
An Integrated Approach to
Discovery in Complex Information Spaces

Daryl H. Hepting and Cory Butz

Department of Computer Science, University of Regina
Regina, Saskatchewan, S4S 0A2, Canada

E-mail: {dhh,butz}@cs.uregina.ca

Abstract

As the amount of available data continues to increase,
more and more effective means for discovering important
patterns and relationships within that data are required. Al-
though the power of automated tools continues to increase,
we contend that greater gains can be achieved by coordin-
ating results from a variety of tools and by enhancing the
user’s ability to direct the application of these tools. A sys-
tem which can rely on multiple modalities for processing in-
formation has a distinct benefit in terms of user-confidence
in the final results. We set forth an approach which permits
a flexible, user-controllable model of the information space
within which basic tools can be integrated. The analysis
of data, whether it be through visualization or data min-
ing, for example, is an exercise in problem-solving and any
computer-based tool to support the analysis process should
be designed to support problem-solving activities. The pro-
cess by which a user can develop and interact with this
model is described and the benefits of this approach are dis-
cussed. This integration can be extremely useful both for the
development of new hypotheses regarding the data and for
verification of existing hypotheses.

1. Introduction

Visualization in scientific computing continues to gain
prominence as a tool for data analysis and comprehen-
sion, beginning with the landmark report of McCormick et
al. [20]. In the modern era, this trend can trace its roots back
to the beginnings of modern computing. Even before the ad-
vent of computer graphics, numerical simulations were an
important tool for scientific insight. In the 1940’s, John von
Neumann [37] wrote about the potential for the use of com-
puters in the study of differential equations. It is this poten-
tial of the computer as an experimental tool which caused

Richard Hamming [9] to write “the purpose of computing is
insight, not numbers” as the motto for his 1962 text, Numer-
ical Methods for Scientists and Engineers. It is important
to remember that insight is the goal of any computer-aided
analysis activity, whether it be scientific visualization, data
mining, or machine learning.

Although Jessup [12] contended that scientific visualiz-
ation has the promise to democratize visual thinking, the
capability to produce computer-generated visual represent-
ations alone is insufficient to realize this promise of aid-
ing the achievement of insight for individuals. What is true
for visualization is also true in a much more general sense
for other forms of computer-based analyses. The mere ex-
istence of a capability is not sufficient to have it adopted and
used successfully by all those who might gain insight with
it. In general, tools must be created that allow access to the
method without requiring the user to be an expert in the
vocabulary associated with the details of the method. More
generally though, tools should present the user with a rep-
resentation of the context in which the method is invoked.
Furthermore, these tools should enable the domain expert
to work with the analysis tools, without being burdened by
the need to learn a specialized vocabulary, to produce rep-
resentations which are effective for the expert [32]. In the
realms of scientific and information visualization, the co-
gito system has been a example of this paradigm [10].

Consider that any visual representation can be decom-
posed into components, each with their own elements. A
component could be “graph type”, with elements includ-
ing “bar chart”, “pie chart”, “line chart”, “scatterplot”, and
so on. Each visual representation can be denoted as an N -
tuple, where ei is an element of component Ci. In practice,
not all N -tuples will correspond to valid visual representa-
tions because of incompatibilities between elements of dif-
ferent components. The Cartesian product of the elements
from all the components forms the N -dimensional space of
available visual representations

〈e1, e2, . . . , eN 〉 ∈ C1 × C2 × . . . × CN .

J.T. Yao, V.V. Raghvan, G.Y. Wang (Eds.): WSS'04, pp. 67-74, 2004.

The 2nd Workshop on Web-based Support Systems 2004 67



Figure 1: One possible visual representation of Bertin’s
data, constructed from components and elements that spe-
cify features including the graph type, the annotation, the
sorting of the data, and the colours.

