics of a 

DTD. An example is that a node with mandatory notation 

is more important than optional one. The second one is the 

probable inter-relationship among nodes. In this paper, we 

classify this kind of relationship into mutual exclusive, co-

occurrence, sub-typing, and no relationship at all. The third 

one is the relative size of the actual instantiation of the 

nodes. Therefore, the model of relationship can be 

constructed as: 

R ~ (T + I) / S 

where R is the relative strength of importance, T is the 

common design characteristics of a DTD, I is the type of 

inter-relationship, and S is the relative size of the probable 

instantiation of a node. 

For easier operation, the size of the probable 

instantiation of a node is replaced with the number of 

options of that node and the common design characteristics 

into either no implication, optional or mandatory, which is 

normalized to 1, 1/2 and 1 respectively. For the type of 

inter-relationship, we normalize the co-occurrence, sub-

typing, no relationship and mutual exclusive relationship 

into numerical values 1, 1, 1/2, 1/n where n is the number 

of options. 

Table 1. Assignment of weighting factors 

Element with Occurrence 

Notation

Basic replacement cost(Q) 

?(Optional) 1/2 

*(Zero or More) 1 

+(One or More) number of options 

|(OR) 1/number of options 

No Notation 1 

ATTLIST Basic replacement cost(Q) 

Element(s) with attribute 

ID

1

Element(s) with fixed 

attribute

1

Element’s ContentSpec Multiplier(T) 

PI 1 

ANY 1 

Mixed Sum of all possible 

weightings/number of options 

Comment 1/2 

Fixed 2 

PCDATA 2 

Basic replacement cost (Qi) is multiplied by the 

corresponding multiplier(Ti) to obtain the multiplication 

factor that leaf node. Assignment process is then performed 

in a bottom-up manner. The score of a non-leaf node is the 

aggregated sum of its descendent nodes multiplied by the 

multiplier of that node. The assignment process iterates 

until the root node is reached. The multiplication factor for 

a given node W1 is: 

Wi  = Ti * Qi

  = Ti * Wi-1

  = Ti * Wi-1* Wi-2*……* W1

The multiplication factor reflects the relatively 

importance of a given node within a DTD for a given XML 

document. The value of a factor derived from the DTD is a 

numerical representation for manipulation in the later 

phase. It is expected that nodes having higher values are 

more important as they appear more often in instances of 

that DTD. Figure 6 illustrates the weighted directed graph 

of the example DTD.  

article 

title author

name age 

firstname lastname

publisher

address addresspublishern

ame 

Figure 5. A directed graph constructed from the 
DTD
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In step 3, the multiplication factors constructed in step 2 

are derived. Apart from these factors, each node of the 

selected XML document has an associated score. Although 

both the score and multiplication factor are derived and 

initialized in this phase and used afterwards, the differences 

between them is that the latter reflects the schema 

characteristics of the DTDs while the former is a set of 

variables for manipulation in runtime phase. The associated 

score of each node Ci is initialized to zero for each DTD 

fetched from remote server. 

Ci {Ci = 0} 

As such, a mapping of DTD and the multiplication 

factors, in additional to the set of initialized scores are 

generated in this phase. 

4.2. Runtime Phase 
4.2.1. Score Updating 

For each of the XML query requested by the client, the 

timestamp of the corresponding local document is 

compared with that of remote server to check for data 

coherency. The invalidation of data triggered by the 

discrepancies of these two timestamps results in the 

retransmission of the corresponding XML document and 

updating of local timestamp. For a cache hit, the score of 

the selected node(s) Ci is/are re-calculated by the 

corresponding adjustment factor i:

Ci=Ci + i

The updating of cost in each node is affected by the size 

of the element, access frequency and the difference 

between fan-out and fan-in of a node within the actual 

XML instantiations of the DTD. Hence, the cost, i is 

defined as: 

i =  * ln(Wi * S/Si * Fi/F * Ei/E) 

where a is a constant, Wi is the Multiplication Factor 

derived from initial phase, Si is the size of node(s), S is size 

of the XML object fragment, Fi is the access count of that 

node in the cache, F is the total hit count of the XML 

object fragment, and Ei is a fan-out factor which is 

determined by the number of edges connected to children 

nodes Ui and that of parent nodes Vi:

Ej = Ui - Vi iff Ui - Vi >= 0 

Ej = 1 if Ui - Vi < 0 

All other unaffected nodes {Ci} are deducted by an 

adjustment factor j:

Cj=Cj - j

The adjustment factor j of unaffected node is 

determined by: 

j = i / |Cj|

4.2.2. Object Replacement

Object replacement process encompasses three steps: 

a) When the required XML document fragments are 

stored in the cache memory, the local copy is returned to 

client and no object replacement occurs. 

b) Whenever cache miss or cache incoherency occurs, 

the requested object(s) retrieved from remote servers will 

be stored in local cache memory as long as the maximum 

available cache size is not exceeded. 

c) Whenever cache miss or cache incoherency occurs 

and the space available in local cache memory is not 

enough to accommodate the requested object(s) retrieved 

from remote servers, object replacement process will begin 

and each queries will be evaluated by accumulating the 

score of the nodes(Ci) across the axis for the corresponding 

XPath. The cached query and object pair having the least 

evaluated total value will be evicted and the process 

iterates until the space available can accommodate the 

executed query and fetched XML fragment. 

