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Abstract 

It is one of the key problems for web based decision 

support systems to generate knowledge from huge 

database containing inconsistent information. In this 

paper, a learning algorithm for multiple rule trees 

(MRT) is developed, which is based on ID3 algorithm 

and rough set theory. MRT algorithm can quickly 

generate decision rules from inconsistent decision 

information tables. Both space and time complexities 

of MRT algorithm are just polynomial, while those of 

Skowron’s default decision rule generation algorithm 

are exponential. With the increasing of the number of 

records and core attributes of an information table, 

Skowron’s default algorithm needs more memory and 

time for generating rules than MRT algorithm. In some 

cases, Skowron’s default decision rule generation 

algorithm could not generate rules due to the lack of 

memory. It’s proved by our simulation experiment 

results that MRT algorithm is effective and valid. 

1. Introduction 

Rough set theory has been applied successfully in 

such fields as machine learning, data mining and etc., 

since Prof. Z. Pawlak developed it in 1982 [1]. 

Generating rules from a decision table is one of the 

major research topics of rough set theory. Reduct is an 

important contribution of rough set theory for data 

mining, and its results are in accordance with rules. In 

uncertain or inconsistent cases, the default decision 

rule generation algorithm developed by Prof. Skowron 

(DDRG) can generate all rules, certainty factors of 

which are greater than a predefined threshold c [2]. At 

the same time, conflicts between these rules are solved 

by use of some block rules. It is proved that rules 

generated by this algorithm have high flexibility in 

processing unseen data. Based on DDRG algorithm, 

Prof. Wang developed a self-learning model under 

uncertain condition [3,4]. This model can automatically 

get the threshold c to generate rules without any prior 

domain knowledge. Simulation experiment results 

demonstrate that this model could generate a rather 

smaller number of rules than DDRG algorithm, and has 

high correct recognition rate for unseen data. 

During the rule generation process of DDRG 

algorithm an inconsistent decision table will be 

projected onto many subtables by dropping one of its 

core attribute. Then DDRG generates rules with 

discernibility matrix from each subtable repeatedly. 

Thus, the cost for generating rules of this algorithm is 

determined by the number of records and core 

attributes of each subtable. It is illustrated in section 4

that its space and time complexities are exponential. 

When the number of records and core attributes of an 

inconsistent decision table are small, DDRG algorithm 

can quickly generate rules from it. However, with the 

increasing of the number of records and core attributes, 

it needs much more memory and time for generating 

rules, and even fails to generate rules due to the lack of 

memory.

ID3 is a classical machine-learning algorithm for 

generating rules from decision tables [5]. A typical tree 

generation process of ID3 algorithm is as follows. 

Firstly, a condition attribute with the minimal 

information entropy is chosen from a decision table. 

Then this attribute is used to divide the decision table 

into different classes. The above two steps are repeated 

until each record of the decision table only belongs to 

one of these classes. Unfortunately, ID3 algorithm can 

build a decision tree for a consistent decision table only. 

It cannot process an inconsistent decision table. 

To solve the above problems, a learning algorithm 

for multiple rule trees (MRT) based on ID3 algorithm 

and rough set theory is proposed in this paper. MRT 

algorithm can generate multiple rule trees from an 

inconsistent decision table, and the certainty factor of 

each rule is greater than or equal to a predefined 

threshold. In the rule tree generation process, MRT 

algorithm computes and stores only a part of the 

original decision table to create an internal node of rule 

tree. With the predefined threshold, MRT algorithm 

judges whether an internal node of rule tree has a 

branch of child node or not. Thus, the depth and width 
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of rule tree is limited. Its space and time complexities 

are polynomial. Compared with DDRG algorithm, 

MRT algorithm generates decision rules from an 

inconsistent decision table at less memory and time 

cost. In addition, MRT algorithm generates multiple 

rule trees to overcome a drawback of ID3 algorithm 

that rules resulted from it centralize on a few condition 

attributes. MRT algorithm could be further used to deal 

with the problem of generating knowledge from huge 

databases containing inconsistent information for web 

based intelligent decision support systems. 