The space of available visual representations can be very
large and it can be difficult to grasp the implications of all
available combinations of elements. It is particularly clear
in this type of situation that it is not possible to completely
articulate all elements of a problem, a priori, to arrive at
a solution. This fact only exacerbates the problem of se-
lecting and specifying the individual elements in a visual
representation. In the midst of so many combinations, it
can be difficult to find a visual representation which is ap-
posite. As Wegner [38] points out, interactive systems can
offer a great deal more power in dealing with this situ-
ations, over algorithms alone. Researchers have observed
that problems and solutions coevolve [6]. One usually does
not, perhaps cannot, have a clear statement of the problem
without an idea of the solution. Rittel [25] described this as
follows: “you cannot understand the problem without hav-
ing a concept of the solution in mind; and that you can-
not gather information meaningfully unless you have un-
derstood the problem but that you cannot understand the
problem without information about it.” One must simply be-
gin. The evolutionary nature of the design process is well-
described by the model of evolutionary epistemology [31].
Allen [1] uses this formulation, based on Neill [21], for in-
formation seeking.

The cogito system supports each user in this process
by providing external representations of the space of avail-
able alternative combinations and the means to manipulate
it quickly and easily, through a predominantly visual inter-
face [11]. Although the cogito system was developed as a
means to support the scientific visualization process, the
principles are amenable to other areas. The recent work
by Grady et al. [8], which illuminates several important

open problems with respect to the integration of data mining
and visualization processes, echos key points of the design
philosophy in cogito. Thus, we feel that our system coin-
cides nicely with the architecture of web-based support sys-
tems suggested by Yao and Yao [44].

The rest of this paper is organized as follows. Section 2
describes the paradigm embodied by the cogito system. Sec-
tion 3 describes methods for learning which can be incor-
porated within the cogito framework for discovery. Sec-
tion 4 describes how the automated capabilities can be in-
tegrated within cogito. Finally, Section 5 presents some con-
clusions and directions for future work.

2. Design of the cogito system

The use of components and elements to describe partic-
ular visual representations is an adaptation of Bertin’s [2]
retinal variables which he used to systematically explore
marks on a plane and how those marks could be used to con-
struct diagrams, networks, and maps. Graphic communica-
tion in two dimensions has been thoroughly studied and the
construction of visual representations within this realm is
fairly well understood. For this reason, the example chosen
to illustrate this presentation and to evaluate the prototype
software is a two-dimensional graphing problem based on
a small dataset from Bertin [2][page 100]. It provides a
view of the French economy from the early 1960’s. For
each département in France, the data provides the work-
force (in thousands of workers) for each of the three sec-
tors (primary, secondary, and tertiary) in the economy; the
total workforce (the sum of the three sectors); and the per-
centage of the workforce in each sector. Figure 1 presents a
sample visual representation of this data.

Bertin [2] remarked that “to construct 100 DIFFERENT
FIGURES from the same information requires less imagin-
ation than patience. However, certain choices become com-
pelling due to their greater ‘efficiency.”’ But the question of
efficiency is closely linked to the task at hand and the user’s
experience with the elements of a visual representation, as
Casner [3] describes. Although Bertin contends that mean-
ing can be communicated fully through a graphic and its le-
gend, the more widely accepted view is that communication
and interpretation occur, or are influenced by things, out-
side this realm. For Winograd and Flores [39], this means
that “the ideal of an objectively knowledgeable expert must
be replaced with a recognition of the importance of back-
ground. This can lead to the design of tools that facilitate
a dialog of evolving understanding among a knowledgeable
community.” This type of computer-based tool can be hard
to construct.

Adapting the classification of Kochhar et al. [14], it is
possible to distinguish manual, automatic, and augmented
systems based on their relationship of human and computer.

