
Self-Protection of Web Content

Hoi Chan, hychan@us.ibm.com Trieu C. Chieu, , tchieu@us.ibm.com

IBM T.J.Watson Research Center

 19 Skyline Drive

 Hawthrone NY, 10532

Abstract

In most Internet applications, there is little

control on how to protect the data content once
it reaches the client. Implementing centralized

control for data content delivered to the client

at the server side is complicated and requires
frequent server and client interaction which

may influence user experience negatively.

This suggests that data contents embedded
with self-protecting functions which run

independently on the client side may be
desirable. In this paper, we propose an

approach utilizing existing browser and agent

technology to enable content protection
function by using agent embedded in the

delivered content. We illustrate this approach
by using a web mail application, in which the

content of the display page is locked up

automatically using embedded functionalities
in the html page when no activities are

detected for a period of time even when server

connection is not available.

Introduction

As the complexity and use of web applications
increases, building systems with agent

technology[1,2,3] to perform various tasks
autonomously becomes increasingly important.

Much of the research and development on

agents and its related technologies focuses on
searching, mining, comparing, negotiating,

learning and collaborating. Very little

attention has been given to autonomic
protection functions[4], especially to protect

individualized data content once it reaches the
client.

Typically, a server protects data access by

disconnecting and logging out a user if no user
activities are detected for a period of time.

However, this does not prevent the current
display page with sensitive information at the

client workstation from being read by others

when the workstation is unattended. To
include functions which can protect or

reconfigure the data content requires

functionalities beyond what the typical
browser can provide. These protection

functions can be implemented, to a certain
extent, by using a browser plug-in[5] which

extends the functionalities of the browser to

provide the necessary protection functions.
However, in most of the cases, proprietary

plug-ins need to be installed explicitly in a
browser, and may not be readily available at

the client side for the specific data content and

applications. In addition, plug-ins in general
offer pre-defined and generalized

functionalities, it lacks the flexibility to

configure itself dynamically to meet
individualized needs.

In this report, we describe an approach to use

intelligent agents embedded in the delivered

content to provide functions specific to the
application data or users. This embedded

agent approach not only eliminates the need
for plug-ins, it also greatly enhances its

flexibility to provide functions tailored to

specific user needs. In other words, different
agents (such as applets[6]) with different

protection mechanisms can be dynamically

configured and included in the delivered web
page based on user information and other

criteria.

J.T. Yao, V.V. Raghvan, G.Y. Wang (Eds.): WSS'04, pp. 45-51, 2004.

The 2nd Workshop on Web-based Support Systems 2004 45

Data Content Embedded with Agent

In general, for web based application, a

browser allows the user to select a link and
retrieve another screen of information. The

browser itself does not provide a lot of

functionalities to manipulate the data.
However, Java agent and plug-in technology

allow extension of browser functions, and

provide Java like functionalities in the browser
environment. Therefore, it becomes possible

to include a set of functions embedded in the
data content which implements the various

protecting functions by using agent technology.

A Java[TM] agent, such as an applet, is a
program written in Java programming

language that can be included in a html page,
much in the same way an image or text are

included. When you use a Java technology-

enabled browser[7] to view a page that
contains an applet, the applet's code is

transferred to your system and executed by the

browser's Java Virtual Machine (JVM).

Typically, user activities and other browser
parameters can be accessed through methods

in JavaScript[8] in html pages. To enable an

applet to access information from the current
html pages, we need a mechanism to go

beyond the boundary of Java Runtime

Environment (JRE) of the applet and connect

the applet with the JavaScript in the html
pages. This is achieved by using the

LiveConnect[9] facility, which is readily
provided in most commercial browsers.

Basically, this facility provides a

netscape.javascript.JSObject class[10], which
permits applets to work with JavaScript to

enable a way to access the document-object-

model (DOM)[11] of an html page.

Based on this facility, we have developed a
design to provide a time out protection

function embedded in web page. The root of

the design is a Java class called
AbstractWebContentAgent class. It provides a

set of common functions to allow
communication between Java applet and

JavaScript to access the content of the html

page. Figure 1 is a list of sample methods in
the AbstractWebContentAgent class. Figure 2

and 3 show the basic Java applet code to

access the html page through the use of
JavaScript and LiveConnect facility. The

readContent method is used to read the DOM
of the html page, while the writeContent

method is used to write data back to the

original page. These two methods utilize the
JSObject class to access the DOM of the html

page.

