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Abstract
Each Web search engine provides query language 

through which it can communicate with its users and 

retrieve corresponding results to user queries. 

Supporting Boolean operations is a major characteristic 

of the query language. In this paper, we propose a 

novel, fully automatic, query probing based approach to 

identify what Boolean operations that are supported by 

a search engines and their corresponding syntaxes. 

Experiments show high effectiveness and efficiency. 

Along with this, we also provide a Web application 
called SE-BOSS (Search Engine Boolean Operation 

Scanning System) for interested users.

1. Introduction 

There are hundreds of thousands of search engines (SEs) 

existing on the Web, most of which are Deep Web SEs 

[13] and contain high quality content that are not crawl-

able by SEs like Google.  

MetaSearch Engine (MSE) is a system that provides 

unified access to several SEs that it knows how to 

communicate with. When an MSE receives a user query, 

it dispatches the query to selected SEs; results returned 

from SEs are then reorganized, merged and displayed to 

the user by the MSE [9]. The MSE approach provides 

convenient concurrent access to multiple SEs. More 

importantly, an MSE built on multiple Deep Web SEs 

provides a platform for users to search on tremendous 

amount of Web content that are not searchable through 

crawler based SEs such as Google. The state-of-the-art 

MSEs, such as Dogpile [1], Mamma [2], Kartoo [3], 

Profusion [4], Search.com [5], turbo10 [6] and others, 

are built on top of tens to up to 3,000 SEs.  

Each SE provides an interface through which its users 

can input their queries to retrieve results. In most cases, 

as a Web information retrieval system, each SE has its 

query language model with operators and syntaxes (we 

will call them query patterns in the rest of this paper) 

through which a user can submit a more complex query 

than just keywords. The SE can understand queries in 

these patterns so that corresponding operations will be 

executed. Using Google as an example, it supports the 

Boolean operation of disjunction by using the operator 

“OR” between two keywords. However, due to the 

heterogeneity of SEs, different SEs may support 

different operations and/or use different symbols and 

syntaxes (i.e. different query patterns) to represent same 

operators. For example, the SE www.scrubtheweb.com 

supports disjunction by using the operator “|” between 

two keywords while “OR” is regarded as a stopword. 

Knowing the query language model of SEs is important 

to SE users as well as to MSEs. By understanding SE 

query language models, users may resolve their 

confusions like, when they submit a query “Computer 

Science”, whether the search engine explain the query as 

“Computer AND Science” or “Computer OR Science” or 

the phrase “Computer Science”. Also, by applying the 

language model to their queries, users can send complex 

queries and use SEs more effectively. Similarly, when 

an MSE has knowledge of the query language model of 

its underlying SEs, it can effectively translate complex 

queries, in the MSE query language, into the language 

that its underlying SE uses and get more accurate results 

back. Moreover, by applying a customized combination 

of probe queries, especially by using Boolean operators, 

that an autonomous search engine supports, an MSE will 

have the capability to collect special representative 

information about SEs that would not otherwise be 

possible. For example, this additional information will 

be helpful to better determine rank position of 

documents in the retrieval output, compared to using 

only term distribution statistics and hyperlink-based 

popularity characteristics of documents in the retrieval 

output [17, 18]. 

However, not many present MSEs have the capabilities 

of discovering the query language model of its 

underlying SEs. There are a few MSEs that support 

complex queries such as Boolean operations and 

“PHRASE Search”, either manual approaches or 

proprietary techniques are used to discover the operation 

syntaxes of SEs.  

Manual and semi-automatic approaches are expensive 

and not scalable when the number of SEs that an MSE 
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has increases. Toward solving the query language 

discovery problem, in this paper, we propose a query 

probing based, robust, highly effective and automatic 

approach, to detect the basic operations, including 

Boolean operations such as disjunction (OR), 

conjunction (AND) and negation (NOT) and a few other 

common operations that an SE may support, such as 

PHRASE, FST and SND operations, and discover their 

corresponding syntaxes.  