The 2nd Workshop on Web-based Support Systems 2004 68



Manual systems require the user to completely describe
and control the operation of the visualization application.
The space of alternatives available for exploration in these
schemes is implicitly limited by the user’s own experi-
ence. Systems exemplified apE (animation production En-
vironment) [5] and AVS (Application Visualization Sys-
tem) [35], are collectively known as Modular Visualization
Environments (MVE’s). MVE’s have come to prominence
because they allow users to create complete visualizations
from components connected using a visual dataflow model.
DataDesk, the statistical graphics package first described
by Velleman and Pratt [36] in 1989, provides a direct-
manipulation interface to statistics and a good example of
Tukey’s Exploratory Data Analysis [34]. It builds on the
idea that multiple, connected views of data can greatly en-
hance the power of data analysis. Graphical interfaces are
seen as ways to specify “like this one, only different in the
following ways.” Insight is acknowledged as important. The
Spreadsheet for Information Visualization (SIV) [4], based
on work presented by Levoy [17], is a novel use of the
spreadsheet programming paradigm that allows the user to
explore the effect of the same operation on several related
images.

Automated systems appear to the user as black boxes
which are given input and produce output. The rationale be-
hind them is that the number of alternative visual repres-
entations is so large that the user would be overwhelmed
if he or she had to deal with the space in its entirety. In
accepting this guidance from the computer, the user relies
more on the computer for its application of design rules
and gives up more freedom to exercise personal choices
about what the visual representations will contain. In 1986,
APT (A Presentation Tool) by Mackinlay [18] contributed a
formalization of the design rules for two-dimensional static
graphs, based on Bertin [2] and others. It was a prescriptive
system because it chose graphics on the basis of express-
iveness and effectiveness criteria. With BOZ in 1991, Cas-
ner [3] added information about the task to his presenta-
tion system and this resulted in a noticeable improvement
in user performance with the graphs that his system gener-
ated.

Augmented systems aid the user by allowing certain
well-defined tasks to be performed primarily by the com-
puter, with the effect of increasing the capabilities of people
to tackle complex problems. Because any articulation of a
design is an ongoing process which is necessarily incom-
plete, it is important for the user to maintain some control.
Rogowitz and Treinish [26] described a visualization archi-
tecture that allowed the user to choose a higher-level in-
teraction with the visualization process, based on the in-
vocation of appropriate rules. The VISTA (VISualization
Tool Assistant) environment described by Senay and Ig-
natius [29] would analyse, as much as possible, the input

data and suggest a visual representation to which the user
could make modifications. The SageTools [27] system al-
lowed users to work in the context of past graphics with the
option to modify what had already been done. The Integ-
rated Visualization Environment (IVE) [13] implemented
the cooperative computer-aided design (CCAD) paradigm.
It used a generative approach, in which the user could inter-
cede after each iteration to select promising designs for fur-
ther development. Design Galleries [19] worked to provide
a good sampling of the range of alternatives. The user spe-
cified the means for comparison and the system worked off-
line to generate and evaluate the images based on the user’s
specification and then displayed the results.

Rather than focus on the results produced by these visu-
alization systems and attempt to answer whether a “best”
visual representation can be decided for any context or any
group of users, it is productive to look at the process by
which these representations can be developed. According
to Winograd and Flores [39], we can “create computer sys-
tems whose use leads to better domains of interpretation.
The machine can convey a kind of coaching in which new
possibilities for interpretation and action emerge.”

Norman [22] describes the twin gulfs of execution and
evaluation. With a goal in mind, a user experiences the gulf
of execution in deciding which commands to execute in or-
der to move from his or her present state to the goal state.
Similarly, the gulf of evaluation is encountered when a user
tries to reconcile an intermediate result state with the ori-
ginal goal state. An effective interface will minimize these
gulfs, and for visualization tasks a visual interface is indic-
ated.

In 1991, Sims [30] presented a method for the use of arti-
ficial evolution in computer graphics which employed both
a genetic algorithm [7] and genetic programming [15]. Both
of these “genetic” methods work by simulating the cellular-
level processes of cross-over and mutation. The former does
this as means to search a space whereas the latter works to
transform the space itself. For Sims, the goal was to evolve
images and textures. However, because it can be surprising
to see images from different generations with no apparent
connection between them, it can work to defeat the user’s
control. In 1992, Todd and Latham [33] also discussed a ge-
netic approach to the generation of new images, theirs be-
ing more restrictive and controllable by not including ge-
netic programming.