In Section 2, some basic concepts of rough set 

theory and rule tree are discussed. MRT algorithm is 

presented in detail in Section 3. Its space and time 

complexities are analyzed and compared with DDRG 

algorithm in Section 4. In Section 5, some simulation 

experiments are done to test our results. In Section 6, 

we draw a conclusion for this paper.

2. Basic concepts 

For the convenience of later discussion, some related 

concepts about rough set theory and rule tree are 

introduced here. 

Def. 1 A decision table is defined as S=<U, R, V, f >, 

where U is a finite set of objects and R=C D is a finite 

set of attributes. C is the condition attribute set and D is 

the decision attribute set, V= Va is a union of the 

domain of each attribute of R. Each attribute has an 

information function f: U×R V.

Def. 2 Given a decision table S=<U, R, V, f>, C and 

D are its condition attribute set and decision attribute 

set separately. Condition class Ei is defined as 

Ei U/IND(C), where, i=1,…,m, and m=|U/IND(C)|. 

Decision class Xj is defined as Xj U/IND(D), where, 

j=1,…,n, and n=|U/IND(D)|. 

Def. 3 Given a decision table S=<U, R, V, f>, C is 

its condition attribute set. A condition class Ei is called 

consistent if and only if its all objects have the same 

decision value. Otherwise, it is called inconsistent. 

Def. 4 A decision table S is called certain if and only 

if its condition classes are all consistent. Otherwise, it 

is an uncertain one. 

Def. 5 Given a decision table S=<U, R, V, f>, where 

R=C D, C is its condition attribute set and D={d} is 

its decision attribute set. The certainty factor of a 

decision rule A B, CF(A B), is defined as 

CF(A B)=|X Y|/|X|, where X is the object set with 

condition attribute values satisfying formula A, while 

Y is the object set with decision attribute satisfying 

formula B. 

Def. 6 Given a decision table S=<U, R, V, f>, P R is 

an attribute set, U/IND(P)={Xi, 1 i n}, we define the 

entropy of P as 
n

i i

i=1

H(P)=- p(X )log(p(X )) , where, 

p(Xi)=|Xi|/|U|.  

   Def. 7 The conditional entropy of an attribute set 

Q R (U/IND(Q)={Y1,Y2, ,Ym}) with reference to 

another attribute set P R (U/IND(P)={X1,X2, ,Xn}) 

is
n m

i j i j i

i=1 j=1

H(Q|P)=- p(X ) p(Y|X )log(p(Y|X )) , where, 

p(Yj|Xi)=|Yj Xi|/|Xi|, 1 i n, 1 j m. 

Def. 8 A rule tree [6] is defined as follows: 

(1) A rule tree is composed of one root node, some leaf 

nodes and some internal nodes. 

(2) The root node represents the whole rule set. 

(3) Each path from the root node to a leaf node 

represents a rule. 

(4) Each internal node represents an attribute testing. A 

branch of rule tree represents each attribute class, and a 

new child node is created from each branch. 

Def. 9 A collection consisting of some rule trees is 

called a rule tree set. 

3. MRT algorithm 

3.1 MRT algorithm description

The main idea of MRT algorithm is as follows.  

Firstly, a condition attribute with the minimal 

condition entropy with reference to the decision classes 

is chosen from the original decision table. 

Secondly, the chosen condition attribute is used to 

divide the original decision table into different classes. 

Each class is further processed in the following way. If 

its certainty factor with some decision class is 1, a new 

child node of current node is created and inserted into 

the rule tree. If its certainty factor is bigger than or 

equal to the predefined threshold, a new child node of 

current node is created and inserted into the internal 

node queue. 

Thirdly, the above two steps are repeated until the 

internal node queue becomes NULL. The whole rule 

tree is completely built and added into the rule tree set. 

At last, the corresponding condition attribute of the 

root node of the previous rule tree is deleted from the 

original decision table, the above three steps are done 

until the original decision table is empty. Consequently, 

the rule tree set is generated. 

For the convenience of illustrating MRT algorithm, 

the class CTreeNode is firstly defined, which means a 

node of rule tree, contains a decision table and other 

memberships. 

