
Semi-Structured Complex List Extraction

Anders Arpteg
Department of Technology

University of Kalmar
SE-39192 Kalmar, Sweden

anders.arpteg@hik.se

Abstract

The semi-structured information available in HTML and
similar documents provide valuable information that can
be used for information extraction applications. This in-
formation together with other technical information about
how to retrieve pages can be used to automatically extract
pieces and various types of lists. The goal is to put as much
intelligently as possible in the system so that as little knowl-
edge and work as possible is required by the users, i.e. a
user-driven extraction system. The advantage of a user-
driven system is that the service provided by the system is
available not only for experts, but for also ordinary users
and thereby making the service available for a wide audi-
ence.

A problem with some lists in documents are that the
structure is different for the elements in the lists, and
thus it becomes more difficult to take advantage of the
semi-structural information. The agent-oriented system de-
scribed in this paper allows a user without expert skills to
train an extraction system to extract singleton, lists, and
also complex lists. The complex list type shall be able to
handle these complex lists with varied structure.

The experiments conducted show that a user can train
the system to extract information pieces from different sites
with very little knowledge and small amount of work. How-
ever, there are still additional work needed to be able to
handle more advanced extraction tasks.

1. Introduction

The information extraction (IE) concept has been given
a number of definitions such as the task of semantic match-
ing between user-defined templates and documents written
in natural language text, a process that takes unseen text
as input and produces fixed-format, unambiguous data as
output, and extract relevant text fragments and piece them
together into a coherent framework [1, 2, 3]. The preferred
definition for this paper is that information extraction is the

process to find relevant subsets of textual information for
a given task or question and organize them into a clearly
defined data structure. This is different from the area of
text understanding that attempts to capture the semantics
of whole documents.

Examples of applications of IE are shopping agents that
locate information about products or services at different
retailers and compares them to find the best retailer, event
agents that collect information about events that occurs at
different locations and times, and news agents that collect
news articles from different sources and presents articles
relevant for a specific user. Information stored in free nat-
ural text or with semi-structured format would be too diffi-
cult to handle directly without IE for these applications.

The area of information retrieval (IR) has attracted a lot
of attention due to the increased popularity of the World
Wide Web. Services such as Google are known by most
Internet users and are an essential part of the Web today.
The main difference between IR and IE is that IR returns
a set of documents rather than a set of answers or phrases
related to the query. Thus, the information is not translated
to a defined data structure in IR. The advantage of IR is that
it is possible to cover a large number of domains, whereas
IE typically requires domain-dependent knowledge and is
therefore limited in the number of covered domains. These
two areas can be combined and complement each other to
provide useful services.

The concept structured text as used in this paper refers
to textual information stored in a clearly defined data
model, for example in a relational database. The advan-
tage of clearly defined structured information is that the
information can be automatically analyzed and processed
more effectively. Semi-structured text may not have the
clear data model representation as structured text, but have
more structured information than natural language text, e.g.
HTML documents with presentational information com-
bined with the content. These semi-structured documents
are often less grammatically correct than natural language
texts with choppy sentence fragments [4]. The natural lan-
guage processing (NLP) methods designed for unstructured

J.T. Yao, V.V. Raghvan, G.Y. Wang (Eds.): WSS'04, pp. 20-27, 2004.

The 2nd Workshop on Web-based Support Systems 2004 20



natural language text does usually not work as well for
semi-structured information. It has also been shown that
the extraction task can be performed with very high accu-
racy using only the semi-structured information, without
use of any NLP technique [4].

The term wrapper has been given different definitions
depending on the context. In the database community, it
represents a software component that converts data from
one data model to another. In the Web context, it repre-
sents a software component that convert information in a
Web page to a structured format, e.g. into a database. The
latter corresponds to the preferred definition in this paper.
The term wrapper represents an IE software component
that takes semi-structured textual input and generates struc-
tured text as output. Automatic wrapper generation and
wrapper induction are terms that refer to the automatic con-
struction of wrapper, for example using machine-learning
techniques.