Even for small problems with relatively few alternatives,
an exhaustive evaluation is almost always completely im-
practical. Instead, humans rely on heuristic search methods
which are likely to find acceptable solutions in a reason-
able amount of time. These search heuristics can be of two
sorts, in general. If the problem is well-understood, local
search techniques may be employed effectively. If the prob-
lem is new, a global search may be better suited to the ex-

The 2nd Workshop on Web-based Support Systems 2004 69



ploration of alternatives.
The cogito software system was designed to address the

shortcomings of traditional visualization tools. In particu-
lar, the system deals with the problem of articulation with
a visual interface that provides non-verbal access to altern-
atives. With an incomplete articulation of the context, the
iteration performed in selecting and evaluating candidate
visual representations is crucial to the visualization pro-
cess. The evaluation of visual representations can be done
more effectively if the available alternatives are understood,
and interaction is essential to accomplish this. The cogito
system supports “combinatory play” by considering every
visual representation to be the product of elements from
each of several components and it relies on the user to
choose these elements. Not only is this conception of com-
ponents and elements familiar from Bertin, it also occurs
in MVE systems like AVS [35] (Application Visualization
System), and the toolkit philosophy of the Visualization
ToolKit [28]. But, in cogito, the user does not choose these
elements in isolation. Rather, he or she chooses between
whole visual representations, each of which comprise par-
ticular elements.

The computer is well-suited to provide such external
memory to support this decision-making process. Placed
between manual and automatic systems, the design of co-
gito uses the computer to perform bookkeeping functions
and allows the user evaluate and select. A traditional visual-
ization system, with its need for expertise in programming,
can separate the user from this important function. Whereas
programming support is also required for cogito, the user
and the programmer may work together to create the no-
tion of the space of available representations and the user is
still able to interact directly with the computer. Figure 2 il-
lustrates this difference.

The cogito system provides, through views, the means
to structure and examine the space according to a range of
criteria. The user sees the current space, with the current or-
ganizational view, one screen at a time. Cells, which display
individual visual representations and permit certain opera-
tions on them, comprise each screen. A schematic of one of
these screens is shown in Figure 3. As the programmer and
user define the space, it is also possible to use different or-
ganizational methods for the space of alternatives. In Fig-
ure 4, for example, one sees 3 different ways to organize a
space with three dimensions. Using the terminology of Fig-
ure 3, the representatives x1 . . . x4 in Figure 4(b) are formed
by choosing sequentially from X and randomly from Y and
Z.

The user indicates desirable elements or complete visual
representations by non-verbal selection (done by clicking
directly on the desired cell). Once the user is satisfied with
the selections made on a particular space, a new space con-
sistent with those selections is generated by a genetic ap-

Figure 2: In the traditional model of interaction with visual-
ization systems, the programmer mediates the user’s exper-
ience with the software. The new model embodied in cogito
allows the user to work directly with the software.

Figure 3: Schematic look at the interface: the space of avail-
able alternatives is grouped according to user-specified cri-
teria. Each group (A – F) has a representative element (a –
f) which is displayed to the user. The subspace for the next
search iteration is based on the user selection (b and f).

proach which performs crossover operations amongst se-
lected combinations. Successive generations can be used to
either narrow or expand the search space (up to the size of
the original), depending on the needs of the user. Addition-
ally, an “image editor” is provided to directly make small
changes. In this way, the space of all available visual rep-
resentations can be navigated.

The 2nd Workshop on Web-based Support Systems 2004 70



Figure 4: Consider a three-dimensional space, depicted in
the top left, with axes X , Y , and Z. Organizing the space in
terms of any of those 3 axes leads to the other states depic-
ted. If elements in component X are chosen sequentially,
those in Y and Z can be selected randomly to give a sense
available options.