In section 2, we introduce the background knowledge 

including query language model, query probing and SE 

connection. After we introduce and discuss prior 

relevant research on SE query language discovering in 

section 3, we describe our approach in section 4 and it is 

validated through experiments that are presented in 

section 5. Finally, we conclude in section 6. 

2. Background 

In this section, we briefly introduce basic terminology 

such as Customized MSE, Query-Probing and SE 

Connection that are needed for subsequent 

developments. 

Customized MetaSearch Engine. Customized MSE 

systems such as SELEGO, Bright Planet’s DQM and 

Turbo10 emerged recently [6, 8, 10, 12]. Their users are 

able to build own MSEs on demand by simply providing 

the url’s of those SEs they wish to include in the MSE 

and the SE incorporation is automatic and instant. Users 

are then able to submit their queries to the new MSE 

right away.  

If an MSE is able to detect the query language model of 

SEs in the process of automatic incorporation, MSE will 

also be able to handle complex queries such as Boolean 

operations, Phrase search and so on. 

Query Probing. By sending queries with pre-selected 

terms to an autonomous SE and exploring the SE by 

analyzing the returned results, query-probing approach 

has been used to discover SE document language 

models [16], categorize SEs [15] and discover query 

language models [11, 14].  

Search Engine Connection. When an MSE dispatches 

a query to an SE, it constructs and sends a query string 

in the format that the SE understands, and gets returned 

page from the SE. We call this the process of SE 

connection. In this paper, we need a program to conduct 

SE Connection process for the purpose of probing SEs. 

We use the SE Connection component of SELEGO [10, 

12], which is a customized metasearch engine system 

that we built previously. Through this component, by 

giving the url of an SE and the query terms, a query 

string can be properly assembled and sent to the search 

engine and the corresponding result page can then be 

obtained. 

3. Prior Research 

To the best of our knowledge, the approach proposed in 

[11, 14] by Bergholz and B. Chidlovskii is the closest to 

our work. It uses query probing along with machine 

learning algorithms to identify query language features 

of Web data sources. The approach assumes that (1). 

SEs can be automatically connected (refer to section 2). 

(2). On the result page returned by an SE, the number of 

returned documents that match the query is reported by 

the SE and can be identified and extracted.  

Authors defined a few query models such as ‘A’, ‘A B’, 

‘”A B”’, “+A +B”, “A AND B”, “A + B” and so on. 

When queries are submitted with an operator to be 

classified, by examining the matched numbers of 

documents in the result set with rules in Boolean algebra 

such as |||| ABA , |||| ABA and a few 

others, the corresponding operation could be derived. 

Authors defined features based on the matched 

document numbers and used a set of 22 predefined 

probe queries and a number of SEs to train the learner 

and generate classification rules that distinguish 

different semantics. A mean accuracy of 86% for the set 

of most frequent operators has been reported [14]. 

However, the approach is not applicable to SEs that do 

not report the number of retrieved documents on result 

pages. In our survey (see section 4 for detail) on 182

SEs, it was found that 20% of them were not providing 

the match numbers. Moreover, it is not trivial to 

automatically identify and extract this number from 

result pages and the effectiveness was not discussed. 

Among other approaches, one possible way to detect the 

operators is to analyze the “help page” of an SE, which 

normally provides information about how to use 

operators to construct complex queries. This process 

involves identifying links with captions like, “Help”, 

“Tips” etc. at the SE interface page and, once such a link 

is found, an analysis of the page is done to find the 

information. This approach has apparent limitations. 

First, many SEs do not have such help pages; besides, it 

is found that the information on the help pages of some 

SEs are sometimes obsolete, incomplete, or incorrect 

[11]. Second, it is difficult to automatically locate the 

help pages effectively.  

Another approach is to download and analyze the result 

documents returned by SEs. The drawback is that it is 

very time consuming to download documents and then 

to parse it to detect the presence of query terms. Also, 

distinguishing the valid document link to download 

from other links (such as links for service pages, 

The 2nd Workshop on Web-based Support Systems 2004 172



advertisements) is a problem that may affect the 

effectiveness of the analysis. 