The performance of semi-structured IE system (wrap-
pers) is often measured differently than with information
retrieval systems. The precision and recall measure is typ-
ically very high and therefore not a useful measure of the
system. Only systems with 100% precision and recall are
of interest for sources with significant amount of semi-
structured information [5]. These systems are evaluated by
their expressiveness and efficiency that measures the cover-
age of the wrapper (percentage of sources that have 100%
precision and recall) and how easily the wrapper can be
adapted to new domains.

The type of information extraction system that is de-
scribed in this paper works in a different way and has dif-
ferent types of applications. Instead of trying to identify
pieces in the natural language text using linguistic tech-
niques, the focus is to keep track of pieces in the semi-
structured information. A typical application is to keep
track of items in some kind of list in documents, i.e. list
extraction. For example, a shopping agent needs to keep
track of products available from different retailers. Infor-
mation about these products can be available in some kind
of list on the retailer’s homepage, e.g. a table with a row
for each product. Other examples are calendar of events,
and ads in action sites. It is this type of semi-structured
extraction tasks that is in focus for this paper.

A problem with information extraction system, as op-
posed to information retrieval systems, is that it is difficult
to handle a large amount of domains. Search engines based
on information retrieval techniques can create word-index
and rank document for a huge number of domains, but it
is very difficult to create a general information extraction
system. Therefore, instead of creating a general informa-
tion extraction system, a system is created that can easily
be adapted to new domains. This is called a user-driven
information extraction system [6], where non-experts shall

be able to train the system to handle new domains. The
user shall not need programming skills nor be required to
spend a lot of time to train the system. It must be easy to
adapt to new domains if a large amount of domains shall be
available.

2. The ISSIE System

The ISSIE (Intelligent Semi-Structured Information Ex-
traction) system is a user-driven information extraction sys-
tem that use semi-structured information to extract content
from various types of lists.

There are several possible ways to design a system for
the semi-structured information extraction task described
above. Since it should be user-driven, it should not require
the user to have expert skills in either the knowledge do-
main or to have expert programming skills. It is therefore
not appropriate to require the user to design an ontology
for the domain or to ask for complicated regular expres-
sion rules. The basic approach taken by the ISSIE system
is to monitor details of the surfing behavior of the user and
try to repeat the extraction process. The user is asked to
start from a given page and then to navigate to the pages
that contains the extraction pieces of interest, using a tra-
ditional web client. The user shall also give a few exam-
ples of which pieces that he/she is interested in. When this
“training phase” is complete, the system shall go into the
“examination phase” where it tries to repeat the navigation
and locate the given pieces by itself. If the examination
is successful, the system can go into the third phase, the
“extraction phase”. In this final phase, the system can au-
tomatically extract data from the information sources.

The examples that are provided by the user can currently
be of three different types: singleton, list, or complex list.
The singleton examples means that a single node in the
parse tree shall be extracted (see section 2.1.1 for more in-
formation about the parse tree transformation). It could for
example be a title in a page, or some similar piece of in-
formation that do not have any siblings to extract. The list
type shall be used when a simple list in a page shall be ex-
tracted. For example, the list could be all cells in a column
of a table of products at a retailer’s homepage. The user
only needs to provide two examples of cells in the list, and
the system will find the remaining siblings by itself. See
section 2.1.2 for additional information about the sibling
algorithm.

Some lists have more complicated structure, where the
siblings do not share the same path in the parse tree. It is
this parse tree path that is used to find the siblings, so if
this path differs between the siblings, the simple list will
not work. An example of such a complex list is the list of
news in Google (see experiment in section 4.2). To handle
such lists, the user has to provide more than two examples.

The 2nd Workshop on Web-based Support Systems 2004 21



At least one example for each sibling that have different
parse tree path.

The navigation performed by the user is currently mon-
itored by the system using a proxy server. All requests and
responses sent between the web client and web server are
seen by the proxy and information about them is stored in
a database. If the system is able to repeat the extraction
process and identify the wanted extraction pieces, then the
training is complete and the system is ready to extract the
pieces by itself. Remember that the type of extraction tasks
that is in focus here is that pieces, e.g. information about
products in a retailer’s homepage, shall be identified and
extracted. As that information changes over time, the ex-
traction system shall be able to extract the new or changed
pieces.

