
A Learning Algorithm for Multiple Rule Trees

Jiujiang An, Guoyin Wang, Yu Wu

Institute of Computer Science and Technology

Chongqing University of Posts and Telecommunications

Chongqing, 400065, P. R. China

anjiujiang@tom.com wanggy@cqupt.edu.cn wuyu@cqupt.edu.cn

Abstract

It is one of the key problems for web based decision

support systems to generate knowledge from huge

database containing inconsistent information. In this

paper, a learning algorithm for multiple rule trees

(MRT) is developed, which is based on ID3 algorithm

and rough set theory. MRT algorithm can quickly

generate decision rules from inconsistent decision

information tables. Both space and time complexities

of MRT algorithm are just polynomial, while those of

Skowron’s default decision rule generation algorithm

are exponential. With the increasing of the number of

records and core attributes of an information table,

Skowron’s default algorithm needs more memory and

time for generating rules than MRT algorithm. In some

cases, Skowron’s default decision rule generation

algorithm could not generate rules due to the lack of

memory. It’s proved by our simulation experiment

results that MRT algorithm is effective and valid.

1. Introduction

Rough set theory has been applied successfully in

such fields as machine learning, data mining and etc.,

since Prof. Z. Pawlak developed it in 1982 [1].

Generating rules from a decision table is one of the

major research topics of rough set theory. Reduct is an

important contribution of rough set theory for data

mining, and its results are in accordance with rules. In

uncertain or inconsistent cases, the default decision

rule generation algorithm developed by Prof. Skowron

(DDRG) can generate all rules, certainty factors of

which are greater than a predefined threshold c [2]. At

the same time, conflicts between these rules are solved

by use of some block rules. It is proved that rules

generated by this algorithm have high flexibility in

processing unseen data. Based on DDRG algorithm,

Prof. Wang developed a self-learning model under

uncertain condition [3,4]. This model can automatically

get the threshold c to generate rules without any prior

domain knowledge. Simulation experiment results

demonstrate that this model could generate a rather

smaller number of rules than DDRG algorithm, and has

high correct recognition rate for unseen data.

During the rule generation process of DDRG

algorithm an inconsistent decision table will be

projected onto many subtables by dropping one of its

core attribute. Then DDRG generates rules with

discernibility matrix from each subtable repeatedly.

Thus, the cost for generating rules of this algorithm is

determined by the number of records and core

attributes of each subtable. It is illustrated in section 4

that its space and time complexities are exponential.

When the number of records and core attributes of an

inconsistent decision table are small, DDRG algorithm

can quickly generate rules from it. However, with the

increasing of the number of records and core attributes,

it needs much more memory and time for generating

rules, and even fails to generate rules due to the lack of

memory.

ID3 is a classical machine-learning algorithm for

generating rules from decision tables [5]. A typical tree

generation process of ID3 algorithm is as follows.

Firstly, a condition attribute with the minimal

information entropy is chosen from a decision table.

Then this attribute is used to divide the decision table

into different classes. The above two steps are repeated

until each record of the decision table only belongs to

one of these classes. Unfortunately, ID3 algorithm can

build a decision tree for a consistent decision table only.

It cannot process an inconsistent decision table.

To solve the above problems, a learning algorithm

for multiple rule trees (MRT) based on ID3 algorithm

and rough set theory is proposed in this paper. MRT

algorithm can generate multiple rule trees from an

inconsistent decision table, and the certainty factor of

each rule is greater than or equal to a predefined

threshold. In the rule tree generation process, MRT

algorithm computes and stores only a part of the

original decision table to create an internal node of rule

tree. With the predefined threshold, MRT algorithm

judges whether an internal node of rule tree has a

branch of child node or not. Thus, the depth and width

J.T. Yao, V.V. Raghvan, G.Y. Wang (Eds.): WSS'04, pp. 13-19, 2004.

The 2nd Workshop on Web-based Support Systems 2004 13

of rule tree is limited. Its space and time complexities

are polynomial. Compared with DDRG algorithm,

MRT algorithm generates decision rules from an

inconsistent decision table at less memory and time

cost. In addition, MRT algorithm generates multiple

rule trees to overcome a drawback of ID3 algorithm

that rules resulted from it centralize on a few condition

attributes. MRT algorithm could be further used to deal

with the problem of generating knowledge from huge

databases containing inconsistent information for web

based intelligent decision support systems.