3. Computational Support for Discovery

A fundamental original emphasis for the cogito system
was support for the user without directing the user. In very
large and complex information spaces, this emphasis is per-
haps impractical or even unwanted when considering ex-
perts in some domain of knowledge. There are two basic
ways in which some direction can be given to the cogito
user.

The first may emerge as patterns in usage of the cogito
system over time. For the same data set and collections of
available visual representations, it might be very instructive
to know if previous users had selected certain visual repres-
entations in certain cases. This type of information can be
garnered by multidimensional scaling [16], for example.

The second type of direction can derived from the data to
be analyzed, where algorithms for learning can be applied.
These learning methods are outlined in the balance of this
section.

Learning from examples, known as inductive learning, is
perhaps the oldest and best understood problem in artificial
intelligence [43]. For our purposes, we may view this prob-
lem as indentifying the documents which a user is likely to
be interested in. An inductive algorithm can, from a given
sample of documents classified as relevant or nonrelevant,
infer and refine decision rules.

Quinlan [24] proposed an inductive algorithm, called
ID3, based on the statistical theory of information proposed
by Shannon. Since it is essential to have an effective attrib-

ute selection criterion, ID3 uses the entropy function in se-
lecting a suitable subset of attributes to construct a decision
tree.

We illustrate this method using an example in [43]. In
the following example, our problem of identifying the doc-
uments relevant to a user is synnonamous with the problem
of a physician diagnosing patients. Consider the sample data
in Figure 5 representing the diagnosis of eight patients by a
physician. As already mentioned, the task at hand is to de-
termine which attribute out of Height, Hair, and Eyes is the
best classifier. By using the entropy function, it can be veri-
fied that attribute Hair is the best classifier. Thus, we con-
struct the initial decision tree in Figure 6.

Height Hair Eyes Expert Classification
o1 Short Dark Blue −
o2 Tall Dark Blue −
o3 Tall Dark Brown −
o4 Tall Red Blue +
o5 Short Blond Blue +
o6 Tall Blond Brown −
o7 Tall Blond Blue +
o8 Short Blond Brown −

Figure 5: Sample data consisting of eight people diagnosed
by a physician.

Any leaf node of the tree containing objects belong-
ing to different expert classes requires further classification.
In the initial decision tree, the leaf node for Blond needs re-
finement. Again, the objective is to determine which

Figure 6: The initial decision tree with Hair as the root node.

The 2nd Workshop on Web-based Support Systems 2004 71



of the remaining attributes best classifies the four ob-
jects o5, o6, o7, o8. It can be established that attribute Eyes
is a better classifier than attribute Height. Thus, the ini-
tial decision tree in Figure 6 is refined as shown in Fig-
ure 7. Since each leaf node in the refined decision tree
contains objects of the same expert class, no further refine-
ment is necessary. Thus, given the sample data in Figure 5,
the ID3 algorithm will produce the decision tree in Fig-
ure 7.

Figure 7: Refining the decision tree in Figure 6 by adding
the node (classifier) Eyes.

The important point to remember is that, by providing
the user with a decision tree tool, the user will be able to
visualize how the attributes classify the sample documents.
This information is useful as it can be used to assign a
weight to the attributes (keywords) in future searches.

Yao [45] has recently argued that an information retrieval
systems must provide a variety of tools to help a user under-
stand collected data. In this section, we turn our attention to
learning a probabilistic network from data. Such a tool is
useful as it reflects the probabilistic independencies hold-
ing in the data.

Our implemented system [42] for learning a probabil-
istic network from data requires no à priori knowledge re-
garding the semantics of the attributes (variables) involved.
The required input is simply a repository of observed data
in tabular form. Our system is capable of learning condi-
tional independencies from the data and outputs a prob-
abilistic schema encoding all the discovered independen-
cies. Due to lack of space, however, we assume the reader
is familar with the notions of probabilistic conditional in-
dependence [41], Markov networks [40], and learning al-
gorithms [42].