The advantage of using a proxy server is that technical
details of the retrieval of web pages are captured by the
system. The user can use web clients as usual and the sys-
tem can still retrieve important technical information. In
this way, it is possible for the system to handle web sites
that depend on features such as cookies, form posts, and
browser dependencies. The goal is to add as much intelli-
gence as possible to the system, to handle technical details
automatically, and require as little work and expertise as
possible from the user. An alternative approach is to let
the system try to navigate by itself without the information
received from the proxy server. This has been attempted us-
ing reinforcement learning techniques, but it is difficult to
be able to extract from advanced sites using this technique
[7].

The architecture of the system is shown in figure 1. The
two main parts of the system are the agent-system that han-
dles the analysis and automated extraction tasks, and the
user interface that allows the user to manage and train the
system to extract information. The rest of this section will
give a brief overview of how these parts work and how the
extraction process works.

2.1. The Agent Sub-System

The part of the system that is responsible for handling
the automated extraction process is developed using the
JADE platform [8]. The motivation for using an agent-
oriented approach for the design and execution of the sys-
tem, is mainly for software engineering reasons. The agent-
oriented way to decompose, abstract, and organize relation-
ships can be more intuitive and efficient [9]. The system
consists of Surfer agents that are able to download and han-
dle web pages on the Internet, Analyzer agents that analyze
documents to find the relevant pieces of information, and
a Butler agent that communicates with the user and other
systems.

The communication between the agents is made using

Analyser 

Surfer Butler

INTERNET 

User 

DB

KB

Proxy 
Server

User 
Interface

The Agent System

Figure 1. ISSIE Architecture

an ontology developed with Protégé-2000 [10]. The on-
tology designed with Protégé can be automatically used in
JADE agent communication by using the Bean-generator
plug-in for Protégé [11]. Also, the same ontology can
be used for reasoning with the Jess logical engine in the
agents. The ontology can be imported into Jess using the
JessTab plug-in [12]. The integration of Protégé, JADE,
and Jess provides an efficient way to communicate and rea-
son with a high level of abstraction.

When a user wants to train the system to handle a new
domain, it starts by adding a new task to the system using
the user interface. When the training phase is complete and
information about the navigation performed by the user and
about the wanted extraction pieces is stored in the database,
the agent system starts to work. The Butler agent is in-
formed that the training phase is complete and it will send
an examination request to an Analyzer agent for that train-
ing session.

The Analyzer agent will then start to examine the data
from the training session. It will ask the Surfer agent to
parse the requests and responses sent during the training
phase. A semi-structured model of the pages are created by
the Surfer, and they are they further analyzed by the An-
alyzer. The Analyzer works at a higher abstraction level
than the Surfer. It never works with HTML or HTTP tech-
niques, it only works with the the abstract model created
by the Surfer. The advantage of this approach is that doc-
uments of other types than HTML can be analyzed by the
Analyzer agent, as long as there are semi-structural infor-
mation in the document.

The Analyzer agent uses the Jess logical engine and a
knowledge base to handle the examination of the extraction
process. The knowledge base consists of a set of rules and
facts, which is used to decide which actions that the An-

The 2nd Workshop on Web-based Support Systems 2004 22



alyzer shall take. See section 2.1.3 for more information
about how this process works.

During the examination phase, when the agents shall re-
peat the extraction process, a set of web pages will need
to be downloaded. When the Analyzer decides that a web
page needs to be downloaded, it sends a download request
to a Surfer agent. The Surfer agents have the abilities to
communicate with web servers on the Internet and the nec-
essary technical knowledge to create HTTP request and
parse HTTP responses. It can also transform the HTML
documents into a parse tree representation, i.e. the model
that is later used by the analyzer.

2.1.1. The Semi-Structured Document Model

As stated earlier, the main type of information that is
used by the ISSIE system in the extraction process is the
semi-structured information. This is different from other
types of information such as linguistic information, seman-
tic information, and basic pattern matching. These other
types of information are commonly used in other informa-
tion extraction systems, e.g. named entity recognition, part
of speech tagging, co-reference resolution, and use of se-
mantical resources such as WordNet [13]. Linguistic and
semantic information are currently not used by the system,
but the addition of those types of techniques would improve
the capabilities of the system. However, the use of linguis-
tic information is not as appropriate for semi-structured text
as for unstructured text. The text is often less grammat-
ically correct and contains mostly choppy sentence frag-
ments [4]. If semi-structured information exists in a docu-
ment, that information can sometimes be sufficient by itself
to complete an extraction task [4].