In other words, the following two criteria must be met 

for the occurrence of object replacement: 

(i)  Ck { Ci  > Ck }

(ii) Size(Ci) <= Size(Ck)

where Ci  {sets of the retrieved nodes} and Ck  {sets of 

the nodes of the path expression to be replaced}. Figure 7 

is the summary of our proposed algorithm StructCache: 

4.3. Comparisons 

Figure 7. Summary of StructCache 

Find Wi  for all nodes of a given XML document 

Ci  0.0 

For each request query p do 

If p is in cache  

then

Ci=Ci + i  where i =  * ln(Wi * S/Si * Fi/F * Ei/E) for all affected nodes 

Cj=Cj - j   where j = j / |Ci| for other nodes 

else fetch p 

While there is not enough free cache for p 

Evict fragment(s) with min{  Ci (q)|q} are the nodes of the axis of XQL data query 

in cache}

article 

6+3+7.5=

16.5

title 

3*1=3

author

3+3+1.5=

7.5

name

6*1/2=3

age 

3*1=3

publisher

3+3=6

address

3*1=3

address

3*1=3

publisher

name

3*1=3

lastname

3*1=3

firstname

3*1=3

Figure 6. The weighted directed graph constructed 
from DTD 
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Figure 8. Hit counts versus cache Size for 
different evaluated algorithms 

Figure 9. Byte hit versus cache Size for different 
evaluated algorithms 

GDFS employs the dynamic aging mechanism or 

inflation value to simulate the reference correlation of web 

traffic. Instead, our proposed algorithm uses the reward and 

punishment mechanism in updating and does not need to 

determine the base value during the reset step of cache hit. 

Utility value reflects the normalized expected cost saving if 

the object stays in the cache. Given the long-term reference 

pattern is stable, GDFS uses f(p) * c(p) / s(p) that consider 

the reference count, cost of fetching and size of object as 

well as the aging factor to approximate the utility value. By 

contrast, the StructCache algorithm considers the structure 

of XML document, in additional to the temporal locality, 

spatial locality, cost of fetching and size of object. 

5. Experiment Results 

To facilitate our evaluations of different caching strategies, 

we have performed a simulation to test the performance of 

StructCache against the GDS and GDFS algorithms. We 

model the clients’ requests of XML by a list of predefined 

XML objects queries, which is executed sequentially. 

Different algorithms are implemented in proxy between the 

client and remote servers. The proxy is responsible for 

handling the clients’ requests and returning the results to 

clients. In this experiment, our focus is on the performance 

gain by caching the queries' result of XML fragments 

instead of whole documents and the study the effects of the 

incorporation of the structure of DTD and the XPath in 

replacement algorithms.  

During the experiment, the execution sequence of the batch 

of queries remains unchanged throughout the experiment. 

In our experiment, the predefined queries can be classified 

into the following four types: 

1) Queries have similar XPath but different predicates. 

/article/author/name[firstname='Peter'] and 

/article/author/name[firstname='Tom'] are example of 

this type of queries 

2) Queries have results that are subsets of results of 

previous queries 

/article/author and /article are example of this type of 

queries

3) Queries randomly select nodes and have no predicate 

/article/author/name/firstname and 

/article/publisher/publishername are example of this 

type of queries 

4) Queries randomly select nodes and have arbitrary 

predicates

/article/author/name[firstname='Tom'] and 

/article/publisher[publishername='ABC Publisher'] are 

example of this type of queries 

We compare the effectiveness and relative gain of 

performance of StructCache with GreedyDual Size(GDS) 

and GreedyDual Frequency-Size (GDFS) algorithms in 

terms of the Bit Model and the Cost Model. 

Figure 8 shows the plot of hit counts versus cache size 

for the three algorithms. Figure 9 shows the plot of the 

corresponding byte hit versus the cache size. Both results 

illustrate that larger cache sizes give higher hit counts and 

byte hits and the StructCache algorithm outperforms the 

GDS and GDFS algorithm in terms of the Bit Model and 

Cost Model for XQL queries. The improvement in hit 

count is up to 20% and 22% in byte hit. The gain of 

performance is highly related to the types of queries. The 

result is particularly apparent for XML documents with 

relatively large document size to cache size ratio. For 

retrieving of large size XML documents, the fetch cost is 

relatively large and caching of XML fragments not only 

reduces the size of cache objects, but also reduces the page 

faults.

The incorporation of syntactic features of DTD as a 

parameter in cost updating function and replacement 

algorithm gives additional information about the objects to 

be cached. One reason is the design of schema usually 

considers the relatively importance of a node and the 

relationship among various nodes. For the sub-typing 

relationship and the occurrence notation can be exploited. 

The stream of XQL queries are also exploited by our 

proposed algorithm. In StructCache algorithm, the XPath 

of XQL queries are used in score updating and the 

determination of objects replacement. We found that the 
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following two kinds of XQL queries are well handled with 

our proposed algorithm: 

a) Subsequent queries are specific sub-tree(s) of 

precedent queries 

b) Subsequent queries are of the same level and path 

with precedent queries 

In other words, it performs well when the stream of 

queries exhibits the spatial locality characteristics and the 

user access preference is 'moving from general to specific'. 

Results also indicate that the performance is still 

comparable to traditional caching algorithms even though 

the two above criteria cannot be met. 

6. Conclusion

In this paper, we present a XMLCache caching 

framework for XML data under the mobile environment. It 

takes care of both XML and non-XML data and the 

replacement algorithm considers the syntactic 

characteristics of the XML schema in additional to the 

access pattern of XML queries, the long-term access 

frequencies and fragment size. By using the Cost Model 

and the Hit Model as the metrics, preliminary experiments 

show that our proposed algorithm outperforms the GDS 

and GDFS for the same configurations of cache sizes and 

user queries.
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