
Automatically Detecting Boolean Operations Supported by Search

Engines, towards Search Engine Query Language Discovery

Zonghuan Wu, Dheerendranath Mundluru, Vijay V. Raghavan

The Center for Advanced Computer Studies

University of Louisiana at Lafayette

Lafayette, LA 70504-4330, USA

{zwu, dnm8925, raghavan}@cacs.louisiana.edu

Abstract
Each Web search engine provides query language

through which it can communicate with its users and

retrieve corresponding results to user queries.

Supporting Boolean operations is a major characteristic

of the query language. In this paper, we propose a

novel, fully automatic, query probing based approach to

identify what Boolean operations that are supported by

a search engines and their corresponding syntaxes.

Experiments show high effectiveness and efficiency.

Along with this, we also provide a Web application
called SE-BOSS (Search Engine Boolean Operation

Scanning System) for interested users.

1. Introduction

There are hundreds of thousands of search engines (SEs)

existing on the Web, most of which are Deep Web SEs

[13] and contain high quality content that are not crawl-

able by SEs like Google.

MetaSearch Engine (MSE) is a system that provides

unified access to several SEs that it knows how to

communicate with. When an MSE receives a user query,

it dispatches the query to selected SEs; results returned

from SEs are then reorganized, merged and displayed to

the user by the MSE [9]. The MSE approach provides

convenient concurrent access to multiple SEs. More

importantly, an MSE built on multiple Deep Web SEs

provides a platform for users to search on tremendous

amount of Web content that are not searchable through

crawler based SEs such as Google. The state-of-the-art

MSEs, such as Dogpile [1], Mamma [2], Kartoo [3],

Profusion [4], Search.com [5], turbo10 [6] and others,

are built on top of tens to up to 3,000 SEs.

Each SE provides an interface through which its users

can input their queries to retrieve results. In most cases,

as a Web information retrieval system, each SE has its

query language model with operators and syntaxes (we

will call them query patterns in the rest of this paper)

through which a user can submit a more complex query

than just keywords. The SE can understand queries in

these patterns so that corresponding operations will be

executed. Using Google as an example, it supports the

Boolean operation of disjunction by using the operator

“OR” between two keywords. However, due to the

heterogeneity of SEs, different SEs may support

different operations and/or use different symbols and

syntaxes (i.e. different query patterns) to represent same

operators. For example, the SE www.scrubtheweb.com

supports disjunction by using the operator “|” between

two keywords while “OR” is regarded as a stopword.

Knowing the query language model of SEs is important

to SE users as well as to MSEs. By understanding SE

query language models, users may resolve their

confusions like, when they submit a query “Computer

Science”, whether the search engine explain the query as

“Computer AND Science” or “Computer OR Science” or

the phrase “Computer Science”. Also, by applying the

language model to their queries, users can send complex

queries and use SEs more effectively. Similarly, when

an MSE has knowledge of the query language model of

its underlying SEs, it can effectively translate complex

queries, in the MSE query language, into the language

that its underlying SE uses and get more accurate results

back. Moreover, by applying a customized combination

of probe queries, especially by using Boolean operators,

that an autonomous search engine supports, an MSE will

have the capability to collect special representative

information about SEs that would not otherwise be

possible. For example, this additional information will

be helpful to better determine rank position of

documents in the retrieval output, compared to using

only term distribution statistics and hyperlink-based

popularity characteristics of documents in the retrieval

output [17, 18].

However, not many present MSEs have the capabilities

of discovering the query language model of its

underlying SEs. There are a few MSEs that support

complex queries such as Boolean operations and

“PHRASE Search”, either manual approaches or

proprietary techniques are used to discover the operation

syntaxes of SEs.

Manual and semi-automatic approaches are expensive

and not scalable when the number of SEs that an MSE

J.T. Yao, V.V. Raghvan, G.Y. Wang (Eds.): WSS'04, pp. 171-178, 2004.

The 2nd Workshop on Web-based Support Systems 2004 171

has increases. Toward solving the query language

discovery problem, in this paper, we propose a query

probing based, robust, highly effective and automatic

approach, to detect the basic operations, including

Boolean operations such as disjunction (OR),

conjunction (AND) and negation (NOT) and a few other

common operations that an SE may support, such as

PHRASE, FST and SND operations, and discover their

corresponding syntaxes.