To be able to take advantage of the semi-structured in-
formation, the documents need to be transformed from the
string representation to a tree representation. The system
constructs a parse tree for each document where each node
in the tree represents a block element1 in the document.
Also, links from one page to another page are considered
to be nodes in this model. The edges between the nodes
in the tree represent the parent-child relationships between
the elements in the document.

The motivation for using only block-level elements is
that the may represent an actual separation of text pieces,
whereas in-line elements typically only represent changes
in presentation. Of course, this may not always be the case
and it may sometimes be preferable to also use in-line el-
ement to separated text pieces. Information about in-line
element and linguistic information could be useful, but are
currently not used by the system.

1A block element is different from an in-line element in that that typi-
cally begin on a new line and represent some block of text, e.g. DIV and
P elements.

2.1.2. The Sibling Algorithm

The semi-structured information is used both for navi-
gating through the document, locating the relevant, and to
find all the siblings in a list. When a user adds a (simple)
list during the training phase, he/she is supposed to provide
the content for two pieces in the list. Using only the infor-
mation about the content and the semi-structured informa-
tion in the document, the system shall be able to locate all
remaining siblings in the list.

The algorithm basically searches for the smallest possi-
ble paths to the siblings and store that path for each given
sibling. These paths are then used to find all remaining sib-
lings in the lists. The basic outline of the algorithm looks
as follows for each given example:

1. Search the parse tree systematically for the first piece
in the example and store that node in e.

2. Start from e, store parent node in p, and initialize up
path pathup ←{p}.

3. Initialize list of siblings siblings for all siblings (if
any) for current example.

4. For each child c of p:

(a) Add c to down path: pathdown ← pathdown∪{c}.

(b) Check content in c for sibling example match
from siblings.

(c) If match, store pathup and pathdown as sibling
paths for matching sibling and remove that sib-
ling from siblings.

(d) If siblings is empty, terminate sibling search.

(e) If no match, continue recursively to get children
of c and go to step 4.a.

(f) If siblings is empty, terminate sibling search.

(g) Remove c from down path: pathdown ←
pathdown ∩¬{c}.

(h) Continue with next c.

2.1.3. The Examination Process

When the user has completed the training phase and
thereby demonstrated to the system how to navigate and
what to extract, the system shall examine the training data
and try to repeat the extraction. The examination starts
when the Butler agent sends an examination request to the
Analyzer agent for the training session that was just com-
pleted by the user. The Analyzer now starts the examina-
tion. Here are the basic steps of the examination process:

The 2nd Workshop on Web-based Support Systems 2004 23



1. Make sure the requests and responses have been
parsed and that a parse tree has been built for each
document. This is performed by the Surfer agent.

2. When the parse tree model has been built, the Surfer
agent tries to locate the siblings for all lists that were
given by the user. Each node that contains a wanted
extraction piece is marked as an extraction node, in-
cluding all siblings in a list, according to the sibling
algorithm given above.

3. The Analyzer tries to repeat the extraction process by
itself, using heuristic rules. It has three different plans
to succeed with the extraction, and it starts with the
simplest plan.

4. The first plan consists simply of requesting only the
pages containing the extraction points. In some cases,
this will work and it is therefore not necessary to re-
quest any other pages that exist in the training session.
The Analyzer agent sends download requests to the
Surfer agent.

5. If the first plan fails, it continues with the second plan
that consists of requesting all pages containing form
submittals. The motivation for such a plan is that it
is common to need to authenticate in a web site be-
fore being able to obtain the wanted pieces. Also, if a
search or similar type of filtering has been performed,
it usually involves a form submittal.

6. If the second plan fails too, the Analyzer continues
with the third plan. The third plan involves request-
ing all pages in chronological order from the training
session, excluding duplicates.

7. If a plan succeeds and the wanted pieces are located,
the Analyzer stores that plan in the database and the
examination is completed. If no plan succeeds, the
system responds to the user that it was unable to repeat
the extraction.