To overcome the limitations that above approaches 

have, we propose an efficient approach based on query 

probing and link analysis for automatically discovering 

the query language features of an SE. As reported in 

section 5, our approach showed an accuracy of over 

97% in correctly detecting the operators. 

4. Proposed Methodology 

Before we get into details, we first define few terms that 

we use for the purpose of simplifying the description of 

our approach: 

Definitions 4.1: Impossible Query Term and Valid Query 

Term:

When a term t is submitted to an SE s as a query,  results are 

returned, 

t is an Impossible Query Term to s when  = 0.The query is an 

impossible query.

t is a Valid Query Term to s when  > 0. The query is a valid 

query.

Definitions 4.2: Impossible Query Page and Valid Query 

Page:

The result page (which displays 0 results for the query) that an 

SE returns for a given impossible query is an impossible query 
page.

The result page (which displays (  > 0) results for the query) 

that an SE returns for a given valid query is a valid query 

page.

Note that though most SEs return multiple pages of results for 

a valid query, in this paper, we only need the first result page 

and we refer it as the result page. 

Definitions 4.3 Static Links and Dynamic Links:

On n (n>0) different html pages, a link is a Static Link if it 

appears on each of the n pages with the same captions or urls. 

Otherwise, it is a Dynamic Link. An example for static link in 

SE result pages can be a link with caption like “Home”, 

“Products”, “Services”, or “Help” etc. that usually points to a 

fixed url. However, sometimes, the url may contain a unique 

session id. An example of a dynamic link could be a link to a 

commercial advertisement displayed which change 

periodically or with every request. Table 1 gives all scenarios 

of static and dynamic links. 

Table 1. Static and Dynamic Links 

URL Caption Link Type 

Same 

Different 

Same 

Different 

Same 

Same 

Different 

Different 

Static 

Static 

Static 

Dynamic 

Just like the approaches in [11, 14], we assume that the 

SEs can be programmatically connected. However, 

unlike their approach, instead of using pre-selected 

terms for the probe queries, we dynamically generate 

two special query terms. One is an Impossible Query 

Term and the other is a Valid Query Term. They are 

connected by different operators to formulate a set of 

probe queries to discover the supported operations of 

any SE with their corresponding query patterns. Figure 1 

illustrates our three-step approach to automatically 

detect the supported Boolean operations of an SE.  

Figure 1. Steps for query language detection

In the rest of this section, we explain the three steps 

from Figure 1 in detail. 

Step 1: Impossible Query Generation 
As specified above, when an impossible query term is 

submitted, an SE always returns 0 results. In our 

approach, we simply create terms like 

‘AnIm2345possibleQuery’ that are extremely unlikely 

to be indexed by any SE in practice. When probed with 

such a query, a given SE would usually return a page 

with some statement saying that no results were found 

for the query. In addition, such a page usually has a few 

links, which can be either static (appear in all impossible 

query pages) or dynamic (appear in the specific 

impossible query page). The numbers of static and 

dynamic links are used as a feature to identify valid 

query terms in step 2 and to detect query operations in 

step 3.  

By probing an SE twice with two different impossible 

query terms, we can get the number of static links by 

extracting the links that have common urls or captions 

for both the queries. The links left on both pages are 

dynamic links. If the numbers of the dynamic links on 

both pages are slightly different, we use their average. 

Step 2: Valid Query Generation 
After collecting impossible query term and related 

information, the next step is to find a valid query term. 
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For a valid query term, an SE always returns more than 

0 results on the returned page (valid query page). 