In section 2, we introduce the background knowledge

including query language model, query probing and SE

connection. After we introduce and discuss prior

relevant research on SE query language discovering in

section 3, we describe our approach in section 4 and it is

validated through experiments that are presented in

section 5. Finally, we conclude in section 6.

2. Background

In this section, we briefly introduce basic terminology

such as Customized MSE, Query-Probing and SE

Connection that are needed for subsequent

developments.

Customized MetaSearch Engine. Customized MSE

systems such as SELEGO, Bright Planet’s DQM and

Turbo10 emerged recently [6, 8, 10, 12]. Their users are

able to build own MSEs on demand by simply providing

the url’s of those SEs they wish to include in the MSE

and the SE incorporation is automatic and instant. Users

are then able to submit their queries to the new MSE

right away.

If an MSE is able to detect the query language model of

SEs in the process of automatic incorporation, MSE will

also be able to handle complex queries such as Boolean

operations, Phrase search and so on.

Query Probing. By sending queries with pre-selected

terms to an autonomous SE and exploring the SE by

analyzing the returned results, query-probing approach

has been used to discover SE document language

models [16], categorize SEs [15] and discover query

language models [11, 14].

Search Engine Connection. When an MSE dispatches

a query to an SE, it constructs and sends a query string

in the format that the SE understands, and gets returned

page from the SE. We call this the process of SE

connection. In this paper, we need a program to conduct

SE Connection process for the purpose of probing SEs.

We use the SE Connection component of SELEGO [10,

12], which is a customized metasearch engine system

that we built previously. Through this component, by

giving the url of an SE and the query terms, a query

string can be properly assembled and sent to the search

engine and the corresponding result page can then be

obtained.

3. Prior Research

To the best of our knowledge, the approach proposed in

[11, 14] by Bergholz and B. Chidlovskii is the closest to

our work. It uses query probing along with machine

learning algorithms to identify query language features

of Web data sources. The approach assumes that (1).

SEs can be automatically connected (refer to section 2).

(2). On the result page returned by an SE, the number of

returned documents that match the query is reported by

the SE and can be identified and extracted.

Authors defined a few query models such as ‘A’, ‘A B’,

‘”A B”’, “+A +B”, “A AND B”, “A + B” and so on.

When queries are submitted with an operator to be

classified, by examining the matched numbers of

documents in the result set with rules in Boolean algebra

such as |||| ABA , |||| ABA and a few

others, the corresponding operation could be derived.

Authors defined features based on the matched

document numbers and used a set of 22 predefined

probe queries and a number of SEs to train the learner

and generate classification rules that distinguish

different semantics. A mean accuracy of 86% for the set

of most frequent operators has been reported [14].

However, the approach is not applicable to SEs that do

not report the number of retrieved documents on result

pages. In our survey (see section 4 for detail) on 182

SEs, it was found that 20% of them were not providing

the match numbers. Moreover, it is not trivial to

automatically identify and extract this number from

result pages and the effectiveness was not discussed.

Among other approaches, one possible way to detect the

operators is to analyze the “help page” of an SE, which

normally provides information about how to use

operators to construct complex queries. This process

involves identifying links with captions like, “Help”,

“Tips” etc. at the SE interface page and, once such a link

is found, an analysis of the page is done to find the

information. This approach has apparent limitations.

First, many SEs do not have such help pages; besides, it

is found that the information on the help pages of some

SEs are sometimes obsolete, incomplete, or incorrect

[11]. Second, it is difficult to automatically locate the

help pages effectively.

Another approach is to download and analyze the result

documents returned by SEs. The drawback is that it is

very time consuming to download documents and then

to parse it to detect the presence of query terms. Also,

distinguishing the valid document link to download

from other links (such as links for service pages,

The 2nd Workshop on Web-based Support Systems 2004 172

advertisements) is a problem that may affect the

effectiveness of the analysis.

To overcome the limitations that above approaches

have, we propose an efficient approach based on query

probing and link analysis for automatically discovering

the query language features of an SE. As reported in

section 5, our approach showed an accuracy of over

97% in correctly detecting the operators.

