
Abstract

When a query is passed to multiple search
engines, each search engine returns a ranked list
of documents. The problem of metasearch is to
fuse these ranked lists such that optimal
performance is achieved because of the
combination. There are two parts of the
metasearch process. The first part is to select
which search engine results are to be merged.
The second part is the actual process of merging.
In this paper we propose (1) a strategy for
selective merging of results from a metasearch
engine and (2) a heuristic for handling missing
documents in result sets to be merged to improve
the result-merging process Our experimental
results will show that our proposed strategy for
selection before merging coupled by
incorporating it into the BORDA method
improves the performance of merging.

1. Introduction

A metasearch engine is a system that supports

unified access to multiple existing search

engines. When a user submits a query to the

metasearch engine, it selects a few promising

search engines, from a larger set of underlying

search engines, to which it will dispatch the

query.

The search engines return results in the form of
ranked lists. The metasearch engine extracts and

selects results from the returned ranked lists, and

merges the selected results into a single ranked

list. In short, the metasearch engine needs to

select search engines whose results (represented

as ranked lists) with respect to a certain query

need to be merged.

In this paper, we provide a strategy to select

search engines whose results need to be merged.

Our proposed strategy for selecting search
engine results revolves around distances between

ranked lists. Given a finite set of ranked lists, we

perform computations such as distance among

rankings and clustering of rankings. The results

of these computations are clusters of rankings

with respect to a given query. We utilize distance

functions introduced in [6] for the clustering of

search engine results in order to perform

selective merging of rankings. The motivation

for selecting search engines based on distances,

is to ensure that we merge results that rank
documents differently. In this way we are able

to combine the diverse opinions of various

search engines with respect to the way in which

they rank documents. Another motivation is to

remove redundancy between search engines at

the time of merging.

A missing document is a document that has been

retrieved by some search engines but not by all.

A document might be missing from a ranked list

if the search engine does not retrieve it, if the

search engine does not index it or if the search
engine does not cover the document. Our

research focuses on the need to come up with

one or more heuristic by which we can compute

the position of each missing document in the

ranked list where it is missing. By doing so we

can insert missing documents into the ranked list

and thereby obtain a more homogenous

environment for merging.

We also focus our attention on comparing three

new heuristics for handling missing documents
in ranked lists that are returned by a search

engine in response to a given query. In this

paper we propose three heuristics (H1, H2 and

H3) to handle missing documents.

The data sets used in our experiments were the

TREC datasets, TREC 3, TREC 5, TREC 9 and

Vogt. We used recall-based precision as the

 On Selective Result Merging in a Metasearch

Environment

Elizabeth D. Diaz, Arijit De, Vijay V. Raghavan

Center for Advanced Computer Studies,

University of Louisiana, Lafayette.

{edd8747, axd9142, raghavan}@louisiana.edu

J.T. Yao, V.V. Raghvan, G.Y. Wang (Eds.): WSS'04, pp. 52-59, 2004.

The 2nd Workshop on Web-based Support Systems 2004 52

measure for comparing the effects that the three

heuristics and the selection strategy had. Our

strategy for selection and heuristics for handling

missing documents were used in conjunction

with the BORDA method.

As part of our experiments, we compared the

performance when merging pre-selected search

engines (based on our proposed selection

strategies) using the method where missing

documents were handled based on our proposed

heuristics to the simple BORDA method based

on the model proposed by Aslam and Montague

[1]. BORDA with selection and missing

document heuristics perform significantly better

than the simple BORDA. Figure 1 is a block

diagram of the representation of the metasearch

process as envisioned by us.

Figure 1: Block Diagram of the Metasearch process

The user interface captures the query from the

user and the dispatcher sends the query to a

series of search engines. Each search engine

returns the results of the query in the form of

ranked lists. These ranked lists are passed to the

ranking analyzer. The ranking analyzer employs

the selection strategy proposed by us to select the

search engines whose results need to be merged.