In Section 2, some basic concepts of rough set

theory and rule tree are discussed. MRT algorithm is

presented in detail in Section 3. Its space and time

complexities are analyzed and compared with DDRG

algorithm in Section 4. In Section 5, some simulation

experiments are done to test our results. In Section 6,

we draw a conclusion for this paper.

2. Basic concepts

For the convenience of later discussion, some related

concepts about rough set theory and rule tree are

introduced here.

Def. 1 A decision table is defined as S=<U, R, V, f >,

where U is a finite set of objects and R=C D is a finite

set of attributes. C is the condition attribute set and D is

the decision attribute set, V= Va is a union of the

domain of each attribute of R. Each attribute has an

information function f: U×R V.

Def. 2 Given a decision table S=<U, R, V, f>, C and

D are its condition attribute set and decision attribute

set separately. Condition class Ei is defined as

Ei U/IND(C), where, i=1,…,m, and m=|U/IND(C)|.

Decision class Xj is defined as Xj U/IND(D), where,

j=1,…,n, and n=|U/IND(D)|.

Def. 3 Given a decision table S=<U, R, V, f>, C is

its condition attribute set. A condition class Ei is called

consistent if and only if its all objects have the same

decision value. Otherwise, it is called inconsistent.

Def. 4 A decision table S is called certain if and only

if its condition classes are all consistent. Otherwise, it

is an uncertain one.

Def. 5 Given a decision table S=<U, R, V, f>, where

R=C D, C is its condition attribute set and D={d} is

its decision attribute set. The certainty factor of a

decision rule A B, CF(A B), is defined as

CF(A B)=|X Y|/|X|, where X is the object set with

condition attribute values satisfying formula A, while

Y is the object set with decision attribute satisfying

formula B.

Def. 6 Given a decision table S=<U, R, V, f>, P R is

an attribute set, U/IND(P)={Xi, 1 i n}, we define the

entropy of P as
n

i i

i=1

H(P)=- p(X)log(p(X)) , where,

p(Xi)=|Xi|/|U|.

 Def. 7 The conditional entropy of an attribute set

Q R (U/IND(Q)={Y1,Y2, ,Ym}) with reference to

another attribute set P R (U/IND(P)={X1,X2, ,Xn})

is
n m

i j i j i

i=1 j=1

H(Q|P)=- p(X) p(Y|X)log(p(Y|X)) , where,

p(Yj|Xi)=|Yj Xi|/|Xi|, 1 i n, 1 j m.

Def. 8 A rule tree [6] is defined as follows:

(1) A rule tree is composed of one root node, some leaf

nodes and some internal nodes.

(2) The root node represents the whole rule set.

(3) Each path from the root node to a leaf node

represents a rule.

(4) Each internal node represents an attribute testing. A

branch of rule tree represents each attribute class, and a

new child node is created from each branch.

Def. 9 A collection consisting of some rule trees is

called a rule tree set.

3. MRT algorithm

3.1 MRT algorithm description

The main idea of MRT algorithm is as follows.

Firstly, a condition attribute with the minimal

condition entropy with reference to the decision classes

is chosen from the original decision table.

Secondly, the chosen condition attribute is used to

divide the original decision table into different classes.

Each class is further processed in the following way. If

its certainty factor with some decision class is 1, a new

child node of current node is created and inserted into

the rule tree. If its certainty factor is bigger than or

equal to the predefined threshold, a new child node of

current node is created and inserted into the internal

node queue.

Thirdly, the above two steps are repeated until the

internal node queue becomes NULL. The whole rule

tree is completely built and added into the rule tree set.

At last, the corresponding condition attribute of the

root node of the previous rule tree is deleted from the

original decision table, the above three steps are done

until the original decision table is empty. Consequently,

the rule tree set is generated.

For the convenience of illustrating MRT algorithm,

the class CTreeNode is firstly defined, which means a

node of rule tree, contains a decision table and other

memberships.

Class CtreeNode

{ Table; //A decision table

NodeID; //Node’s ID

The 2nd Workshop on Web-based Support Systems 2004 14

ParentID; //Parent node’s ID

 IsLeafNode; //TRUE for leaf node, while

FALSE for internal node

};

The other variables needed in describing MRT

algorithm are illustrated in Table 1.

Table 1 Variables and their meanings

Variable Meaning

RootNode The root node of a rule tree

CurrentNode Current node

ChildNode The child node of the current

node

InternalNodeQueue An internal node queue with

some internal nodes

Tree A rule tree

ListTree A rule tree set with some rule

trees

NodeNumber The sequence number of node

in a rule tree.