Given a distribution pX on X ⊆ R, we can define a func-

tion as follows:

H(pX) = −
∑

tX

pX(tX) log pX(tX) (1)

= −
∑

x

pX(x) log pX(x), (2)

where t is a tuple (configuration) of X and x = tX = t[X]
is a X-value, and H is the Shannon entropy.

Let G = {R1, R2, . . . , Rn} be hypertree and R =
R1R2 . . . Rn. Let the sequence R1, R2, . . . Rn be a tree
construction ordering for G such that (R1R2 . . . Ri−1) ∩
Ri = Ri∗ ∩ Ri for 1 ≤ i∗ ≤ n − 1 and 2 ≤ i ≤ n. A joint
probability distribution pR factorized on G is a Markov dis-
tribution, if and only if

H(pR) =
n∑

i=1

H(pRi
) −

n∑

i=2

H(pRi∗∩Ri
). (3)

This theorem indicates that we can characterize a
Markov distribution by an entropy function. We now
demonstrate how we learn the dependency structure of a
Markov distribution.

Initially, we may assume that all the attributes are prob-
abilistically independent, i.e., there exists no edge between
any two nodes (attributes) in the undirected graph repres-
enting the Markov distribution. Then an edge is added to
the graph subject to the restriction that the resultant hy-
pergraph must be a hypertree. The undirected graph of the
Markov distribution with minimum entropy is being selec-
ted as the graph for further addition of other edges. This
process is repeated until a predetermined threshold, which
defines the rate of decrease of entropy between successive
distributions, is reached. From the output hypertree, we can
infer the probabilistic conditional independencies which are
satisfied by the distribution.

Suppose we have a database D consisting of the ob-
served data of a set of four attributes, N = {a1, a2, a3, a4},
containing five tuples as shown in Figure 8. We have
set the threshold to zero, the maximum size of a
clique η = 4, and the maximum number of looka-
head links to one. The output is the undirected graph
{(a1, a2), (a1, a3), (a1, a4)}. By applying the separation
method, we know the following CIs hold in the observed
data {I(a2, a1, a3a4), I(a3, a1, a2a4), I(a4, a1, a2a3)}.

It should be mentioned that there are numerous methods
for learning a Bayesian network [23] from data (see [42] for
references). Since a Bayesian network is defined on a direc-
ted acyclic graph, the directionality of the edges may be in-
terpreted as causality between variables. Thereby, one may
choose to learn a Bayesian network as well as a Markov net-
work from the sample data.

The 2nd Workshop on Web-based Support Systems 2004 72



a1 a2 a3 a4

0 0 0 0
1 1 1 0
1 1 0 0
0 0 1 0
2 1 1 1

Figure 8: Observed data consisting of 4 attributes and 5
tuples.

Figure 9: The interface to the cogito system. The interface
displays a subset of available representations (sampled ac-
cording to the selected organization of the search space),
generated from the current data, with which the user can in-
teract.

4. Integration

The cogito interface is shown in Figure 9. An integrated
visualization and discovery tool will definitely help to ad-
dress the issues of trust [32], as users can manipulate data
and represent them in a variety of ways. The variety of
methods available to the user will enable them to arrive at
conclusions from several means.

Rather than lose sight of the forest for the trees, this ap-
proach allows users to examine the trees in the context of the
forest, and to examine the forest at various levels of granu-
larity, according to different criteria.

For visualization and discovery, we see two important
advantages arise. Interesting patterns can be found through
visualization which can be then coded within the discovery
portion and similarly, patterns discovered by the learning al-
gorithms can focus the interpretation efforts in the visualiz-
ation stage. Thus, we feel our system coincides nicely with

the architecture of web-based support systems suggested by
Yao and Yao [44].

5. Future work

The modelling and representation of the space of avail-
able alternatives has proven to be important in many re-
spects. Primarily, it provides each user with the means to ex-
plore in a safe, structured environment that can then act as a
record of the whole decision process. The approach is even
generalizable beyond the scope of the visualization and dis-
covery. Work is now being done to use this paradigm in nu-
merical experimentation. Consider using this approach to
manage a numerical experiment where each parameter be-
comes a component and the values for that parameter be-
come elements. We are pursuing other possible applications
for this paradigm.