2.2. The User Interface

The user interface to the ISSIE system allows the user
to manage the extraction tasks. The user can train the sys-
tem to handle new tasks and modify existing tasks. The
interface is a traditional web interface built using .Net. It
is necessary for the interface to be simple enough so that
users are not required to be computer experts.

Due to the space limitations of the paper, it is not possi-
ble to include any detailed information about the interface.
However, since it is a traditional web interface, there is not
much relevance to give any detailed information. A small
screen shot is given for the page that manages a specific

Table 1. List of experiments

Top news stories Extract headlines of the current

top news stories and the current

top story from

http://www.cnn.com/

Current scientific Extract current scientific

news stories headlines from

http://news.google.com/

Video drivers Extract video driver updates for

a specific computer model from

http://www.dell.com/

task in figure 2. From that page, it is possible for the user
to give basic information about the task, to train the system,
and modify other information for the task.

Figure 2. User Interface: Task Management

3. Experiments

To evaluate the semi-structured list extraction hypoth-
esis, a set of experiments was conducted using the ISSIE
system. These experiments consist of extraction tasks such
as extract the available driver updates for a particular com-
puter model from a manufacturer’s homepage. The list of
experiments conducted is shown in table 1. The motivation
for choosing these extraction tasks are that they are that the
tasks represent interesting and relevant tasks, regardless of
how advanced the web site and the extraction is.

The basic steps in each experiment are as follows:

The 2nd Workshop on Web-based Support Systems 2004 24



1. The user creates a new task in the ISSIE user interface.

2. Basic information such as name of task and start URL
are given by the user.

3. The user starts the training phase by making sure
that the correct proxy settings are configured in the
browser and then going to the start URL.

4. The user shall now navigate from the start URL to the
pages containing wanted information pieces. It is pos-
sible for the user to for example provide username and
password and fill out forms to obtain the information
pieces.

5. When the user arrives at a page that contains wanted
information pieces, the user shall copy text from those
pieces and paste them into the “training” page in the
ISSIE user interface. If a list of pieces shall be ex-
tracted, only two random items in the list needs to be
copied. It is possible to specify if the pieces is part of
a list or if it is a singleton in the ISSIE user interface.

6. When all information pieces have been found and ex-
amples copied to the user interface, the user stops the
training by clicking a “training complete” button in
the ISSIE interface.

7. The agents in the ISSIE system will now analyze the
training session provided by the user and try to repeat
the process. Information about the status is shown to
the user.

8. If the agents were able to repeat the process and find
the pieces provided by the user by themselves, the
training is successful and the automated extraction can
start. Otherwise, the user may need to provide addi-
tional information and re-train the system.

4. Results

The system was able to find the given extraction pieces
and most of the times find the additional items in lists.
There were some problems to correctly find all items in a
list for some tasks, since the structure for list item was not
always identical.

Here is some more detailed information about each ex-
periment:

4.1. Top News Stories

The task to extract news stories from the CNN site is
a common test for information extract systems. The task
was very simple, take the top stories directly from the start
page, which are located in a small box in the top right part

of the start page. The system should not only extract the
top stories headline, but also extract the current main top
story that is located in a different place in the start page.

The two pieces “CIA: Tape likely is bin Laden” and
“Blair sees wider role for U.N. in Iraq” where given for
the top stories list and the piece “U.S. delays troop return
from Iraq” was given for the main top story singleton.

There was no problem for the system to repeat the ex-
traction and locate the additional items in the top stories
list.

4.2. Current Scientific News Stories

The task consists of finding and locating the current sci-
entific news from the Google news site. The start page
was http://news.google.com/ and the scientific news can be
reached with one click from the start page. This list is an
example of a complex list. Some of the articles in the list of
scientific news has a picture before the headline in a sepa-
rate column of and other articles have no picture and there-
fore are the headline placed in a different column.

The pieces “Cassini quietly awaits ride in Saturn’s or-
bit”, “New texting speed record set”, and “Juniper Serious
About SAML” were given as examples of headlines. The
two last pieces are siblings to the first piece and covers the
two different types of articles in the list, i.e. with and with-
out picture.