AbstractWebContentAgent Class

Method List

Public String getConent()

Public void writeContent()
- - - - - - -

W ebMailTimeOutProtectionAgent extends AbstractWebContentAgent

MethodList

Public void timeOutProtection()

……

Figure 1. methods provided in the AbstractWebContentAgent class and its extension -

WebMailTimeOutProtectionAgent.

The 2nd Workshop on Web-based Support Systems 2004 46

JSObject thisWindow = JSObject.getWindow(this);

JSObject document = (JSObject) thisWindow.getMember("document");

JSObject myMember = (JSObject) document.getMember(“myMember");

// get the member “myRef” as a string

String s = (String) myMember.getMember(“myRef");

Figure 2. Reading from the html page using JSObject

JSObject thisWindow = JSObject.getWindow(this);

JSObject document = (JSObject)thisWindow.getMember("document");

String htmlText = ”myText”;

args = new Object[] {htmlText};

document.call("write", args);

Figure 3. Writing to html page using JSObject

Protecting Function for Web Content

The protection scenario involves a company

exposing sensitive mail information due to

workstations frequently left unattended. The
company wants to protect certain sensitive

mail pages from displaying in client

workstations when no user activity is detected
for a certain period of time, even after server

connection is disconnected. To achieve this,
an autonomic protection function is needed

which can react to user idling time. This

function will lock out the current display page
after a specified period of time if no user

activities are detected and the user is required
to enter the password again to return to the

current page. To allow the mail page to be

returned for viewing, the lock-up page should
be stored locally and securely in order for the

user to retrieve it, even when no connection to

server is available.

Based on these requirements, one of the most
flexible and cost effective approaches is to

embed an agent, such as a Java applet, in

selected mail pages. The applet performs the
time-out protection function and utilizes the

WebMailTimeOutProtectionAgent class

(WMTOPA). This WMTOPA class extends
the AbstractWebContentAgent class given

above and allows the applet to gain access to

the content of web mail page. through the
readContent and writeContent methods.

Another function provided by this applet is to

store the mail page locally after a time-out

period is reached. To avoid security exposure,
we need to encrypt the page before storing. To

this end, we have developed a double
encryption algorithm which uses a

public/private key mechanism[12,13] together

with the user password to encrypt and decrypt
the mail content. The algorithm for the time-

out protection and encryption mechanism at

the client browser is illustrated in Fig. 4,5 and
6.

The 2nd Workshop on Web-based Support Systems 2004 47

Browser

Home page
server

Display web mail

pages

Applet

Generate public/private key pair

Use password to encrypt private key

Store public key & encrypted private

key in cookie

Send logon request to server

Password

Applet

Deliver mail content

Get home page

Deliver home page

Log on with password

Figure 4. Mechanism to generate self-protecting behavior – locally generate

encryption key

The operation sequence illustrated in
Figure 4 for generating initial encryption

keys is summarized below:

1. User requests mail home page.

2. Server delivers home page to user.

3. User enters a password to login.
Applet generates a public/private key

pair (K private, K public).

4. Applet uses the password entered by

the user to encrypt K private to get K

encrypted private key.

5. Applet stores K public and K encrypted

private key in session cookie[14].
6. Send login request to the server.

7. Upon successful password

verification, server delivers the
requested mail page to browser.

The reason for the above operation is to avoid

using the user password for future

encryption/decryption of the mail page, which
requires storing the unencrypted password

locally. This may cause a security exposure.

To address this issue, we use a double
encryption algorithm with a public/private key

mechanism, and encrypt the private key using
user password during initial logon. By keeping

public and encrypted private keys in the

session cookie, we can use the public key to
encrypt information when needed, and retrieve

the encrypted private key for decryption when
a user enters the same logon password.

The 2nd Workshop on Web-based Support Systems 2004 48

Lock page

Web mail

page

Applet

idles for 5

minutes

Applet

•Applet detects no user activities

•Encrypt current mail page with public key

from cookie

•Store encrypted content in cookie

•Generate Lock page with password re-login

Password

Figure 5. Mechanism to generate self-protecting behavior – locally encrypt

and store mail content, display Lock page with re-login

Generate lock page

Detect

no user activities

Store encrypted content
cookie

The operation sequence illustrated in Fig.