References

[1] B. L. Allen. Information Tasks: Toward a User-Centered Ap-
proach to Information Systems. Academic Press, 1996.

[2] J. Bertin. Semiology of graphics : diagrams, networks, maps.
University of Wisconsin Press, 1983. translated by W. J.
Berg.

[3] S. M. Casner. A task-analytic approach to the automated
design of graphic presentations. ACM Transactions on
Graphics, 10(2):111–151, April 1991.

[4] E. H. Chi. Principles for information visualization spread-
sheets. IEEE Computer Graphics and Applications, pages
30–38, July/August 1998.

[5] D. S. Dyer. A dataflow toolkit for visualization. IEEE Com-
puter Graphics and Applications, pages 60–69, July 1990.

[6] G. Fischer and B. Reeves. Beyond intelligent interfaces: Ex-
ploring, analyzing, and creating success models of cooperat-
ive problem solving. Journal of Applied Intelligence, 1:311–
332, 1992.

[7] D. E. Goldberg. Genetic algorithms in search, optimiza-
tion, and machine learning. Addison-Wesley, Reading, MA,
1989.

[8] N. Grady et al. Integrating data mining and visualization
processes. In U. Fayyad, G. Grinstein, and A. Wierse, ed-
itors, Information Visualization in Data Mining and Know-
ledge Discovery, pages 299–303. Morgan Kaufmann, 2001.

[9] R. Hamming. Numerical Methods for Scientists and Engin-
eers. McGraw-Hill, 1962.

[10] D. H. Hepting. A New Paradigm for Exploration in
Computer-Aided Visualization. PhD thesis, Simon Fraser
University, 1999. Ph.D. Dissertation.

[11] D. H. Hepting. Towards a visual interface for informa-
tion visualization. In E. Banissi, editor, Proceedings of
the Sixth International Conference on Information Visual-
ization, pages 295–302. IEEE Computer Society, 2002.

[12] M. E. Jessup. Scientific visualization: Viewpoint on collab-
orations of art, science, and engineering. SIGBIO Newslet-
ter, pages 1–9, February 1992.

The 2nd Workshop on Web-based Support Systems 2004 73



[13] S. Kochhar, M. Friedell, and M. LaPolla. Cooperative,
computer-aided design of scientific visualizations. In Pro-
ceedings of Visualization ’91, pages 306–313, 1991.

[14] S. Kochhar, J. Marks, and M. Friedell. Interaction paradigms
for human-computer cooperation in graphical-object model-
ling. In S. MacKay and E. M. Kidd, editors, Proceedings of
Graphics Interface ’91, pages 180–189, 1991.

[15] J. R. Koza. Genetic Programming : On the Programming of
Computers by Means of Natural Selection (Complex Adapt-
ive Systems). MIT Press, 1992.

[16] J. B. Kruskal. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika,
29:1–29, 1964.

[17] M. Levoy. Spreadsheets for images. In A. Glassner, editor,
Computer Graphics: SIGGRAPH 94 Proceedings, pages
139–146, 1994.

[18] J. Mackinlay. Automating the design of graphical present-
ations of relational information. ACM Transactions on
Graphics, 5(2):110–141, 1986.

[19] J. Marks et al. Design Galleries: A general approach to set-
ting parameters for computer graphics and animation. In
SIGGRAPH ’97 Conference Proceedings, pages 389–400,
1997.

[20] B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visual-
ization in scientific computing. Computer Graphics, 21(6),
November 1987.

[21] S. D. Neill. The reference process and the philosophy of karl
popper. RQ, pages 309–319, Spring 1985.

[22] D. A. Norman. The Psychology of Everyday Things. Basic
Books, New York, 1988.

[23] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers,
San Francisco, California, 1988.

