
Experiments in Web Page Classification for Semantic Web

Asad Satti, Nick Cercone, Vlado Kešelj

Faculty of Computer Science, Dalhousie University
E-mail: {rashid,nick,vlado}@cs.dal.ca

Abstract

We address the problem of web page classification within
the framework of automatic annotation for Semantic Web.
The performance of several classification algorithms is ex-
plored on the Four Universities dataset using page text
and link information, with a limited-size feature set. Sev-
eral well-known classification algorithms are evaluated on
the task of web-page classification using the text of web
pages. When compared to the methods that use link in-
formation, the text-based method shows surprisingly good
performance, even with a feature set of limited size.

1 Introduction

The Semantic Web (SW) research area is concerned
with transforming information available on the World Wide
Web into knowledge by adding semantic structure to it.
Embedded knowledge will help achieve efficient informa-
tion retrieval, web-based question-answering, and intelli-
gent agent-based applications. There are numerous and
obvious benefits of having the web content enriched with
semantic annotation; however, there are as many difficult
challenges that need to be solved in order to pave the way
for SW. One of them is defining conventions and ontolo-
gies for SW annotation, and another one is involved with
the question of who will do the annotation: the web-page
owner or an automatic tool. We advocate the use of auto-
matic semantic annotation tools. There are several strong
arguments why this is a preferred option: the first one is
that the annotation requires significant and hardly justifi-
able effort on the part of the web-page owner so most of
the owners will avoid it, and the second one is that an au-
tomatic annotation method will produce more uniform and
consistent annotation.

Since the web encompasses many different domains it
would be very difficult to try to annotate the whole web
at once. We suggest breaking up the annotation of the en-
tire web into the annotation of subsets representing different
domains. After some evolution of the separate domain an-

notations, the problem of annotating the whole web can be
tackled more easily. Because of this, the primary task in au-
tomatic annotation for SW is classification of web objects,
typically pages, into domains. These domains are defined
by ontologies. Operationally ontology can be described
as the conceptual hierarchical organization/classification of
concepts (classes). Since the web content and structure for
a domain is composed by human beings under the implicit
influence of their domain ontology e.g., yahoo directory, we
believe that using domain ontology is the right direction. In
any particular domain, concepts at the upper levels in the
ontology hierarchy are more generic ones and many people
agree on that with slightly varying terminology, but lower
level concepts might be quite different. It is difficult to en-
sure that users annotate their web pages without bias.

To first step is to define the domain ontology using
domain concepts (classes) and their hierarchical organiza-
tion, their attributes, relations between the instances of two
classes in the ontology, and inferences, if there are any. Se-
mantic annotation of the web pages starts with the classifi-
cation of web pages into ontology classes followed by ex-
traction of attributes, and extraction of ontological relations
between pages. For the World Wide Web and, in general,
for any system with a large and growing number of entities
classification becomes necessary for better understanding of
the system.

2 Related Work

2.1 Classifiers

For our experiments we use the classifiers implemented
in the WEKA package [8], which is an open source Java
package containing various learning algorithms for classifi-
cation, clustering, and association.

We apply the following classifiers: IBk, Naı̈ve Bayes,
J48, RIPPER, and PART. IBk is an implementation of the
k-Nearest Neighbour (k-NN) method and finds the k most
similar documents to the test document [1]. It then either
assigns the same class to the test document that labels most
of these k documents or class with maximum score after

J.T. Yao, V.V. Raghvan, G.Y. Wang (Eds.): WSS'04, pp. 137-141, 2004.

The 2nd Workshop on Web-based Support Systems 2004 137



weighted count of classes. For our experiment the value of
k is one. The Naı̈ve Bayes method is based on the Bayes’
rule [1]. J48 is a WEKA version of the well-known C4.5
decision tree algorithm. RIPPER (Repeated Incremental
Pruning to Produce Error Reduction) [2] is a propositional
rule learner which is an optimized version of IREP [6].
PART [4] is also a rule learner that combined RIPPER and
C4.5 algorithms, with pruning confidence threshold being
0.25 and minimum number of instances per leaf is 2.