Class CtreeNode

{  Table; //A decision table 

NodeID; //Node’s ID 
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ParentID; //Parent node’s ID 

     IsLeafNode; //TRUE for leaf node, while 

FALSE for internal node 

}; 

The other variables needed in describing MRT 

algorithm are illustrated in Table 1. 

Table 1 Variables and their meanings 

Variable  Meaning 

RootNode The root node of a rule tree 

CurrentNode Current node 

ChildNode The child node of the current 

node 

InternalNodeQueue An internal node queue with 

some internal nodes 

Tree A rule tree 

ListTree A rule tree set with some rule 

trees 

NodeNumber The sequence number of node 

in a rule tree. 

Then, based on the above definitions, MRT 

algorithm is given in Algorithm 1. 

Algorithm 1: MRT algorithm 

Input: Original decision table and a predefined 

threshold 

Output: Rule tree set 

Step 1: Initialize InternalNodeQueue=NULL, 

Tree=NULL, ListTree=NULL, NodeNumber=0. 

Step 2: If the original decision table is empty, then go 

to Step 7, else continue. 

Step 3: Initialize RootNode and insert it into 

InternalNodeQueue, where,  

RootNode.Table is set to be the original decision 

table.

RootNode.ParentID=-1; 

RootNode.NodeID=0; 

RootNode.IsLeafNode=FALSE. 

Step 4: Repeat step 4.1 and 4.2 until 

InternalNodeQueue is NULL. 

Step 4.1: Pop the first node from 

InternalNodeQueue and set it to be CurrentNode.

Step 4.2: Choose a condition attribute (Ci) with 

the minimal condition entropy with reference to 

the decision classes from CurrentNode.Table.

Step 4.3: According to the chosen condition 

attribute (Ci), divide the decision table of the 

current node into classes 

{Ek|Ek CurrentNode.Table|IND(Ci)}, where, k=1,

2, …, m, and m=|CurrentNode.Table | IND(Ci)|.  

for k=1 to m

{

If(
jX CurrentNode.Table|IND(D)

(CF(|Ek Xj|/|Ek|)==1)), 

then create a new child node ChildNode and 

insert it into Tree, where, 

ChildNode.Table is set to be NULL for leaf 

node.  

ChildNode.NodeID=++NodeNumber;

ChildNode.ParentID=CurrentNode.NodeID;

ChildNode. IsLeafNode=TURE.// Leaf node. 

If(the predefined threshold 

jX CurrentNode.Table|IND(D)
Max {CF(|Ek Xj|/|Ek|)}<1), 

create a new child node ChildNode and insert it 

into InternalNodeQueue, where, 

ChildNode.Table is set to be a decision table 

containing those records of Ek in the current 

node’ table except the column of the condition 

attribute Ci.

ChildNode.NodeID=++NodeNumber;

ChildNode.ParentID=CurrentNode.NodeID;

ChildNode. IsLeafNode=FALSE.//Internal node.

}

Step 4.4: Release the decision table of the current 

node, and insert CurrentNode into Tree.

Step 5: Insert Tree into ListTree, and Tree=NULL, 

NodeNumber=0. 

Step 6: Delete the corresponding condition attribute of 

the root node of the previous rule tree from the original 

decision table, and go to Step 2. 

Step 7: Output ListTree and stop. 

3.2 An example to illustrate MRT algorithm 

Table 2 is an inconsistent decision table used in 

several papers [2,3,4]. It contains three condition 
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attributes, A, B, C, a decision attribute D and 100 

records. To illustrate the MRT algorithm more clearly, 

Table 2 is used as an example to explain the rule 

generation process of the MRT algorithm here. 

Table 2 An inconsistent decision table 

U A B C D 

E1 1 2 3 1(50x) 

E2 1 2 1 2(5x) 

E3 2 2 3 2(30x) 

E4 2 3 3 2(10x) 

E5 3 5 1 3(4x) 

E6 3 5 1 4(1x) 

Suppose the predefined threshold is 0.6. The rule 

tree generation process of MRT algorithm for Table 2 

is given as follows. 