Usually, a valid query page has significant difference 

from an impossible query page. Assuming this is true; 

we generate a list of candidate valid query terms, submit 

them to the SE, and evaluate the returned pages by using 

the total number of links. For some candidate valid 

query term, if the difference between the total number of 

unique links in its result page and the numbers that we 

collected from impossible query pages in step 1 is above 

certain threshold, which means there is significant 

difference between the two pages, we select it as a valid 

query term. Otherwise, we just discard this term. This 

step can be further divided into two parts: in step 2.1, 

the candidate valid query terms are generated; in step 

2.2, the heuristic logic for selecting a valid query term is 

provided. The candidate terms are checked by this logic 

one by one, until a valid query term is found. 

2.1. Generating candidate valid query terms. We 

generate two lists of query terms to be candidate valid 

query terms. Usually, the SE interface page provides 

descriptions that relates to the content of the SE. For 

example, the description may include important terms 

such as the name of a company and its products/services 

that may frequently appear on the company’s SE 

interface page as well as in many Web pages that this 

SE indexes. By querying the SE with such important 

terms, the SE is likely to return results; so these terms 

are likely to be valid query terms. Based on this 

observation, we made an assumption that the more 

frequent a term appears on the interface, the more likely 

that it is a valid query term; thus, we create the first 

candidate term list that contains 10 most frequent terms 

extracted from the SE’s interface page (stop words are 

removed). However, a few SEs (e.g. 

http://www.metor.com) have extremely simple interface 

that do not have enough good terms, so we also collect a 

set of terms that are very generic to construct the second 

candidate term list. Our assumption is that these terms 

are so generic that some of them will always be found in 

document collections of most, if not all SEs. We collect 

candidate terms from the homepage of 

CompletePlanet’s [7] SE directory that classify 70,000+ 

SEs into 42 categories. We used all 54 terms that appear 

in these categories as the other set of candidate valid 

query terms.  

We start with trying to probe SE by using the terms 

from the first list; if none of them is identified as a valid 

query term, we then try the terms in the second list. The 

following section explains how a valid query term is 

selected.

2.2. Valid query term selection. Figure 2 shows the 

rules to check whether a candidate term is indeed a valid 

query term.  

Figure 2. The heuristic logic for identifying a valid 

query term 

In Figure 2, respectively, dimp and simp indicate dynamic 

links and static links on the impossible query pages that 

we got previously (see step 1); |dimp + simp| is the number 

of all links on a impossible page. tcan is the candidate 

valid query term. For a given SE, when tcan is submitted, 

the returned result page, called Candidate Query Page,

has |tcan| unique links. Let d be a threshold used to 

determine whether the candidate query page is 

significantly different from an impossible query page. 

At /*1*/, the first if-condition tests whether the total 

number of links in the candidate query page is 

significantly greater (difference > d) than the sum of the 

total number of links in impossible query page (i.e., the 

sum of dynamic links and static links in the impossible 

query page) and threshold d. If yes, it implies the page is 

different from the impossible query page and therefore 

is a valid query page. Note that d = 7, was found to be 

good in our experiments. At /*2*/, when the first if-

condition is not satisfied, but the difference between the 

total number of links in the candidate query page and 

the total number of links in the impossible query page is 

less than or equal to d (i.e. the number of results 

retrieved is between 0 and d), then we discard the term 

because of the insignificant difference between the 

candidate query page and impossible query page. 

Otherwise, at /*3*/, there are two possibilities left: A) 

The candidate query is a valid query page if it includes 0 

or only a subset of all the static links displayed. B) The 

candidate query page is an error page that generally has 

0 or very few links unrelated to the user query. This 

might happen when the query contains characters that 

may not be recognizable by the SE. We still consider 

this as a special form of impossible query. In order to 

differentiate the two cases, from all the links extracted 

from the candidate query page, we remove all the static 

links that are found in simp and then check whether the 
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total number of the remaining links is greater than a 

threshold e. If yes, we regard tcan as a valid query term. 

Otherwise, we discard tcan and try with a new candidate 

term. 

Step 3: Query Operation Detection 
To conduct the detection, we’ve surveyed 182 SEs 

including both general purpose and specialty SEs that 

we randomly picked from CompletePlanet’s [7] website. 