The system was able to determine the paths to both sib-
lings and able to extract all siblings in the list.

4.3. Video Drivers

The purpose for this task is to be able to extract the list
of video driver updates for a specific computer model from
http://www.dell.com/. This is a rather advanced task since
it involves a large amount of pages to navigate through, and
it also requires form posts and cookie management to work
properly. It is also spread across several web servers.

The task consist of starting at the start page, navigating
to the support pages, submitting the service tag number in
a form to retrieve updates relevant for a specific computer,
and navigating to the video drivers page. There are in total
nine clicks, 34 pages2, and one form post to reach the video
drivers page.

The two pieces “Video: ATI Mobility Radeon
9000, Driver, Windows XP, Multi Language, Inspiron
8500, v.7.80.4-021206a-6945c, A00” and “Video: nVidia
GeForce4 4200 Go, Driver, Windows 2000, Windows
XP, Multi Language, Inspiron 8500, Latitude D800,
v.6.13.10.4258, A03” were given as examples of the video

2The number of pages are larger than the number of clicks since there
are frames, redirects, and similar requests

The 2nd Workshop on Web-based Support Systems 2004 25



drivers list. The system was able to navigate and locate the
given pieces and locate the additional 11 drivers in the list.

5. Related Work

There exist other systems where the semi-structured in-
formation is used, for example [14, 15, 4, 16, 5]. The
main idea in the wrapper toolkit by Ashish and Knoblock
is to exploit the semi-structured information to facilitate
the extraction task. The construction of a wrapper starts
with identifying the relevant structure of a page, building
a parser based on given structure, and finally adding com-
munication capabilities to the wrapper to be able to find
different sources of information and give the result to a me-
diator. A set of heuristic rules are used to identify sections
and subsections in the web pages. These rules are basi-
cally regular expressions that exploit HTML knowledge to
find the structure. In addition, heuristics such as font size
are used to determine the hierarchical level of the structure.
There is no training in the system, although the user is able
to correct erroneous guesses through a graphical user in-
terface. The heuristics basically employs pattern matching
rules to identify sections and subsections, with assistance
of HTML knowledge. The actual structural relationships
present in the source pages are not used for the identified
output structure.

The Rapper system uses the same techniques as in the
Ashish system [14] and adds algorithms that employ lin-
guistic knowledge. These extensions increase the cost of
adapting the system to new domains, although they in-
crease the accuracy for implemented domains. As stated in
the paper, the construction of wrappers is a non-trivial task
even with these tools. A significant amount of knowledge
is still required to construct a wrapper.

The WYSIWYG Wrapper Factory [15] provides a very
nice graphical user interface that allows the user to add ex-
traction rules that takes advantage of the semi-structured
information. However, there is no training in the system
and the user still needs to be familiar to the advanced rule
language used in the system.

6. Conclusion

As previously stated, the hypothesis in the paper is that
a user-driven approach to semi-structured complex list ex-
traction is possible and that it can in the long run lead to
a large amount of extractable domains. There are several
possible applications for this type of information extrac-
tion. For example, the user may simply want to receive
notifications when some information pieces are changed,
added, or removed from a site. A more advanced long term
application would be to facilitate the goal of the Semantic

Web. If the information on the Web should be machine
understandable and not only machine readable, then the
documents need to be transformed from the presentation
format of HTML to more semantically encoded formats
such as RDF and OWL [17, 18]. This type of information
extraction services could assist in this transformation and
make the information automatically available for machines
as well as for humans.

A problem with previous implementations of the ISSIE
system was that it was not able to handle complex lists that
had different structures. By allowing the user to provide
additional examples in the lists, and adding support in the
system to handle multiple paths to the siblings, these more
complicated lists can also be extracted.

Another problem that is more difficult to solve is how
to manage multi-page tables. It is common to split a list
into several pages, to make the list more manageable. The
user of the ISSIE system still expects to extract all items in
the list, not only the items in the first page. A future im-
plementation of the system could possibly be improved to
have multi-page lists, in addition to complex lists, normal
lists, and singletons. The user would then need to give in-
formation by example of how to navigate to other pages in
the list, in addition to how to extract the items in the list.