Then, based on the above definitions, MRT

algorithm is given in Algorithm 1.

Algorithm 1: MRT algorithm

Input: Original decision table and a predefined

threshold

Output: Rule tree set

Step 1: Initialize InternalNodeQueue=NULL,

Tree=NULL, ListTree=NULL, NodeNumber=0.

Step 2: If the original decision table is empty, then go

to Step 7, else continue.

Step 3: Initialize RootNode and insert it into

InternalNodeQueue, where,

RootNode.Table is set to be the original decision

table.

RootNode.ParentID=-1;

RootNode.NodeID=0;

RootNode.IsLeafNode=FALSE.

Step 4: Repeat step 4.1 and 4.2 until

InternalNodeQueue is NULL.

Step 4.1: Pop the first node from

InternalNodeQueue and set it to be CurrentNode.

Step 4.2: Choose a condition attribute (Ci) with

the minimal condition entropy with reference to

the decision classes from CurrentNode.Table.

Step 4.3: According to the chosen condition

attribute (Ci), divide the decision table of the

current node into classes

{Ek|Ek CurrentNode.Table|IND(Ci)}, where, k=1,

2, …, m, and m=|CurrentNode.Table | IND(Ci)|.

for k=1 to m

{

If(
jX CurrentNode.Table|IND(D)

(CF(|Ek Xj|/|Ek|)==1)),

then create a new child node ChildNode and

insert it into Tree, where,

ChildNode.Table is set to be NULL for leaf

node.

ChildNode.NodeID=++NodeNumber;

ChildNode.ParentID=CurrentNode.NodeID;

ChildNode. IsLeafNode=TURE.// Leaf node.

If(the predefined threshold

jX CurrentNode.Table|IND(D)
Max {CF(|Ek Xj|/|Ek|)}<1),

create a new child node ChildNode and insert it

into InternalNodeQueue, where,

ChildNode.Table is set to be a decision table

containing those records of Ek in the current

node’ table except the column of the condition

attribute Ci.

ChildNode.NodeID=++NodeNumber;

ChildNode.ParentID=CurrentNode.NodeID;

ChildNode. IsLeafNode=FALSE.//Internal node.

}

Step 4.4: Release the decision table of the current

node, and insert CurrentNode into Tree.

Step 5: Insert Tree into ListTree, and Tree=NULL,

NodeNumber=0.

Step 6: Delete the corresponding condition attribute of

the root node of the previous rule tree from the original

decision table, and go to Step 2.

Step 7: Output ListTree and stop.

3.2 An example to illustrate MRT algorithm

Table 2 is an inconsistent decision table used in

several papers [2,3,4]. It contains three condition

The 2nd Workshop on Web-based Support Systems 2004 15

attributes, A, B, C, a decision attribute D and 100

records. To illustrate the MRT algorithm more clearly,

Table 2 is used as an example to explain the rule

generation process of the MRT algorithm here.

Table 2 An inconsistent decision table

U A B C D

E1 1 2 3 1(50x)

E2 1 2 1 2(5x)

E3 2 2 3 2(30x)

E4 2 3 3 2(10x)

E5 3 5 1 3(4x)

E6 3 5 1 4(1x)

Suppose the predefined threshold is 0.6. The rule

tree generation process of MRT algorithm for Table 2

is given as follows.

(1) From Table 2, choose condition attribute A, whose

condition entropy with reference to the decision classes

is minimal. According to A, Table 2 is divided into

three condition classes U|IND(A)={{E1, E2}, {E3, E4},

{E5, E6}}. According to the decision attribute D, Table

2 is divided into four decision classes

U|IND(D)={{E1},{E2, E3, E4}, {E5}, {E6}}.

(2) Each condition class is processed in different ways

according to the step 4.3 of MRT algorithm.

Because CF({E1, E2} {E1}) = |E1 (E1 E2)|/|

E1 E2)|=0.91, create a new child node (A=1) and

insert it into the internal node queue.

Because CF({E3, E4} {E2, E3, E4})

=|(E3 E4) (E2 E3 E4)|/|(E3 E4)|=1, create a new

child node (A=2, D=2) and insert it into the rule tree.

This new child node is a leaf node.

Because CF({E5, E6} {E5}) =|(E5 E6)

E5|/|(E5 E6)|=0.8, create a new child node (A=3)

and insert it into the internal node queue.

The first rule tree gotten at this step is shown in

Figure 1.