4. Proposed Methodology

Before we get into details, we first define few terms that

we use for the purpose of simplifying the description of

our approach:

Definitions 4.1: Impossible Query Term and Valid Query

Term:

When a term t is submitted to an SE s as a query, results are

returned,

t is an Impossible Query Term to s when = 0.The query is an

impossible query.

t is a Valid Query Term to s when > 0. The query is a valid

query.

Definitions 4.2: Impossible Query Page and Valid Query

Page:

The result page (which displays 0 results for the query) that an

SE returns for a given impossible query is an impossible query
page.

The result page (which displays (> 0) results for the query)

that an SE returns for a given valid query is a valid query

page.

Note that though most SEs return multiple pages of results for

a valid query, in this paper, we only need the first result page

and we refer it as the result page.

Definitions 4.3 Static Links and Dynamic Links:

On n (n>0) different html pages, a link is a Static Link if it

appears on each of the n pages with the same captions or urls.

Otherwise, it is a Dynamic Link. An example for static link in

SE result pages can be a link with caption like “Home”,

“Products”, “Services”, or “Help” etc. that usually points to a

fixed url. However, sometimes, the url may contain a unique

session id. An example of a dynamic link could be a link to a

commercial advertisement displayed which change

periodically or with every request. Table 1 gives all scenarios

of static and dynamic links.

Table 1. Static and Dynamic Links

URL Caption Link Type

Same

Different

Same

Different

Same

Same

Different

Different

Static

Static

Static

Dynamic

Just like the approaches in [11, 14], we assume that the

SEs can be programmatically connected. However,

unlike their approach, instead of using pre-selected

terms for the probe queries, we dynamically generate

two special query terms. One is an Impossible Query

Term and the other is a Valid Query Term. They are

connected by different operators to formulate a set of

probe queries to discover the supported operations of

any SE with their corresponding query patterns. Figure 1

illustrates our three-step approach to automatically

detect the supported Boolean operations of an SE.

Figure 1. Steps for query language detection

In the rest of this section, we explain the three steps

from Figure 1 in detail.

Step 1: Impossible Query Generation
As specified above, when an impossible query term is

submitted, an SE always returns 0 results. In our

approach, we simply create terms like

‘AnIm2345possibleQuery’ that are extremely unlikely

to be indexed by any SE in practice. When probed with

such a query, a given SE would usually return a page

with some statement saying that no results were found

for the query. In addition, such a page usually has a few

links, which can be either static (appear in all impossible

query pages) or dynamic (appear in the specific

impossible query page). The numbers of static and

dynamic links are used as a feature to identify valid

query terms in step 2 and to detect query operations in

step 3.

By probing an SE twice with two different impossible

query terms, we can get the number of static links by

extracting the links that have common urls or captions

for both the queries. The links left on both pages are

dynamic links. If the numbers of the dynamic links on

both pages are slightly different, we use their average.

Step 2: Valid Query Generation
After collecting impossible query term and related

information, the next step is to find a valid query term.

The 2nd Workshop on Web-based Support Systems 2004 173

For a valid query term, an SE always returns more than

0 results on the returned page (valid query page).

Usually, a valid query page has significant difference

from an impossible query page. Assuming this is true;

we generate a list of candidate valid query terms, submit

them to the SE, and evaluate the returned pages by using

the total number of links. For some candidate valid

query term, if the difference between the total number of

unique links in its result page and the numbers that we

collected from impossible query pages in step 1 is above

certain threshold, which means there is significant

difference between the two pages, we select it as a valid

query term. Otherwise, we just discard this term. This

step can be further divided into two parts: in step 2.1,

the candidate valid query terms are generated; in step

2.2, the heuristic logic for selecting a valid query term is

provided. The candidate terms are checked by this logic

one by one, until a valid query term is found.