The ranked lists from these search engines are

passed into the result merger. Missing document

heuristics are applied in the result merger while

the ranked lists are merged into a single final
ranked list that is returned back to the user.

2. Related Work

Researchers and scientists working in the field of

metasearch and distributed information retrieval

have explored data fusion techniques for result
merging. Thus a number of data fusion based

models have been developed. To test the effects

of our heuristics for handling missing document

and strategy for selection of search engines

before merging we use the basic BORDA model.

In this section, we describe the BORDA model

as proposed by Aslam and Montague [1].

2.1. Borda-Fuse Model & Weighted

Borda-Fuse

Aslam and Montague proposed two models [1].

The first one is called Borda-Fuse model and it is

based on a political election strategy named

Borda Count. The Borda-Fuse works by

assigning points to each document in each one of

the lists to be merged. The number of points per

documents depends on the rank position of the
document, i.e.,, for a list of n ranked documents,

the top document receives n points, the next

document receives n – 1 and so on. The points

assigned for a given document by different

search engines are added up and the documents

are ranked from highest to lowest according to

the sum. The Borda count for document di is

∑k (n – rik) where n is the number of documents
and rik is the rank position of document di under

search engine k. This model does not require

training data or the RSVs and its algorithm is

simple and effective. It has been shown that the

Borda Count is optimal [7, 8] when compared to
standard voting methods. However, in [4], it had

been demonstrated that the Borda has limitations

with respect to the Condorcet Principle,

Condorcet Order and the Increasing and

Decreasing Principles.

Their second method, the Weighted Borda-Fuse,

is a weighted version of the Borda-Fuse. A

weight wi is assigned to the ith search engine

according to their performance. Weighted

Borda-Fuse requires training to determine the
best weights for the performance of the search

engines. This method was shown to perform

better than the Borda-Fuse.

3. Handling Missing documents

In this section, we describe a heuristic for
handling missing documents. First we define the

concept of positional values.

3.1. Positional Values

Positional Value: The positional value (PV) of a

document di in the resulting list lk returned by a

search engine sk is defined as (n – rik + 1) where

rik is the rank of di in search engine sk and n is
the total number of documents in the result.

The 2nd Workshop on Web-based Support Systems 2004 53

3.2. Case of Missing Documents

Let PVi be the positional values for a document

d in the ith search engine. Let m be the total
number of search engines. Let r be the number of

search engines in which d appears. Let j denote a

search engine not among the r search engines

where d appears. Our heuristics are:

H1: For all j, PVj =
r

PVi
r

i

∑
= 1 , i.e., average of

the positional values of the document in the r

search engines.

H2: For all j, PVj =

m

PVi
m

i

∑
= 1 , i.e., the PVj is the

average of the positional values of the document

in the m search engines where d appears.

H3: For all j, PVj = min{PVi} where 1≤ i ≤ r ,
i.e., the minimum of the positional values of the

document among the r search engines where d

appears.

4. Proposed selection strategy

In the previous sections, we stated the heuristic

for missing documents. Handling missing

documents is an important part of the metasearch

environment. However to improve the

effectiveness of metasearch we can pre-select the

search engines whose results we need to merge

based on some strategies. In this section, we

discuss our proposed approaches for selecting
search engines.

4.1. Strategy of merging without selection

As the title suggests in this strategy we select

search engines randomly. There is no specific

strategy for selection.

4.2. Strategy of selective merging

In this section, we propose a method for

selecting search engines based on the distances

between the ranked lists obtained for a specific

query. Distance computing measures are

discussed in the next section. After distances are

computed, we propose merging the search engine
pair that has the maximum distance first. We call

this “Farthest SE-Pair First” strategy. The

rational behind, selecting the Search Engines that

are farthest apart first, is to ensure that we merge

results that rank documents differently. Thereby

we are able to add variation to the results that are

being merged.