[24] J. Quinlan. Machine Learning: the Artificial Intelligence Ap-
proach, chapter Learning Efficient Classification Procedures
and Their Application to Chess End Games. Tioga Press,
Palo Alto, 1983.

[25] H. W. J. Rittel. Second-generation design methods. In De-
velopments in Design Methodology, pages 317–327. Wiley
and Sons, 1984.

[26] B. E. Rogowitz and L. A. Treinish. Data structures and per-
ceptual structures. SPIE, 1913:600–612, 1993.

[27] S. F. Roth, J. Kolojejchick, J. Mattis, and M. Chuah.
Sagetools: An intelligent environment for sketching, brows-
ing, and customizing data-graphics. In Proceedings CHI’95
Human Factors in Computing Systems, pages 409–410.
ACM Press, 1995.

[28] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The
design and implementation of an object-oriented toolkit for
3D graphics and visualization. In Proceedings of Visualiza-
tion 96, pages 93–100, 1996.

[29] H. Senay and E. Ignatius. A knowledge-based system for
visualization design. IEEE Computer Graphics and Applic-
ations, 14(6):36, 1994.

[30] K. Sims. Artificial evolution in computer graphics. In R. J.
Beach, editor, Computer Graphics: SIGGRAPH ’91 Confer-
ence Proceedings, pages 319–328. ACM Press, 1991.

[31] P. Skagestad. Thinking with machines: Intelligence
augmentation, evolutionary epistemology and semiotics.
Journal of Social and Evolutionary Systems, 16(2):157–180,
1993.

[32] K. Thearling et al. Visualizing data mining models. In
U. Fayyad, G. Grinstein, and A. Wierse, editors, Informa-
tion Visualization in Data Mining and Knowledge Discov-
ery, pages 205–222. Morgan Kaufmann, 2001.

[33] S. Todd and W. Latham. Evolutionary art and computers.
Academic Press, London, 1992.

[34] J. W. Tukey. Exploratory data analysis. Addison-Wesley,
1977.

[35] C. Upson et al. The application visualization system: A com-
putational environment for scientific visualization. IEEE
Computer Graphics and Applications, 9(4):30–42, 1989.

[36] P. F. Velleman and P. Pratt. A graphical interface for data
analysis. Journal of Statistical Computation and Simula-
tion, 32:223–228, 1989.

[37] J. von Neumann. Recent theories of turbulence. In A. Taub,
editor, Collected Works of John von Neumann, volume 6,
pages 437–472. MacMillan, New York, 1963.

[38] P. Wegner. Why interaction is more powerful than al-
gorithms. Communications of the ACM, 40(5):80–91, 1997.

[39] T. Winograd and C. F. Flores. Understanding Computers
and Cognition. Ablex, Norwood, New Jersey, USA, 1985.

[40] S. Wong and C. Butz. Constructing the dependency structure
of a multi-agent probabilistic network. IEEE Transactions
on Knowledge and Data Engineering, 30, Part A(6):785–
805, 1999.

[41] S. Wong, C. Butz, and D. Wu. On the implication problem
for probabilistic conditional independency. IEEE Transac-
tions on Systems, Man, and Cybernetics, 30, Part A(6):785–
805, 2000.

[42] S. Wong, C. Butz, and Y. Xiang. Automated database
scheme design using mined data dependencies. Journal of
the American Society for Information Science, 49(5):455–
470, 1998.

[43] S. Wong, W. Ziarko, and R. Ye. Comparison of rough-set
and statistical methods in inductive learning. International
Journal of Man-Machine Studies, 24:53–72, 1986.

[44] J. T. Yao and Y. Yao. Web-based support systems. In
Proceedings of the WI/IAT 2003 Workshop on Applications,
Products, and Services of Web-based Support Systems, 2003.

[45] Y. Yao. Information retrieval support systems. In Proceed-
ings of the 2002 IEEE World Congress on Computational
Intelligence, pages 1092–1097, 2002.

The 2nd Workshop on Web-based Support Systems 2004 74