2.1. Generating candidate valid query terms. We

generate two lists of query terms to be candidate valid

query terms. Usually, the SE interface page provides

descriptions that relates to the content of the SE. For

example, the description may include important terms

such as the name of a company and its products/services

that may frequently appear on the company’s SE

interface page as well as in many Web pages that this

SE indexes. By querying the SE with such important

terms, the SE is likely to return results; so these terms

are likely to be valid query terms. Based on this

observation, we made an assumption that the more

frequent a term appears on the interface, the more likely

that it is a valid query term; thus, we create the first

candidate term list that contains 10 most frequent terms

extracted from the SE’s interface page (stop words are

removed). However, a few SEs (e.g.

http://www.metor.com) have extremely simple interface

that do not have enough good terms, so we also collect a

set of terms that are very generic to construct the second

candidate term list. Our assumption is that these terms

are so generic that some of them will always be found in

document collections of most, if not all SEs. We collect

candidate terms from the homepage of

CompletePlanet’s [7] SE directory that classify 70,000+

SEs into 42 categories. We used all 54 terms that appear

in these categories as the other set of candidate valid

query terms.

We start with trying to probe SE by using the terms

from the first list; if none of them is identified as a valid

query term, we then try the terms in the second list. The

following section explains how a valid query term is

selected.

2.2. Valid query term selection. Figure 2 shows the

rules to check whether a candidate term is indeed a valid

query term.

Figure 2. The heuristic logic for identifying a valid

query term

In Figure 2, respectively, dimp and simp indicate dynamic

links and static links on the impossible query pages that

we got previously (see step 1); |dimp + simp| is the number

of all links on a impossible page. tcan is the candidate

valid query term. For a given SE, when tcan is submitted,

the returned result page, called Candidate Query Page,

has |tcan| unique links. Let d be a threshold used to

determine whether the candidate query page is

significantly different from an impossible query page.

At /*1*/, the first if-condition tests whether the total

number of links in the candidate query page is

significantly greater (difference > d) than the sum of the

total number of links in impossible query page (i.e., the

sum of dynamic links and static links in the impossible

query page) and threshold d. If yes, it implies the page is

different from the impossible query page and therefore

is a valid query page. Note that d = 7, was found to be

good in our experiments. At /*2*/, when the first if-

condition is not satisfied, but the difference between the

total number of links in the candidate query page and

the total number of links in the impossible query page is

less than or equal to d (i.e. the number of results

retrieved is between 0 and d), then we discard the term

because of the insignificant difference between the

candidate query page and impossible query page.

Otherwise, at /*3*/, there are two possibilities left: A)

The candidate query is a valid query page if it includes 0

or only a subset of all the static links displayed. B) The

candidate query page is an error page that generally has

0 or very few links unrelated to the user query. This

might happen when the query contains characters that

may not be recognizable by the SE. We still consider

this as a special form of impossible query. In order to

differentiate the two cases, from all the links extracted

from the candidate query page, we remove all the static

links that are found in simp and then check whether the

The 2nd Workshop on Web-based Support Systems 2004 174

total number of the remaining links is greater than a

threshold e. If yes, we regard tcan as a valid query term.

Otherwise, we discard tcan and try with a new candidate

term.

Step 3: Query Operation Detection
To conduct the detection, we’ve surveyed 182 SEs

including both general purpose and specialty SEs that

we randomly picked from CompletePlanet’s [7] website.

As shown in table 2, we found that 89% of these SEs

support AND, 71% support OR and 60% support NOT.

Note that a few SEs provide “Advanced Search”

interfaces at which a complex form is provided for users

to customize queries (eg. Google’s Advanced Search

interface is located at:

http://www.google.com/advanced_search?hl=en)Howev

er, in this paper, we only deal with query language

models of SE simple interfaces at which there is only

one text field for users to input queries.

Table 2. Search engines and their supported Boolean

operations

Operation Number

of SEs

Percentage

AND 162 89%

OR 132 71%

NOT 110 60%

In this step, based on the survey, we automatically

detect which of the above three operations are supported

by an SE and how the query patterns are represented.

Also, with slight extension, we also detect FST (first

query term should appear in all retrieved documents)

and SND (second query term should appear in all

retrieved documents) and PHRASE (all retrieved

documents should contain all the specified query terms

in the given order) operations.

In this step, the valid query term and the impossible

query term found in previous steps are used to formulate

probe queries to discover the operations supported by a

given SE. Based on our survey, we summarized 15

query patterns that are used to generate all the probe

queries. Table 3 displays these query patterns and their

possible semantics.