4.3. Distance measures

To employ the “Farthest SE-Pair First” strategy

we need to compute distances between the

ranked lists returned for a given query by various

search engines. By doing so we can measure the

distanced between search engines in the context

of a particular query. We use the distance

function proposed in [6] with some slight

modification. Let R1 and R2 be two rankings. Let

1∆ be the document set for ranking R1. Let

2∆ be the documents set for ranking R2. Let

213 ∆∆=∆ Ι . Suppose that
1Ψ and

2Ψ are

rankings of
3∆ .

If D and D’ are in
3∆ then the function is

defined as

⎪
⎩

⎪
⎨

⎧

→
→
→

=
inverted

tieotherhigherranksone

agree

DD
2

,1

0

)',(

2
,

1
ψψδ

The ranking distance between
1Ψ and

2Ψ ,

),(21 ΨΨd can be defined by the expression

∑ ∆∈−∆∆ 3)',(
2,1

33

)',(
)1(

1
DD

DDψψδ

Once the distances have been calculated, the

distance matrix can be defined.

Example: Calculating distance among rankings.

Suppose we have 2 ranking list
1Ψ ,

2Ψ , from

two different search engines. These two rankings

have been pretreated with some kind of heuristic

(H1, H2, H3).

1ψ =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5

4

3

1

2

d

d

d

d

d

, 2ψ =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

4

1

3

5

2

d

d

d

d

d

δ (d2, d1) = 0, δ (d2, d3)= 0,

The 2nd Workshop on Web-based Support Systems 2004 54

δ (d2, d4) = 0, δ (d2, d5)= 0,

δ (d1, d3) = 2, δ (d1, d4)= 2,

δ (d1, d5) = 0, δ (d3, d4)= 0,

δ (d3, d5) = 2, δ (d4, d5)= 2,

d(1ψ , 2ψ) =
4*5

8
 = 0.4

4.4. Selection based on maximum

distances: The “Farthest SE-Pair First”

strategy

In this section, we provide an algorithm for the

selection strategy mentioned in section 4.2.

Input: A set of search engines S. S = {SEi ⏐∀i; 1

≤ i ≤ n and n is the number of search engines
underlying the meta search engine}.

Two sets PICKED and NPICKED (non picked).

PICKED = { SEi ⏐ SEi ε S & SEi has been

selected for merging }. NPICKED = { SEi ⏐ SEi

ε S & SEi has not been selected for merging }.
Distance matrix: DM is a matrix that contains the

distance between the search engines based on the

ranked lists obtained by querying it.
DM = { DM(i, j) | DM(i,j) is the distance

between SEi and SEj }.

Number of search engines to be merged: k

Output: The set PICKED.

Stopping Condition: When the | PICKED | = k

where | PICKED | is the size of the set PICKED.

Algorithm: Initially PICKED = φ. NPICKED =
S. Select the element DM(i,j) of DM where

DM(i,j) is maximum.

Select SEi and SEj for merging and place them in

PICKED.

For each search engine SEi in set PICKED,

access its distance to every search engine SEp

that is in set NPICKED by referring to distance

matrix, DM, and pick the DM(i,p) that has the

maximum value over all i and p values. Remove

SEp from NPICKED and add it to picked. Ties

are broken arbitrarily.

Repeat step 4 until the size of set PICKED is k.

5. Experiments

In this section, we describe the various aspects of

our experiments.

5.1. Objectives

The objectives of our experiments were to (1)

study the effect of our selection strategy on the
BORDA method and (2) to explore how the

heuristics for handling missing documents

affected the performance of the BORDA method

when used in conjunction with or without the

selection strategy.

5.2. Procedure

In this section we describe experimental

procedures for merging when no selection

strategy is employed and when our proposed

selection strategy is employed.

5.2.1. Experimental setup for “Randomly

Select Search Engines”

Input: (1)A set of queries Q numbered 1 through

n where n is the number of queries. (2) A set of

search engines S. (3) Missing document heuristic

to be applied. (4) Dataset to be used e.g.,

TREC3, TREC5 and TREC9.
Output: Average precision obtained by merging

ranked list using BORDA.