5 for locking and storing an encrypted

mail page locally is summarized below:

1. Mail page is displayed on user’s
workstation.

2. If no user activities detected within a

period of time (e.g. 5 minutes)

3. The current mail page is encrypted

with public key K public retrieved from

session cookie.
4. The encrypted content of the entire

mail page is stored in session cookie
5. Generate a lock page with password

unlock prompt

.

Lock page
Applet

•U ser log in again w ith user passw ord

•U se password to decrypt private key in cookie

•U se decrypted private ke y to decrypt content

•D isp lay m ail page again

Password

F igure 6. M echanism to generate se lf-pro tecting behavior – loca lly

re trieve, decrypt and d isplay upon successfu l re-logon with

password

W eb m ail

page D isplay orig inal

web m ail

page

User login again

R etrieve from

local sto rage cookie

The 2nd Workshop on Web-based Support Systems 2004 49

The operation sequence illustrated in Figure 6
for retrieving and decrypted the web mail page

is summarized below:

1. User enters password to unlock page

2. Applet retrieves K encrypted private key

from session cookie and decrypt it

with user password to get K private.

3. Applet retrieves encrypted content

from session cookie and decrypt it

with K private

4. Display original web page.

In the above example, we achieved storing the

mail content locally and avoid security
exposure by encrypting the information using

a public/private key mechanism together with

the user password. The generation of the
encrypted private key K encrypted private key using

the user password guarantees that the original
key K private is securely stored locally. The

original private key can be readily recovered

when a user enters the password to unlock the
page.

The important features illustrated by this

example are the time-out and security

functions that are provided by the attached

applet agent in the html page. In general,

different applets can be attached to different

html pages depending on their data content

and specific needs. It is also important to

note that information is securely stored

locally to satisfy the requirement that the

user can still retrieve the locked page even

where there is no server connection. This is

achieved by using a double encryption

technique using the pubic/private keys and

the user password as the main entrance key.

Conclusions

In this report, we have described an

implementation of an agent embedded in web
content which provides a self-protection

function for a delivered page without a
browser plug-in even after server connection is

disconnected. We have also described a

double encryption scheme which allows
secured mail content to be stored locally at the

client side to avoid security exposure. The
methodology described in this report provides

a convenient way of adding autonomous
functions[4] to web data contents at the client

side, especially in situations where specialized

plug-ins are not available. This approach and
concept can be extended to enable other self-

managing functions and personalized

behaviors for web content using dynamic
attachment of agents depending on data

content, user information and other
environment criteria in a client/server

distributed environment. Despite many of its

good points, this approach has its drawbacks,
namely, its limitation by the size of the applet

and the complexities of maintaining a
repository of available applets.

References

[1] Intelligent Agents: Theory and Practice

12/2/99 - Mike Wooldridge and Nick Jennings,

Intelligent Agents: Theory and Practice,
Knowledge Engineering Review, v10n2, June

1995.

[2] Agent-Based Engineering, the Web, and

Intelligence – Charles J. Petrie. December

1996 issue of IEEE Expert.

[3] Intelligent Agents in Cyberspace -

1999 AAAI Spring Symposium,
http://www.aaai.org/Press/Reports/Symposia/Spring/ss

-99-03.html.

[4] Jeff O. Kephart, David M. Chess, "The
Vision of Autonomic Computing", Computer

Journal, IEEE Computer Society, January

2003 issue
[5] Java Plug-in Component -
http ://java.sun.com/j2se/1.4.2/docs/guide/plugin/

[6] Applet Resources - http://java.sun.com/applets/

[7] Java-enabled browsers -
http://physics.syr.edu/courses/java/browsers.html

[8] JavaScript to Java Communication –
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/devel

oper_guide/js_java.html

[9] LiveConnect/Plug-in Developer's Guide
http://wp.netscape.com/eng/mozilla/3.0/handbook/plu

gins/

[10] JSObject –

http://wp.netscape.com/eng/mozilla/3.0/handbook/plu

gins/doc/netscape.javascript.JSObject.html

[11] DOM – Document Object Model
http://www.w3.org/DOM/

The 2nd Workshop on Web-based Support Systems 2004 50

[12] Public Key Cryptography -
http://en.wikipedia.org/wiki/Public_key

[13] Public Key Cryptography
http://www.verisign.com/repository/crptintr.html

[14] Browser Session Cookie
http://www.mach5.com/support/analyzer/manual/html/

Java™ is a trade mark of Sun MicroSystems Inc.

The 2nd Workshop on Web-based Support Systems 2004 51