Table 3. Possible Operators and Query Patterns

 Operations

Query

Patterns

A

N

D

O

R

N

O

T

F

S

T

S

N

D

P

H

R

A

S

E

t1 t2 (default op) Y Y Y Y Y

+t1 +t2, Y

t1 AND t2,
t1 and t2

t1 And t2,

t1 + t2

Y Y

t1 OR t2,
t1 or t2,

t1 | t2, t1 || t2

 Y

t1 AND NOT t2,

t1 ANDNOT t2,

t1 – t2, t1 NOT t2

 Y

“t1 t2” Y

For example, for the conjunction operation, possible

patterns are ‘t1 t2’, ‘+t1 +t2’, ‘t1 and t2’, ‘t1 And t2’, ‘t1

AND t2‘ and ‘t1 + t2’. Also for simplification, we

omitted the possible semantics when any operator

specified can be considered as a stopword or a literal.

In our method, we first detect the operation of the

pattern ‘t1 t2’, which we call it as the “default operation”

of an SE. Based on the default operation, which can be

AND, OR, FST SND or PHRASE, we then detect other

operations through probing as described in Figure 3.

if default operation is OR then

Detect the support for AND, SND, NOT

else if default operation is AND then

Detect the support for OR, NOT, SND

else if default operation is FST then

 Detect the support for OR, AND, SND

else if default operation is SND then

 Detect the support for OR, AND, NOT

end-if

Figure 3. Boolean operation detection for search

engines

Please note that the FST operation can only appear as a

default operation (See Table 3). Also note that one flaw

of the query probing using valid query term and

impossible query term is that it is not able to detect the

support for NOT operation when the default operation is

FST. Another issue that needs to be clarified is that, in

this algorithm, we consider PHRASE as a special form

of AND. To further differentiate it from the AND

operation, several result document samples needed to be

taken. We will not discuss it in this paper since we

found that, in our survey, it is very rare (One out of 182

SEs) that the default operation of a SE is PHRASE.

The rest of the section describes this step in detail.

3.1. Detecting the Default Operation. As it can be seen

from table 3, ‘t1 t2’ can mean five kinds of operations for

different SEs (AND, OR, FST, SND, or PHRASE).

The 2nd Workshop on Web-based Support Systems 2004 175

Figure 4 shows the rules to detect the default operator of

an SE.

As shown in Table 3, other than default query pattern,

only AND query patterns can be semantically equivalent

to SND. For example, if ‘tvld AND timp’ returns an

impossible query page but if ‘timp AND tvld’ returns a

valid query page, then we conclude that query pattern t1

AND t2 is for SND operation. Thus, let tprobe1, tprobe2 be

the default probe queries obtained by binding t1 to tvld

and t2 to timp where tprobe1 = ‘tvld timp’ and tprobe2 = ‘timp tvld’.

If both tprobe1 and tprobe2 return valid query pages, then

the default operation is OR. If at least one result page

returned by tprobe1 and tprobe2 is a valid query page, the

default operation should be either FST or SND. If both

tprobe1 and tprobe2 return impossible query pages, then the

default operation should be AND. The algorithm

flowchart is shown in Figure 4. In Figure 4, to find if a

result page is valid query page or not, we re-use the

function defined in Figure 2.

Figure 4. Default operation detection

3.2. Detecting the support for OR, AND operations.

As shown in Figure 3, we detect the support for OR

operation with its possible patterns only if the default

operator is either AND or FST or SND search. Similarly,

we detect the support for AND operation and its entire

different syntaxes only if the default operation is either

OR or FST or SND. Different patterns of OR queries

used are: tvld OR timp, tvld or timp, tvld | timp, and tvld || timp.

Similarly the different patterns of AND queries used are:

+tvld +timp, tvld AND timp, tvld and timp, tvld + timp, and tvld

And timp. The rules to find the support for the both OR,
AND operation patterns is similar to the rules shown in

Figure 4. The only difference is that we need to apply

the query patterns corresponding to AND and OR

operations.