(3) Pop the first node from the internal node queue and

set it to be the current node. Its decision table is shown

in Table 3.

Table 3 A part of Table 2

U’ B C D

E1’ 2 3 1(50x)

E2’ 2 1 2(5x)

In Table 3, the condition attribute C is the one with

minimal condition entropy with reference to the

decision classes. It is used to divide Table 3 into two

condition classes U’|IND(C)={{E1’},{E2’}}. According

to the decision attribute D, Table 3 is divided into two

decision classes U’|IND(D)={{E1’}, {E2’}}. Each

condition class is processed in different ways

according to the step 4.3 of MRT algorithm.

Because CF({ E1’} { E1’}) = | E1’ E1’|/| E1’|=1,

create a new child node (C=3, D=1) and insert it into

the rule tree.

Because CF({E2’} {E2’}) = |E2’ E2’|/| E2’|= 1,

create a new child node (C=1, D=2) and insert it into

the rule tree.

The first rule tree gotten at this step is shown in

Figure 2.

(4) Repeat step (3) until the internal node queue

becomes NULL. The first rule tree is completely built

and shown in Figure 3.

(5) Delete the corresponding condition attribute (A) of

Fig. 1 First rule tree

Fig. 2 First rule tree

Fig. 3 First rule tree

The 2nd Workshop on Web-based Support Systems 2004 16

the root node of the first rule tree from Table 2, and do

step (1), (2), (3) and (4) until Table 2 is NULL. The

rule tree set gotten at this step is shown in Figure 4.

(6) Generate the following rules from Fig. 4. Note that

the parameter behind “ | ” is the certainty factor of each

rule.

R1: A1C3 D1 |0.91 R4: A3B5C1 D3 |0.80

R2: A1C1 D2 |0.91 R5: B5C1 D3 |0.80

R3: A2 D2|1 R6: B3 D2 |1

4. Space and time complexities of MRT and DDRG

algorithm

At first, suppose the number of record of a decision

table is n, and the number of condition attribute is m. In

a rule tree, the maximal number of leaf node is n, the

maximal depth of the path from the root node to a leaf

node is m. Thus, the maximal number of node is mn.

4.1 Time complexity of MRT algorithm

Suppose the maximal number of condition class is b,

therefore, the time for computing the condition entropy

of one condition class with reference to the decision

classes is O(bmn), and the time complexity for

generating a rule tree is O(bmn*mn). MRT algorithm

generates no more than m rule trees. So, the time

complexity of MRT algorithm at worst case is

O(bm3n2).

4.2 Time complexity of DDRG algorithm

If a decision table has only one core attribute, the

time complexity for generating rules with DDRG

algorithm is O(mn2). If the original decision table has

m attribute cores, the maximal number of subtables

projected from the original decision table is 2m-1. So,

its time complexity at worst case is O(2m mn2).

4.3 Space complexity of MRT algorithm

Suppose the maximal number of record in a

condition class is q, therefore, the memory for storing

the internal node is O(qm), and the memory for a rule

tree is O(qm*mn). MRT algorithm generates no more

than m rule trees. So, the space complexity of MRT

algorithm at worst case is O(qm3n).

4.4 Space complexity of DDRG algorithm

If the original decision table has m core attributes,

the maximal number of subtables projected from the

original decision table is 2m-1, and the memory for

storing each subtable is O(mn). So, the space

complexity of DDRG algorithm at worst case is O(2m

mn2).

Thus, we can find that the space and time

complexities of MRT algorithm are better than those of

DDRG algorithm.

5. Simulation experiments

Our simulation experiments are done on a PC with

2.4GHZ CPU, 512MB memory. DDRG algorithm in

RIDAS system is used for the comparison with MRT

algorithm of this paper [8].

The simulation experiments have been conducted on

9 data sets from the UCI Machine Learning Repository

[9]. At first, 50 percent of each data set is used to

generate rules with these two algorithms separately.

Then, the other 50 percent of each data set is used to

test the recognition rate of rules by these two

algorithms. In addition, the objects’ combination based

simple computation of attribute core algorithm is used

to calculate attribute cores of each data set [10].

Simulation experiment results are shown in Table 4.

The time cost for generating rules and recognition rate

of these rules are compared in it.