Procedure: (A) For each query q in Q do the

following procedure.

 (1)Initialize a two dimensional matrix A[11].

Each element represents RB-precision values for

a ranked list obtained by merging a certain

number of search engines. Thus each element

holds the value of RB-precision for a ranked list

obtained when using a specific method to merge

a specific number of search engines.
(2)Varying m from 2 through 12 do the

following (a) pick m search engines randomly

(b)pass the query q to the m search engines

picked randomly and obtain results in the form

of ranked lists.(c) Merge these ranked lists into

one list using each of the methods BORDA,

obtaining a single merged list called RBORDA.

(d) Compute RB-precision for each of the

merged lists for Recall values of 0.25, 0.5, 0.75

and 1.00. Average the RB-precision values thus

obtained to consolidate them into a single
average value. Thus we obtain a single value of

precision, PRBORDA, for the list RBORDA .

Let A[m-1]= PRBORDA. (e) Accumulate over

m. Repeat steps a through d 50 times and

average out the results.

(B) Accumulate over queries and then average

by the number of queries.

5.2.2 Experimental setup for “Farthest

SE-Pair First”

The experimental procedure followed was the

same. However instead of selecting search

The 2nd Workshop on Web-based Support Systems 2004 55

engines randomly (as in A(2).a), in this case we

select search engines based on the strategy

proposed in section 4.4. Thus, for a given m,

only single search engines are considered.

5.3. Implementation

Our experiments were done using programs

written in Visual Basic programming language

that queried a Microsoft Access Database that

held the data exported from TREC 3, TREC 5

and TREC 9 datasets.

For each experiment, we need to input the

method name (in our case we have only one
method), the strategy for selection and heuristic

for selection.

Table 1(a): Description of Data Sets.

5.4. Data Sets

Table 1 shows the particulars of the data sets

TREC 3, TREC 5 TREC 9 and Vogt that are

used. Each of the data sets has a specified

number of systems that return up to 1000

documents when queried with a certain topic.

There are 50 topics in each of the data sets. Each
topic is analogous to a query and each system is

analogous to a search engine. Thus, topics

(queries) are passed onto a system (search

engine). The search engines then return a set of

documents in the form of a ranked list. Each

document is either relevant (represented by 1),

highly relevant (represented by 2) or irrelevant

(represented by 3).

The comparative results of various experiments

were tabulated. Each column in the represents a

set of results obtained for a specific experimental
case. Table 1(b) shows the symbols used in

column headings in the tables to describe the

experiments.

5.5. Performance Metrics

Our metric for measuring performance is Recall
Based Precision. The detailed theory of Recall

Based (RB) precision can be found in [5]. Recall

based precision is used in case when there are a

series of documents ranked in partial order and

we need to find out the precision for various

levels of recall.

The formula is shown below

r

i
sjnx

nx

**

*

++

where

(1) x is one of the standardized recall values i.e.,

0.25, 0.5, 0.75, etc; (2) n is the number of

relevant documents in the collection; (3) s is the

number of relevant document wanted; (4) i is the

number of irrelevant documents in the final rank;

(5) r is the number of relevant documents in the

final rank; (6) j is the number of irrelevant
documents to get to s documents.

In this context, final rank is defined as the rank

containing or completing the number of relevant

documents as specified by s.

Table 1(b): Symbols describing experiments.

5.6. Comparison of missing document

heuristics.

In this set of experiments, we have two cases

In case 1, we compare the performance of the

BORDA algorithm, when each of the three

heuristics for missing documents (H1, H2 and

H3) proposed are applied in conjunction with the
selection strategy.

In case 2, we also compare the performance of

the BORDA algorithm, when each of the three

heuristics for missing documents (H1, H2 and

H3) proposed are applied without any the

selection strategy.