In general, the experiments were promising and the ap-
proach of using a proxy to monitor technical details that
the user is unaware of is of great help. If compared to the
reinforcement learning approach that should automatically
navigate given some wanted text pieces, this approach is
able to handle very advanced sites easily.

The current system allows users without domain exper-
tise knowledge and without programming knowledge to
quickly create an extraction task. The output from the sys-
tem provides an XML document that can be managed by
other computer systems. A possible application can be to
encode additional semantic knowledge into the XML doc-
ument and make it public. In that way, a large amount of
domain can be made machine understandable and make the
information available on the Internet more valuable.

Acknowledgment

This research was funded by the Swedish Knowledge
Foundation and University of Kalmar. I also wish to
thank Erik Sandewall for his encouragement and guidance
throughout this project.

References

[1] N. Guarino, Information Extraction: A Multidisciplinary
Approach to an Emerging Information Technology, ser. Lec-
ture Notes in Artificial Intelligence. Frascati: Springer,
July 1997, vol. 1299, ch. 8. Semantic Matching: Formal On-

The 2nd Workshop on Web-based Support Systems 2004 26



tological Distinctions for Information Organization, Extrac-
tion, and Integration, pp. 139–170.

[2] H. Cunningham, “Information extraction: A user guide (re-
vised version),” Department of Computer Science, Univer-
sity of Sheffield, Tech. Rep. CS-99-07, May 1999.

[3] J. Cowie and W. Lehnert, “Information Extraction,” Com-
munications of the ACM, vol. 39, no. 1, pp. 80–91, 1996.

[4] S. Soderland, “Learning to extract text-based information
from the world wide web,” in Proceedings of the 3rd In-
ternational Conference on Knwoledge Discovery and Data
Mining (KDD-97), 1997.

[5] N. Kushmerick, “Wrapper induction: Efficiency and expres-
siveness,” Artificial Intelligence, vol. 118, pp. 15–68, 2000.

[6] A. Arpteg, “User-driven semi-structured information extrac-
tion,” in 4th International Conference on Intelligent Systems
Design and Applications, August 2004.

[7] ——, “Adaptive semi-structured information extraction,”
Licentiate dissertation, Linköping university, Linköping,
2003.

[8] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE — A
FIPA-compliant agent framework,” in Proceedings of the
4th International Conference on the Practical Applications
of Agents and Multi-Agent Systems (PAAM-99), 1999, pp.
97–108.

[9] N. R. Jennings and M. Wooldridge, Handbook of Agent
Technology. AAAI/MIT Press, 2000, ch. Agent-oriented
Software Engineering.

[10] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and
M. Musen, “Knowledge modeling at the millennium – the
design and evolution of protege,” in Proceedings of the 12
th International Workshop on Knowledge Acquisition, Mod-
eling and Mangement (KAW’99), Banff, Canada, October
2000.

[11] C. van Aart, “Java ontology bean generator for jade 3.0,”
2003, http://www.swi.psy.uva.nl/usr/aart/beangenerator/
(2004-04-19).

[12] H. Eriksson, “Using jesstab to integrate protégé and jess,” in
IEEE Intelligent Systems, vol. 18, no. 2, 2003, pp. 43–50.

[13] C. Fellbaum, Ed., WordNet: An Electronic Lexical
Database. Cambridge: MIT Press, 1998.

[14] N. Ashish and C. Knoblock, “Wrapper generation for semi-
structured internet sources,” in Proc. Workshop on Manage-
ment of Semistructured Data, Tucson, 1997.

[15] A. Sahuguet and F. Azavant, “Wysiwyg web wrapper fac-
tory,” 1999.

[16] D. Mattrox, L. J. Sligman, and K. Smith, “Rapper: A wrap-
per generator with linguistic knowledge,” in Workshop on
Web Information and Data Management, 1999, pp. 6–11.

[17] World Wide Web Consortium, “RDF primer,” 1999, http:
//www.w3.org/TR/REC-rdf-syntax (2004-04-19).

[18] ——, “OWL Web Ontology Language Guide,” 2004, http:
//www.w3.org/TR/owl-guide/ (2004-04-19).

The 2nd Workshop on Web-based Support Systems 2004 27