As shown in table 2, we found that 89% of these SEs 

support AND, 71% support OR and 60% support NOT. 

Note that a few SEs provide “Advanced Search” 

interfaces at which a complex form is provided for users 

to customize queries (eg. Google’s Advanced Search 

interface is located at: 

http://www.google.com/advanced_search?hl=en)Howev

er, in this paper, we only deal with query language 

models of SE simple interfaces at which there is only 

one text field for users to input queries. 

Table 2. Search engines and their supported Boolean 

operations 

Operation Number 

of SEs 

Percentage

AND 162 89% 

OR 132 71% 

NOT 110 60% 

In this step, based on the survey, we automatically 

detect which of the above three operations are supported 

by an SE and how the query patterns are represented. 

Also, with slight extension, we also detect FST (first 

query term should appear in all retrieved documents) 

and SND (second query term should appear in all 

retrieved documents) and PHRASE (all retrieved 

documents should contain all the specified query terms 

in the given order) operations.

In this step, the valid query term and the impossible 

query term found in previous steps are used to formulate 

probe queries to discover the operations supported by a 

given SE. Based on our survey, we summarized 15 

query patterns that are used to generate all the probe 

queries. Table 3 displays these query patterns and their 

possible semantics.  

Table 3. Possible Operators and Query Patterns 

   Operations 

Query 

Patterns

A

N

D

O

R

N

O

T

F

S

T

S

N

D

P

H

R

A

S

E

t1 t2 (default op) Y Y  Y Y Y 

+t1 +t2, Y      

t1 AND t2,
t1 and t2

t1 And t2,

t1 + t2

Y    Y  

t1 OR t2,
t1 or t2,

t1 | t2, t1 || t2

 Y     

t1 AND NOT t2,

t1 ANDNOT t2,

t1 – t2, t1 NOT t2

  Y    

“t1 t2”      Y 

For example, for the conjunction operation, possible 

patterns are ‘t1  t2’, ‘+t1 +t2’, ‘t1 and t2’, ‘t1 And t2’, ‘t1

AND t2‘ and ‘t1 + t2’.  Also for simplification, we 

omitted the possible semantics when any operator 

specified can be considered as a stopword or a literal. 

In our method, we first detect the operation of the 

pattern ‘t1 t2’, which we call it as the “default operation”

of an SE. Based on the default operation, which can be 

AND, OR, FST SND or PHRASE, we then detect other 

operations through probing as described in Figure 3.  

if default operation is OR then

Detect the support for AND, SND, NOT

else if default operation is AND then

Detect the support for OR, NOT, SND

else if default operation is FST then

 Detect the support for OR, AND, SND

else if  default operation is SND then 

 Detect the support for OR, AND, NOT

end-if 

Figure 3. Boolean operation detection for search 

engines

Please note that the FST operation can only appear as a 

default operation (See Table 3). Also note that one flaw 

of the query probing using valid query term and 

impossible query term is that it is not able to detect the 

support for NOT operation when the default operation is 

FST. Another issue that needs to be clarified is that, in 

this algorithm, we consider PHRASE as a special form 

of AND. To further differentiate it from the AND 

operation, several result document samples needed to be 

taken. We will not discuss it in this paper since we 

found that, in our survey, it is very rare (One out of 182

SEs) that the default operation of a SE is PHRASE.

The rest of the section describes this step in detail.  

3.1. Detecting the Default Operation. As it can be seen 

from table 3, ‘t1 t2’ can mean five kinds of operations for 

different SEs (AND, OR, FST, SND, or PHRASE). 
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Figure 4 shows the rules to detect the default operator of 

an SE.

As shown in Table 3, other than default query pattern, 

only AND query patterns can be semantically equivalent 

to SND. For example, if ‘tvld AND timp’ returns an 

impossible query page but if ‘timp AND tvld’ returns a 

valid query page, then we conclude that query pattern t1

AND t2 is for SND operation. Thus, let tprobe1, tprobe2 be

the default probe queries obtained by binding t1 to tvld

and t2 to timp where tprobe1 = ‘tvld timp’ and tprobe2 = ‘timp tvld’.