5.6.1. Case 1

Tables 2(a), 2(b), 2(c) shows the performance of
the BORDA algorithm for the data sets TREC 9,

TREC 5, and TREC 3. The first column shows

the number of search engines being merged. The

second, third and fourth columns named BH1SE,

The 2nd Workshop on Web-based Support Systems 2004 56

BH2SE, BH3SE and show results when heuristic

H1, H2 and H3 are applied. The fourth column

named BHNSE represents results of experiments

in which the selection strategy was employed but

no heuristics was applied. Column 9,10,11

shows the improvement effects of heuristic H1,
H2 and H3, respectively, in comparison to the

case when no heuristic was applied.

TREC 9: Table 2(a) shows the results for TREC

9. From the table 2(a) the following observations

can be drawn up: (1) Heuristic H1 improved

upon the case of no heuristic by up to 18% in

some cases. (2) Heuristic H2 improved by 2.5%

in some cases. (3) Notice that Heuristic H3 did

not effect the merging performance. The results

are almost identical for the cases BNHSE and

BH2SE (4). For each of the cases in which a
heuristic is used and the case in which no

heuristic is used the performance measure seem

to go down as we vary the number of search

engines from 2 to 5. Then the performance

improves as we vary the number of search

engines from 5 to 6. Beyond that if the number

of search engines is increased the performance

goes down.

Table 2(a): Comparing performance of Heuristics when

selection strategy is employed for TREC 9

TREC 5: Table 2(b) shows the results for TREC

5. From the table 2(b) the following observations

can be drawn up: (1) Heuristic H1 performs best

effecting the performance of metasearch by

about 46% in some cases. (2) The effect of

Heuristic H2 once again is somewhat limited at

about 7-8% (3) As in case of TREC 9 applying

heuristic H3 has the same effect as applying no

heuristic at all. The results are almost identical
for the cases BNHSE and BH2SE (4) Overall

performance tends to decrease with the increase

in number of search engine results being merged

till about 8 search engines after which the

performance improves.

Heuristic H1 is most effective in improving

performance of the merging algorithm. Heuristic

H2 is less effective and H3 has no effect on the

merging algorithm at all.

TREC 3: Table 2(c) shows the results for TREC
3. Our observations were similar to TREC 5. (1)

Heuristic H1 performs fairly well when the

number of search engines being merges is less

that 10. (2) Heuristic H2 effects the performance

nominally. In certain cases the effect is adverse

and in some case the effect is positive. (3)

Applying heuristic H3 has the same effect as

applying no heuristic at all. (5) Overall

performance tends to decrease with the

increase in number of search engine

results being merged until about 8 search
engines after which the performance improves.

Table 2(b): Comparing performance of Heuristics when

selection strategy is employed for TREC 5

Table 2(c): Comparing performance of Heuristics when

selection strategy is employed for TREC 3

5.6.2. Case 2

Table 3(a), 3(b), 3(c) shows the performance of

the BORDA algorithm for the data sets TREC 9,

TREC 5, and TREC 3. The first column shows

the number of search engines being merged The

second, third and fourth columns named PBH1,

PBH2, PBH3 and show results when heuristic

H1, H2 and H3 are applied. The fourth column

The 2nd Workshop on Web-based Support Systems 2004 57

named PBNH represents results of experiments

in which the selection strategy was employed but

no heuristics was applied. Column 9,10,11

shows the improvement effects of heuristic H1,

H2 and H3, respectively, in comparison to the

case when no heuristic was applied.

Table 3(a): Comparing performance of Heuristics when

no selection strategy (random selection) is employed for

TREC9

TREC 9: Table 3(a) shows the results for TREC

9. Table 3(a) show how each missing document

heuristic effects the performance when no
selection strategy is employed before merging.

From the table, we clearly observe that heuristic

H1 and H2 have only slight positive effect on the

process of merging. Heuristic H3 has virtually no

effect on performance.

Table 3(b): Comparing performance of Heuristics when

no selection strategy (random selection) is employed for

TREC 5

TREC 5: Table 3(b) shows the results for TREC

5. Table 3(b) show how each missing document

heuristic effects the performance when no

selection strategy is employed before merging. In
case of TREC 5 the performance is adversely

effected when missing documents are handled

using heuristic H1 and H2. In case of H1 the

effect is as significant as 5% in some cases. In

case of heuristic H2 the effect is almost

negligible.