Simulation experiment results show that when the

number of records and core attributes of an

inconsistent decision table are small, such as

Experiments 1 and 2, the performance of MRT and

DDRG algorithms are almost the same. In Experiments

3 to 9, we can find that MRT algorithm is more

effective and valid than DDRG algorithm. Especially,

in Experiments 6 to 9, DDRG algorithm fails to

generate rules due to the lack of memory when the

number of records and core attributes are high. It just

proves that the cost for generating rules of DDRG

algorithm is greatly affected by the number of records

and core attributes of an inconsistent decision table.

Fig. 4 Rule tree set

The 2nd Workshop on Web-based Support Systems 2004 17

6. Conclusion

MRT algorithm can generate multiple rule trees

from inconsistent decision tables. On one hand, the

certainty factor of each rule is higher than or equal to a

predefined threshold. On the other hand, in the rule

tree generation process of MRT algorithm, for creating

an internal node of rule tree, only a part of an

inconsistent decision table needs to be kept in memory

and computed. It reduces the depth and width of rule

tree with the predefined threshold. Therefore, MRT

algorithm can quickly generates rules from an

inconsistent decision table. Compared with DDRG

algorithm, MRT algorithm needs less memory and

time for generating rules. By our simulation

experiments, MRT algorithm is proved to be more

effective and valid than DDRG algorithm. As future

research task, we will study various measures for

selecting condition attribute to improve this algorithm,

and further use MRT algorithm to solve the problem of

generating knowledge from huge databases containing

inconsistent information for web based intelligent

decision support systems.

Table 4 Simulation experiment results

MRT algorithm DDRG algorithm

Data set

Number

of

Record

Number

of

Attribute

Number

of Core

attribute
Time

(S)

Recognition

Rate (%)

Time

(S)

Recognitio

n Rate (%)

1 HAYES_BOTH 102 5 4 0.016 98.07 0.625 98.07

2 IRIS 150 5 3 0.016 98.68 <0.001 98.68

3 LIVER_DISDORE 1260 7 5 0.422 99.68 1431.812 100

4
AUSTRALIAN

CREDIT APPROVA
345 15 5 0.375 100 57.437 100

5 WINE 148 14 3 0.250 100 0.359 100

6 POST_OPERATIVE 90 9 8 0.051 100 * *

7 ZOO 71 16 8 0.045 100 * *

8 BACT_T 6000 155 20 1009.813 44.13 * *

9
LETTER_RECOGNI

TION
20000 17 15 84.469 92.62 * *

Note: “*” means that DDRG algorithm cannot generate rules from data set due to the lack of memory.

Acknowledgements

This paper is supported by National Natural Science

Foundation of P.R. China (No.60373111), PD Program

of P.R. China, Application Science Foundation of

Chongqing, and Science & Technology Research

Program of the Municipal Education Committee of

Chongqing of China.

References

[1] Pawlak Z. Rough set. International Journal of

Computer and Information Sciences, 1982,11(5):341-

356.

[2] Mollestad T. Skowron A. A rough set framework

for data mining of propositional default rules. In: Ras Z.

W. Michalewicz M. eds. Foundations of Intelligent

Systems·9th International Symposium, ISMIS'96,

Berlin: Springer-Verlag, 1996. 448-457.

[3] G.Y. Wang, Y. Wu, F. Liu, Generating Rules and

Reasoning under Inconsistencies, 2000 IEEE

International Conference on Industrial Electronics,

Control and Instrumentation, Japan, 2536-2541.

[4] Wang GY, He X. A Self-learning Model under

Uncertain Condition. Journal of Software, 2003,

14(6):1096-1102.

[5] Quinlan JR. Induction of decision trees. Machine

Learning, 1986, 1(1), 81-106.

[6] Shi ZZ. Knowledge Discovery. Tsinghua

University Press, 2003 (in Chinese).

[7] Wang GY. Rough set theory and knowledge

acquisition. Xi’an: Xi’an Jiaotong University Press,

2001 (in Chinese).

[8] Wang GY, Zheng Z, Zhang Y. RIDAS-A Rough

Set Based Intelligent Data Analysis System,

Proceedings of the First International Conference on

Machine Learning and Cybernetics, pp.646~649, 2002.

The 2nd Workshop on Web-based Support Systems 2004 18

[9] http://www.ics.uci.edu/~melean/MLRepository.htm

[10] Zheng Z, Wang GY, Wu Y. Objects’ Combination

Based Simple Computation of Attribute

Core.Proceedings of the 2002 IEEE International

Symposium on Intelligent Control, Vancouver,

pp.514~519,2002.

The 2nd Workshop on Web-based Support Systems 2004 19