(1) From Table 2, choose condition attribute A, whose 

condition entropy with reference to the decision classes 

is minimal. According to A, Table 2 is divided into 

three condition classes U|IND(A)={{E1, E2}, {E3, E4},

{E5, E6}}. According to the decision attribute D, Table 

2 is divided into four decision classes 

U|IND(D)={{E1},{E2, E3, E4}, {E5}, {E6}}.

(2) Each condition class is processed in different ways 

according to the step 4.3 of MRT algorithm. 

Because CF({E1, E2} {E1}) = |E1 (E1 E2)|/| 

E1 E2)|=0.91, create a new child node ( A=1) and 

insert it into the internal node queue.  

Because CF({E3, E4} {E2, E3, E4}) 

=|(E3 E4) (E2 E3 E4)|/|(E3 E4)|=1, create a new 

child node (A=2, D=2) and insert it into the rule tree. 

This new child node is a leaf node. 

Because CF({E5, E6} {E5}) =|(E5 E6) 

E5|/|(E5 E6)|=0.8, create a new child node (A=3)

and insert it into the internal node queue.  

The first rule tree gotten at this step is shown in 

Figure 1. 

(3) Pop the first node from the internal node queue and 

set it to be the current node. Its decision table is shown 

in Table 3. 

Table 3 A part of Table 2 

U’ B C D 

E1’ 2 3 1(50x) 

E2’ 2 1 2(5x) 

In Table 3, the condition attribute C is the one with 

minimal condition entropy with reference to the 

decision classes. It is used to divide Table 3 into two 

condition classes U’|IND(C)={{E1’},{E2’}}. According 

to the decision attribute D, Table 3 is divided into two 

decision classes U’|IND(D)={{E1’}, {E2’}}. Each 

condition class is processed in different ways 

according to the step 4.3 of MRT algorithm. 

Because CF({ E1’} { E1’}) = | E1’ E1’|/| E1’|=1, 

create a new child node (C=3, D=1) and insert it into 

the rule tree. 

Because CF({E2’} {E2’}) = |E2’ E2’|/| E2’|= 1, 

create a new child node (C=1, D=2) and insert it into 

the rule tree. 

The first rule tree gotten at this step is shown in 

Figure 2. 

(4) Repeat step (3) until the internal node queue 

becomes NULL. The first rule tree is completely built 

and shown in Figure 3. 

(5) Delete the corresponding condition attribute (A) of 

Fig. 1 First rule tree

Fig. 2    First rule tree

Fig. 3 First rule tree
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the root node of the first rule tree from Table 2, and do 

step (1), (2), (3) and (4) until Table 2 is NULL. The 

rule tree set gotten at this step is shown in Figure 4. 

(6) Generate the following rules from Fig. 4. Note that 

the parameter behind “ | ” is the certainty factor of each 

rule. 

R1: A1C3 D1 |0.91 R4: A3B5C1 D3 |0.80

R2: A1C1 D2 |0.91 R5: B5C1 D3 |0.80 

R3: A2 D2|1 R6: B3 D2 |1 

4. Space and time complexities of MRT and DDRG 

algorithm 

At first, suppose the number of record of a decision 

table is n, and the number of condition attribute is m. In 

a rule tree, the maximal number of leaf node is n, the 

maximal depth of the path from the root node to a leaf 

node is m. Thus, the maximal number of node is mn.

4.1 Time complexity of MRT algorithm 

Suppose the maximal number of condition class is b,

therefore, the time for computing the condition entropy 

of one condition class with reference to the decision 

classes is O(bmn), and the time complexity for 

generating a rule tree is O(bmn*mn). MRT algorithm 

generates no more than m rule trees. So, the time 

complexity of MRT algorithm at worst case is 

O(bm3n2).

4.2 Time complexity of DDRG algorithm 

If a decision table has only one core attribute, the 

time complexity for generating rules with DDRG 

algorithm is O(mn2). If the original decision table has 

m attribute cores, the maximal number of subtables 

projected from the original decision table is 2m-1. So, 

its time complexity at worst case is O(2m mn2).