If both tprobe1 and tprobe2 return valid query pages, then 

the default operation is OR. If at least one result page 

returned by tprobe1 and tprobe2 is a valid query page, the 

default operation should be either FST or SND. If both 

tprobe1 and tprobe2 return impossible query pages, then the 

default operation should be AND. The algorithm 

flowchart is shown in Figure 4. In Figure 4, to find if a 

result page is valid query page or not, we re-use the 

function defined in Figure 2.  

Figure 4. Default operation detection

3.2. Detecting the support for OR, AND operations. 

As shown in Figure 3, we detect the support for OR

operation with its possible patterns only if the default 

operator is either AND or FST or SND search. Similarly, 

we detect the support for AND operation and its entire 

different syntaxes only if the default operation is either 

OR or FST or SND. Different patterns of OR queries 

used are:  tvld OR timp, tvld or timp, tvld | timp, and tvld || timp.

Similarly the different patterns of AND queries used are: 

+tvld +timp, tvld AND timp, tvld and timp, tvld + timp, and tvld

And timp. The rules to find the support for the both OR, 
AND operation patterns is similar to the rules shown in 

Figure 4. The only difference is that we need to apply 

the query patterns corresponding to AND and OR 

operations. 

3.3. Detecting the support for NOT operation. We

form different probe queries to detect the NOT operation 

support based on the supported default operation. For 

example, if the default operator is AND, different 

patterns of NOT queries used are: tvld - timp, tvld AND

NOT timp, tvld NOT timp, and tvld ANDNOT timp. Note that 

tvld always appears in front of timp. However, if the 

default operation is OR, different patterns of NOT 
operation used are: timp –tvld, timp AND NOT tvld, timp

NOT tvld, and timp ANDNOT tvld. Note the order of 

appearances of tvld and timp are reversed. For example, if 

the default operation is known as to be AND, we send 

probe query ‘tvld –timp’ and if a valid query page is 

returned, it indicates that NOT is supported by pattern t1

–t2. If the default operation is known to be OR, we send 

probe query ‘timp –tvld’ and if an impossible query page is 

returned, it implies the NOT operation has been 

executed.  

5. Experimental Results 

We have tested our algorithm on 128 SEs, which 

includes both general purpose and specialty SEs from 

various domains. Most of the specialty SE’s have been 

taken from CompletePlanet’s SE directory [7]. We also 

randomly collected a few SEs from other sources, 

including SEs incorporated by profusion.com, 

search.com, turbo10.com. Following are the different 

domains from which SE’s are included in our test 

collection: 

General Purpose SE’s:    21

Sports/Basketball:    10

Business/Small Business:    22

Health/Cancer:     16

MetaSearch Engines:    5

SE’s randomly taken from other sources: 54  

Total:      128 

Please note that, to avoid bias of experimental results, 

these SEs are selected independently of the search 

engines used in our survey. 

5.1. Impossible Query Term Generation 

Our impossible query term generator uses very simple 

method to generate dynamic impossible query terms 

such as ‘AnIm2376possibleQuery’ in which the value 

2376 is randomly generated. We found that the approach 

is so effective that, in all cases of our experiment, it 

successfully generates impossible queries. 

5.2. Valid Query Term Selection 

The success rate for finding a valid query term from the 

two lists of candidate valid query terms has been over 

99.21%. The only failed case in our experiments is an 

SE that only returned at most 5 results (which is < d) for 

all the queries on its result page (for most of other SEs, 

the number is usually 10 or more).  
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Another important question is how efficiently a valid 

query term can be generated from the two lists of 

candidate valid query terms. For this we tracked the 

generation of valid query terms in our experiment and 

found that, on average, only 1.132 probe queries were 

used to select a valid query term. Therefore it indicates 

that the approach to automatically select a valid query 

term is not only accurate, but is also very efficient. 