Rule learning systems often scale relatively poorly with
the sample size [2]. RIPPER rule learner was an effort to
achieve efficiency for large noisy datasets and competitive
generalization performance [2]. The core method REP (re-
duced error pruning) used for pruning decision trees can
also be used for rule set pruning. It partitions the train-
ing data into a growing set and pruning set. First, a rule
set is formed that overfits the growing set, then rule set is
pruned using a pruning operator, which produces the great-
est reduction of error on the pruning set from a set of oper-
ators. Pruning is terminated when an increase in the error
on the pruning set is observed. REP for rules usually im-
proves generalization performance on noisy data but it is
computationally expensive. IREP (incremental reduced er-
ror pruning) was proposed by [6]. In this method, instead
of growing the whole rule set first and then pruning it, each
rule is pruned right after it is generated until the point when
accuracy of the rule starts decreasing on the pruning set.
Then pruned rule is added to the rule set and all positive
and negative examples are removed from the training set
(i.e., growing and pruning sets). When accuracy of a pruned
rule drops below that of the empty rule then that rule is ig-
nored and learned rule set is returned. RIPPER is realized
after making three modifications to IREP namely, rule value
metric, stopping condition, and rule set optimization in or-
der to closely approximate reduced error pruning [2].

PART combines RIPPER and C4.5, the two rule learn-
ing paradigms [4]. Both RIPPER and C4.5 perform global
optimization on the set of initially induced rules. Former
does so to increase accuracy and later does to reduce the
large rule set size. PART induces accurate and compact rule
sets without using global optimization. Like RIPPER, it
uses a divide-and-conquer strategy for building a rule i.e.,
it removes instances covered by the rule and continues re-
cursively to create the rules for the remaining instance until
no more instances are left [4]. In order to create each rule,
a pruned decision tree is built from the current set of in-
stances, then the leaf with the largest coverage is added to
the rule set, and the tree is discarded. Algorithm to build
pruned decision tree can be found in [4]. The use of pruned
trees avoids the over-pruning problem in RIPPER.

2.2 Web Data Mining

The Four Universities dataset [7] consists of 8,282 web
pages manually classified in to several classes. The pages
are harvested from four universities, and they are kept in
separate directories [3]. It was hypothesized in [5] that
structural and link information on the web can make the
classification of hypertext pages easier and more reliable
instead of using just the page text.

3 Method

Since the dataset consists of web pages from four univer-
sities, we trained the classifier on three of the universities
and tested it on the fourth university subset. This way, we
avoid bias in evaluation results due to idiosyncrasies of all
pages within one university. The classification evaluation is
performed using 4-fold cross-validation [8], i.e., each time
the training is performed on a different set of three univer-
sity sets and the testing is performed on the remaining uni-
versity set. Additionally, the miscellaneous data set is al-
ways used only in training.

A feature set to represent web pages is collected from
the web page text after removing the HTML tags. The sup-
porting features, such as link structure analysis, text around
in-links and out-links, are not used. The number of features
is restricted to the top 100 features, which are selected af-
ter ranking them with the information gain feature selection
measure.

We test performance of several well-established classifi-
cation methods. Namely, Naı̈ve Bayes, J48 (pruned), RIP-
PER, k-Nearest Neighbour (k-NN), and PART have been
evaluated to see which one achieves the best performance
for the web page classification task.

To observe the class performance, the following standard
evaluation measures are used:

• True Positive Rate (TP Rate), or Recall,

• False Positive Rate (FP Rate),

• Precision, and

• F-Measure.

The measures are defined by the following formulas:

TP Rate =
Correctly classified positives

Total positives

FP Rate =
Incorrectly classified negatives

Total negatives

Precision =
Correctly classified positives

Total predicted positives

F-Measure =
2 · Recall · Precision
Recall + Precision

The 2nd Workshop on Web-based Support Systems 2004 138



In addition to this, we use Percent of correctly classi-
fied and Percent of incorrectly classified instance to observe
overall performance.

4 Evaluation Results

4.1 Dataset

The Four Universities dataset [7] has 8,282 web pages
manually classified into student (1641), faculty (1124), staff
(137) , department (182), course (930), project (504), and
other (3764). Each class of data set contains web pages
from 4 universities Cornell (867), Texas (827), Washington
(1205), Wisconsin (1263), and miscellaneous (i.e., various
other universities) (4120). The web pages for each univer-
sity and miscellaneous are kept separately [3].

4.2 Classification Experiments

The summary of our experimental results is shown in
Figure 1. Rows in the figure correspond to classifiers and
columns show the test sets (i.e., held-out university sets).
Our objective is to be able to classify the web pages from
any new computer science department website using the
learned model from the data set. The Miscellaneous (Misc)
set is included in the training set to capture the different
idiosyncrasies from many universities to improve the pre-
diction accuracy of learners. In the figure, columns cor-
responding to each university show the percentage of in-
stances correctly/incorrectly classified using corresponding
test sets during 4-fold cross-validation and then these results
are averaged in the average column. An experiment was
performed by training on the 4 universities training set and
testing on the Misc set, the results are as good as or better as
compared to 4-fold cross-validation This shows that better
efficiency can be achieved even without using the Misc set.