3.3. Detecting the support for NOT operation. We

form different probe queries to detect the NOT operation

support based on the supported default operation. For

example, if the default operator is AND, different

patterns of NOT queries used are: tvld - timp, tvld AND

NOT timp, tvld NOT timp, and tvld ANDNOT timp. Note that

tvld always appears in front of timp. However, if the

default operation is OR, different patterns of NOT
operation used are: timp –tvld, timp AND NOT tvld, timp

NOT tvld, and timp ANDNOT tvld. Note the order of

appearances of tvld and timp are reversed. For example, if

the default operation is known as to be AND, we send

probe query ‘tvld –timp’ and if a valid query page is

returned, it indicates that NOT is supported by pattern t1

–t2. If the default operation is known to be OR, we send

probe query ‘timp –tvld’ and if an impossible query page is

returned, it implies the NOT operation has been

executed.

5. Experimental Results

We have tested our algorithm on 128 SEs, which

includes both general purpose and specialty SEs from

various domains. Most of the specialty SE’s have been

taken from CompletePlanet’s SE directory [7]. We also

randomly collected a few SEs from other sources,

including SEs incorporated by profusion.com,

search.com, turbo10.com. Following are the different

domains from which SE’s are included in our test

collection:

General Purpose SE’s: 21

Sports/Basketball: 10

Business/Small Business: 22

Health/Cancer: 16

MetaSearch Engines: 5

SE’s randomly taken from other sources: 54

Total: 128

Please note that, to avoid bias of experimental results,

these SEs are selected independently of the search

engines used in our survey.

5.1. Impossible Query Term Generation

Our impossible query term generator uses very simple

method to generate dynamic impossible query terms

such as ‘AnIm2376possibleQuery’ in which the value

2376 is randomly generated. We found that the approach

is so effective that, in all cases of our experiment, it

successfully generates impossible queries.

5.2. Valid Query Term Selection

The success rate for finding a valid query term from the

two lists of candidate valid query terms has been over

99.21%. The only failed case in our experiments is an

SE that only returned at most 5 results (which is < d) for

all the queries on its result page (for most of other SEs,

the number is usually 10 or more).

The 2nd Workshop on Web-based Support Systems 2004 176

Another important question is how efficiently a valid

query term can be generated from the two lists of

candidate valid query terms. For this we tracked the

generation of valid query terms in our experiment and

found that, on average, only 1.132 probe queries were

used to select a valid query term. Therefore it indicates

that the approach to automatically select a valid query

term is not only accurate, but is also very efficient.

5.3. Boolean Operation and Query Pattern

Detection

Since we failed to generate valid query term for one of

the 128 SEs, we detected the Boolean operations and

their corresponding query patterns on the remaining 127

SEs. To validate our results, we manually inspected all

SEs and compared the results with programmatically

generated results.

Overall, our system showed an accuracy of 97.63% i.e.

out of 127 SE’s, 124 SE’s were correctly classified. This

accuracy is specified based on consideration of all the

operation patterns used in the system i.e. if there is at

least one operator which was wrongly detected for a

particular SE, we considered that the system failed to

classify this particular SE as a whole. For the 3 failed

SE’s, the default operation was wrongly classified. It

also results in the failure of detecting other operations

since they rely on the detection of default operation.

5.4. Efficiency Analysis of the approach

The number of probe queries used for an SE is the key

factor for the time involved in detecting an SE’s query

language features. As shown in section 5.2, the number

of probe queries used in selecting a valid query term is

on average only 1.132. 2 probe queries are used to get 2

impossible query pages for detecting the static and

dynamic links. 2 probe queries are needed for detecting

default operation and 4 probe queries are needed for

NOT operation detection. In addition, if default

operation is OR, we need 5 AND probe queries whereas

we need 4 OR queries when default operation is AND.

Therefore, in total, 13.132 or 14.132 probe queries are

needed to detect the query patterns of all three basic

Boolean operations (AND, OR, NOT), depending on

whether the default operation is AND or OR. 4 more

probe queries are needed if SND is needed to be

detected. In other cases of default operations (FST and

SND), the number of probe queries used is just slightly

different from what has been used in the case when

default is either AND or OR.

6. Conclusions and Future Work

In this paper, we have proposed a novel approach to

detect the basic Boolean operations that an SE supports.

This highly effective and efficient approach is based on

a series of simple and robust techniques such as

impossible query generation, valid query generation and

link analysis. By a comprehensive survey, followed by

experiments on 128 SE’s with a set of most commonly

used operators, we achieved a very high overall

accuracy of over 97%. With SE Boolean operation

detection, MSEs will be capable of dispatching more

accurate queries to search engines; it also provides

researchers a tool for analyzing search engines in large

scale.