4.3 Space complexity of MRT algorithm 

Suppose the maximal number of record in a 

condition class is q, therefore, the memory for storing 

the internal node is O(qm), and the memory for a rule 

tree is O(qm*mn). MRT algorithm generates no more 

than m rule trees. So, the space complexity of MRT 

algorithm at worst case is O(qm3n).

4.4 Space complexity of DDRG algorithm 

If the original decision table has m core attributes, 

the maximal number of subtables projected from the 

original decision table is 2m-1, and the memory for 

storing each subtable is O(mn). So, the space 

complexity of DDRG algorithm at worst case is O(2m

mn2).

Thus, we can find that the space and time 

complexities of MRT algorithm are better than those of 

DDRG algorithm. 

5. Simulation experiments 

Our simulation experiments are done on a PC with 

2.4GHZ CPU, 512MB memory. DDRG algorithm in 

RIDAS system is used for the comparison with MRT 

algorithm of this paper [8]. 

The simulation experiments have been conducted on 

9 data sets from the UCI Machine Learning Repository 

[9]. At first, 50 percent of each data set is used to 

generate rules with these two algorithms separately. 

Then, the other 50 percent of each data set is used to 

test the recognition rate of rules by these two 

algorithms. In addition, the objects’ combination based 

simple computation of attribute core algorithm is used 

to calculate attribute cores of each data set [10].  

Simulation experiment results are shown in Table 4. 

The time cost for generating rules and recognition rate 

of these rules are compared in it.  

Simulation experiment results show that when the 

number of records and core attributes of an 

inconsistent decision table are small, such as 

Experiments 1 and 2, the performance of MRT and 

DDRG algorithms are almost the same. In Experiments 

3 to 9, we can find that MRT algorithm is more 

effective and valid than DDRG algorithm. Especially, 

in Experiments 6 to 9, DDRG algorithm fails to 

generate rules due to the lack of memory when the 

number of records and core attributes are high. It just 

proves that the cost for generating rules of DDRG 

algorithm is greatly affected by the number of records 

and core attributes of an inconsistent decision table. 

Fig. 4 Rule tree set 
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6. Conclusion 

MRT algorithm can generate multiple rule trees 

from inconsistent decision tables. On one hand, the 

certainty factor of each rule is higher than or equal to a 

predefined threshold. On the other hand, in the rule 

tree generation process of MRT algorithm, for creating 

an internal node of rule tree, only a part of an 

inconsistent decision table needs to be kept in memory 

and computed. It reduces the depth and width of rule 

tree with the predefined threshold. Therefore, MRT 

algorithm can quickly generates rules from an 

inconsistent decision table. Compared with DDRG 

algorithm, MRT algorithm needs less memory and 

time for generating rules. By our simulation 

experiments, MRT algorithm is proved to be more 

effective and valid than DDRG algorithm. As future 

research task, we will study various measures for 

selecting condition attribute to improve this algorithm, 

and further use MRT algorithm to solve the problem of 

generating knowledge from huge databases containing 

inconsistent information for web based intelligent 

decision support systems. 

Table 4 Simulation experiment results 

MRT algorithm DDRG algorithm 

Data set 

Number 

of 

Record 

Number 

of 

Attribute

Number 

of Core 

attribute
Time 

(S) 

Recognition 

Rate (%) 

Time 

(S)

Recognitio

n Rate (%)

1 HAYES_BOTH 102 5 4 0.016 98.07 0.625 98.07 

2 IRIS 150 5 3 0.016 98.68 <0.001 98.68 

3 LIVER_DISDORE 1260 7 5 0.422 99.68 1431.812 100 

4
AUSTRALIAN 

CREDIT APPROVA 
345 15 5 0.375 100 57.437 100 

5 WINE 148 14 3 0.250 100 0.359 100 

6 POST_OPERATIVE 90 9 8 0.051 100 * * 

7 ZOO 71 16 8 0.045 100 * * 

8 BACT_T 6000 155 20 1009.813 44.13 * * 

9
LETTER_RECOGNI

TION 
20000 17 15 84.469 92.62 * * 

Note: “*” means that DDRG algorithm cannot generate rules from data set due to the lack of memory. 
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