5.3. Boolean Operation and Query Pattern 

Detection 

Since we failed to generate valid query term for one of 

the 128 SEs, we detected the Boolean operations and 

their corresponding query patterns on the remaining 127 

SEs. To validate our results, we manually inspected all 

SEs and compared the results with programmatically 

generated results.  

Overall, our system showed an accuracy of 97.63% i.e. 

out of 127 SE’s, 124 SE’s were correctly classified. This 

accuracy is specified based on consideration of all the 

operation patterns used in the system i.e. if there is at 

least one operator which was wrongly detected for a 

particular SE, we considered that the system failed to 

classify this particular SE as a whole. For the 3 failed 

SE’s, the default operation was wrongly classified. It 

also results in the failure of detecting other operations 

since they rely on the detection of default operation. 

5.4. Efficiency Analysis of the approach 

The number of probe queries used for an SE is the key 

factor for the time involved in detecting an SE’s query 

language features. As shown in section 5.2, the number 

of probe queries used in selecting a valid query term is 

on average only 1.132. 2 probe queries are used to get 2 

impossible query pages for detecting the static and 

dynamic links. 2 probe queries are needed for detecting 

default operation and 4 probe queries are needed for 

NOT operation detection. In addition, if default 

operation is OR, we need 5 AND probe queries whereas 

we need 4 OR queries when default operation is AND.

Therefore, in total, 13.132 or 14.132 probe queries are 

needed to detect the query patterns of all three basic 

Boolean operations (AND, OR, NOT), depending on 

whether the default operation is AND or OR. 4 more 

probe queries are needed if SND is needed to be 

detected. In other cases of default operations (FST and 

SND), the number of probe queries used is just slightly 

different from what has been used in the case when 

default is either AND or OR. 

6. Conclusions and Future Work 

In this paper, we have proposed a novel approach to 

detect the basic Boolean operations that an SE supports. 

This highly effective and efficient approach is based on 

a series of simple and robust techniques such as 

impossible query generation, valid query generation and 

link analysis. By a comprehensive survey, followed by 

experiments on 128 SE’s with a set of most commonly 

used operators, we achieved a very high overall 

accuracy of over 97%. With SE Boolean operation 

detection, MSEs will be capable of dispatching more 

accurate queries to search engines; it also provides 

researchers a tool for analyzing search engines in large 

scale. 

We have set up a Web application called SE-BOSS, 

which detects the various operations and their query 

patterns supported by a SE given its URL, for 

experiment/demo purposes at: 

http://lincstaff2.cacs.louisiana.edu:8080/metasearch/Sub

mitURL.  

Finally, we list a few directions for future work: 

1. Large Scale Test: Current testing on 128 SE’s 

showed high effectiveness of the algorithm 

heuristics. However, due to the highly dynamic 

Web environment, we plan to enlarge the test bed 

and validate our method.  

2. Improve Valid Query Generation and Valid 

Query Page Identification: The four cases of false 

detection were caused due to the inability of 

correctly identifying valid query pages as the 

current approach of using the numbers of dynamic 

and static links is not able to handle these particular 

SEs, though the approach is simple and effective in 

most of the cases. More robust and sophisticated 

features, such as the structure of the result page, 

may need to be studied and applied to further 

improve the effectiveness. 

3. Detecting the support of more complex Boolean 

operations. In this paper, we dealt with the simple 

Boolean operations. It is still an open question to 

find out how heterogeneous SEs support complex 

operations such as ((t1 AND t2) OR t3 NOT t4). We 

plan to extend our work to address this issue too.

4. Automatically discover operations of advanced 

search interfaces. Our current work deals with 

only basic search interfaces. However, many SEs 

have advanced interfaces on which a complex html 

form is provided, which can be customized to 

organize complex queries. It would be interesting to 

be able to automatically discover the query 

language features of such SE advanced interfaces. 
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