We have set up a Web application called SE-BOSS,

which detects the various operations and their query

patterns supported by a SE given its URL, for

experiment/demo purposes at:

http://lincstaff2.cacs.louisiana.edu:8080/metasearch/Sub

mitURL.

Finally, we list a few directions for future work:

1. Large Scale Test: Current testing on 128 SE’s

showed high effectiveness of the algorithm

heuristics. However, due to the highly dynamic

Web environment, we plan to enlarge the test bed

and validate our method.

2. Improve Valid Query Generation and Valid

Query Page Identification: The four cases of false

detection were caused due to the inability of

correctly identifying valid query pages as the

current approach of using the numbers of dynamic

and static links is not able to handle these particular

SEs, though the approach is simple and effective in

most of the cases. More robust and sophisticated

features, such as the structure of the result page,

may need to be studied and applied to further

improve the effectiveness.

3. Detecting the support of more complex Boolean

operations. In this paper, we dealt with the simple

Boolean operations. It is still an open question to

find out how heterogeneous SEs support complex

operations such as ((t1 AND t2) OR t3 NOT t4). We

plan to extend our work to address this issue too.

4. Automatically discover operations of advanced

search interfaces. Our current work deals with

only basic search interfaces. However, many SEs

have advanced interfaces on which a complex html

form is provided, which can be customized to

organize complex queries. It would be interesting to

be able to automatically discover the query

language features of such SE advanced interfaces.

Acknowledgements: This work is supported in part by the IT

Initiative of the State of Louisiana to Lafayette.

The 2nd Workshop on Web-based Support Systems 2004 177

7. References

[1] Dogpile. http://www.dogpile.com/

[2] Mamma. http://www.mamma.com/

[3] KartOO. http://www.kartoo.com/

[4] Profusion. http://www.profusion.com/

[5] Search.com. http://www.search.com/

[6] Turbo 10. http://www.turbo10.com/.

[7] CompletePlanet, http://www.completeplanet.com.

[8] BrightPlanet, http://www.brightplanet.com/.

[9] W. Meng, C. Yu, K. Liu. Building Efficient and Effective

Metasearch Engines. ACM Computing Surveys, Vol. 34,

No. 1, March 2002, pp.48-89.

[10] http://www.selego.com, Creating MetaSearch Engines

On-Demand.

[11] Bergholz, B. Chidlovskii. Using query probing to identify

query language features on the Web. In Proceedings of

the SIGIR 2003 Workshop on Distributed Information

Retrieval, Toronto, Canada, August 2003.

[12] Zonghuan Wu, Vijay Raghavan, Weiyi Meng, Hai He,

Clement Yu, and Chun Du. Creating Customized

Metasearch Engines on Demand Using SE-LEGO. In

Proceedings of Fourth International Conference on Web-

Age Information Management (WAIM'03), Demo paper,

pp.503-505, Chengdu, China, August 2003.

[13] Bergman, M. The Deep Web: Surfacing Hidden Value.

Journal of Electronic Publishing, 7(1), 2001.

[14] Bergholz, B. Chidlovskii. Learning Query Languages of

Web Interfaces. In Proceedings of the 2004 ACM

Symposium on Applied Computing: 1114 – 1121.

[15] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count,

and classify: Categorizing hidden-web databases. In Proc.

ACM SIGMOD Conf., pp. 67-78, Santa Barbara, CA,

USA, May 2001.

[16] J. P. Callan, M. Connell, and A. Du. Automatic discovery

of language models for text databases. In Proc. ACM

SIGMOD Conf., pp. 479-490, June 1999.

[17] M. Kim, V. V. Raghavan, and J. S. Deogun. Concept

based retrieval using generalized retrieval functions.

Fundamenta Informaticae, 47(1-2):119--135, 2001.

[18] A. H. Alsaffar, J. S. Deogun, V. V. Raghavan, and H.

Sever. Enhancing concept-based retrieval based on

minimal term sets. J. of Intelligent Information Systems,

14(2-3):155--173, 2000.

The 2nd Workshop on Web-based Support Systems 2004 178