Table 3(c): Comparing performance of Heuristics when

no selection strategy (random selection) is employed for

TREC 3

TREC 3: Table 3(c) shows the results for TREC

3. Table 3(c) show how each missing document

heuristic effects the performance when no

selection strategy is employed before merging.

Results are almost identical to that of TREC 5.

5.7. Comparison of BORDA with and

without selection strategy.

In this set of experiments, we compare the

performance of the BORDA method when we

employ a selection strategy before merging
results to the performance of the BORDA

method where no prior selection is done. In this

case, no heuristics are employed for handling

missing documents.

Table 4(a): Selection vs. no (random) selection for

TREC 9

TREC 9: Table 4(a) shows the results when

merging with and without selection. In this

comparison, we do not apply any heuristics for

handling missing documents. The performance is

significantly better when our selection strategy is
employed. The improvements when 6 search

engines are merged are about 31%. Table 4(a)

shows the improvements.

TREC 5: Table 4(b) shows the results for TREC

5. In this comparison, we do not apply any

heuristics for handling missing documents. The

The 2nd Workshop on Web-based Support Systems 2004 58

performance is significantly better when our

selection strategy is employed. In the best case,

improvement is up to 35%. On the average 20%

improvement is observed. Table 4(b) shows the

improvements.

Table 4(b): Selection vs no (random) selection for

TREC 5

6. Conclusions

In our paper we have dealt with two problems

pertaining to merging of results in the context of

metasearch. The first one pertained to missing
documents and second one was pertaining to

selection of search engines that need to be

queried before merging. We proposed three

heuristics for handling missing documents and a

strategy for selecting search engines to be

merged based on the distances between the

ranked lists of results they returned for certain

queries. When merging search engines at

random, our heuristics for handling missing

documents had no effect on the performance of

the merged list. However when applied in

conjunction with the selection strategy the
average precision of the resulting merged list

was greatly improved. Selection before merging

applied independently of missing document

heuristics also resulted in significant

improvements.

7. References

[1] J. A. Aslam, M. Montague, Models for

Metasearch, Proceedings of the 24th annual

international ACM SIGIR conference on

Research and development in information

retrieval, New Orleans, Louisiana, United States,

September 2001, pp. 276-284.

[2] W. Meng, C. Yu, K. Liu, Building Efficient

and Effective Metasearch engines, ACM

Computing Surveys, March 2002, pp. 48-84.

[3] W. Meng, C. Yu, K. Liu. A Highly Scalable
and Effective Method for Metasearch, ACM

Transactions on Information Systems, July 2001

pp. 310-335.

[4] J. R. Parker, Multiple Sensors, Voting

Methods and Target Value Analysis, Computer

Science Technical Report, 1998, February 1,

1998, University of Calgary, Laboratory for
Computer Vision, pp. 615-06.

[5] P. Bollmann, V. V. Raghavan, G. S. Jung,

and L. C. Shu. On probabilistic notions of

precision as a function of recall. Information
Processing and Management, May-June 1992,

Vol. 28:291--315.

[6] V. Raghavan, H. Sever, On The Reuse Of

Past Optimal Queries, Proceedings of the 18th

Annual International ACM SIGIR Conference

on Research and Development in Information

Retrieval, Seattle, Washington, USA, July 9-13,

1995, pp. 344-350,.
[7] F. Roberts, Discrete Mathematical Models,

Prentice Hall, Inc., 1976.

[8] F. Zachary, Lansdowne, Outranking Methods

for Multicriterion Decision Making: Arrow's and

Raynaud's Conjecture"; Social Choice and

Welfare; Vol. 14, No. 1; January, 1997; 125-128;

#2431.

The 2nd Workshop on Web-based Support Systems 2004 59