These results show that the k-Nearest Neighbour (k-NN)
classifier completely outperforms the other classifiers and
the percentage of instances correctly classified by k-NN is
the highest among others. As in [4], our results show that
C4.5 and PART give comparable results followed by RIP-
PER and Naı̈ve Bayes.

Figure 2 shows the confusion matrix and information re-
trieval performance of Naı̈ve Bayes. These values are cal-
culated by averaging over the intermediate information re-
trieval results and confusion matrices, generated during the
4-fold cross-validation. It is interesting to note that one of
the larger classes namely ‘other’ achieved more than 80%
precision and another larger class ‘student’ achieved more
than 80% recall. Since most of the instances of ‘other’ class
are incorrectly classified into other classes, this accounts for
the lower precision of the other classes. Many of instances

Figure 1. Percent correctly / incorrectly clas-
sified instances by different classifiers

of the other classes are incorrectly classified into the ‘stu-
dent,’ this caused the lower recall of the other classes.

Figure 3 shows the results of C4.5 classifier. Lower
precision of class ‘department’ is due to the class ‘other.’
Lower precision and recall of the ‘staff’ class is due to mix-
up of its instance with ‘student’ class.

For the PART rule learner, shown in Figure 4, lower re-
call of class ‘staff’ is caused by its mix-up with the ‘faculty,’
‘student,’ and ‘other’ class. RIPPER classifier also makes
similar type of mistakes, as shown in Figure 5. Finally, k-
NN results are shown in figure 6 and it gives very promising
results.

These results show that on a scale of a web site, such as
a university web site, we can rely on some classical, text-
based methods for classification for purposes of SW anno-
tation. In particular, the kNN algorithm demonstrates a very
high performance.

5 Conclusion and Future Work

Web page classification is one of the core elements of our
SW annotation system which is based on the automatic ex-
traction of conceptual knowledge from web contents based
on the given ontology. We also evaluate classifiers by au-
tomatically extracting significant terms from the web pages
and using them as a feature vector. Results show that k-NN
gives very good classification accuracy.

Our goal is to build ontology-driven information extrac-
tion methods based on the combination of pattern matching,
machine learning, and natural language processing tech-
niques. We will try to design an adaptive information ex-
traction module which could adapt to the changing nature
of the web. Finally annotation of the web will be done with
the extracted knowledge, followed by an evaluation.

References

[1] S. Chakrabarti. Mining the Web Discovering Knowledge from
Hypertext Data. Morgan-Kaufmann Publishers, 2003.

The 2nd Workshop on Web-based Support Systems 2004 139



Figure 2. True Positives Rate (TP Rate), False Positives Rate (FP Rate), Precision, and Recall of each
class by using Naı̈ve Bayes Classifier

Figure 3. True Positives Rate (TP Rate), False Positives Rate (FP Rate), Precision, and Recall of each
class by using C4.5 Classifier

Figure 4. True Positives Rate (TP Rate), False Positives Rate (FP Rate), Precision, and Recall of each
class by using PART Classifier

Figure 5. True Positives Rate (TP Rate), False Positives Rate (FP Rate), Precision, and Recall of each
class by using RIPPER Classifier

The 2nd Workshop on Web-based Support Systems 2004 140



Figure 6. True Positives Rate (TP Rate), False Positives Rate (FP Rate), Precision, and Recall of each
class by using k-NN Classifier

[2] W. Cohen. Fast effective rule induction. In Machine Learn-
ing: Proceedings of the Twelfth International Conference
(ML95), 1995.

[3] M. DiPasquo, D. Freitag, D. McCallum, T. Mitchell,
K. Nigam, and S. Slattery. Learning to construct knowledge
base from the world wide web. Artificial Intelligence, 118:69–
113, June 2000.

[4] E. Frank and I. Witten. Generating accurate rule sets without
global optimization. In Machine Learning: Proceedings of
the Fifteenth International Conference, San Francisco, CA,
1998. Morgan Kaufmann Publishers.

[5] J. Furnkranz. Using links for classifying web-pages. Techni-
cal Report OEFAI-TR-98-29, Austrian Research Institute for
Artificial Intelligence, Wien, Austria, 1998.

[6] J. Furnkranz and G. Widmer. Incremental reduced error prun-
ing. In Machine Learning: Proceedings of the Eleventh An-
nual Conference. Morgan Kaufmann Publishers, 1994.

[7] A. McCallum. The 4 universities data set. Retrieved Dec 3,
2003, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/
theo-20/www/data/.

[8] I. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 1999.

The 2nd Workshop on Web-based Support Systems 2004 141




