
The Computational Complexity of Inference
Using Rough Set Flow Graphs

C.J. Butz, W.Yan, B. Yang

Department of Computer Science, University of Regina, Regina, Canada, S4S 0A2,
{butz,yanwe111,boting}@cs.uregina.ca

Abstract. Pawlak recently introduced rough set flow graphs (RSFGs)
as a graphical framework for reasoning from data. Each rule is associ-
ated with three coefficients, which have been shown to satisfy Bayes’
theorem. Thereby, RSFGs provide a new perspective on Bayesian infer-
ence methodology.

In this paper, we show that inference in RSFGs takes polynomial time
with respect to the largest domain of the variables in the decision tables.
Thereby, RSFGs provide an efficient tool for uncertainty management.
On the other hand, our analysis also indicates that a RSFG is a special
case of conventional Bayesian network and that RSFGs make implicit
assumptions regarding the problem domain.

1 Introduction

Bayesian networks [10] are a semantic modelling tool for managing uncertainty
in complex domains. For instance, Bayesian networks have been successfully ap-
plied in practice by NASA [4] and Microsoft [5]. A Bayesian network consists
of a directed acyclic graph (DAG) and a corresponding set of conditional prob-
ability tables (CPTs). The probabilistic conditional independencies [13] encoded
in the DAG indicate that the product of the CPTs is a unique joint probability
distribution. Although Cooper [1] has shown that the complexity of inference is
NP-hard, several approaches have been developed that seem to work quite well in
practice. Some researchers, however, reject any framework making probabilistic
conditional independence assumptions regarding the problem domain.

Rough sets, founded by Pawlak’s pioneering work in [8,9], are another tool
for managing uncertainty in complex domains. Unlike Bayesian networks, no as-
sumptions are made regarding the problem domain under consideration. Instead,
the inference process is governed solely by sample data. Very recently, Pawlak in-
troduced rough set flow graphs (RSFGs) as a graphical framework for reasoning
from data [6,7]. Each rule is associated with three coefficients, namely, strength,
certainty and coverage, which have been shown to satisfy Bayes’ theorem. There-
fore, RSFGs provide a new perspective on Bayesian inference methodology.

In this paper, we study the fundamental issue of the complexity of inference in
RSFGs. Our main result is that inference in RSFGs takes polynomial time with
respect to the largest domain of the variables in the decision tables. Thereby,



RSFGs provide an efficient framework for uncertainty management. On the other
hand, our analysis also indicates that a RSFG is a special case of Bayesian
network. Moreover, unlike traditional rough set research, implicit independency
assumptions regarding the problem domain are made in RSFGs.

This paper is organized as follows. Section 2 reviews the pertinent notions of
Bayesian networks and RSFGs. The complexity of inference in RSFGs is studied
in Section 3. In Section 4, we make a note on RSFG independency assumptions.
The conclusion is presented in Section 5.

2 Background Knowledge

In this section, we briefly review Bayesian networks and RSFGs.

2.1 Bayesian Networks

Let U = {v1, v2, . . . , vm} be a finite set of variables. Each variable vi has a finite
domain, denoted dom(vi), representing the values that vi can take on. For a
subset X = {vi, . . . , vj} of U , we write dom(X) for the Cartesian product of the
domains of the individual variables in X, namely, dom(X) = dom(vi) × . . . ×
dom(vj). Each element x ∈ dom(X) is called a configuration of X.

A joint probability distribution [12] on dom(U) is a function p on dom(U)
such that the following two conditions both hold: (i) 0 ≤ p(u) ≤ 1, for each con-
figuration u ∈ dom(U), and (ii)

∑
u∈dom(U) p(u) = 1.0. A potential on dom(U)

is a function φ on dom(U) such that the following two conditions both hold: (i)
0 ≤ φ(u), for each configuration u ∈ dom(U), and (ii) φ(u) > 0, for at least one
configuration u ∈ dom(U). For brevity, we refer to φ as a potential on U rather
than dom(U), and we call U , not dom(U), its domain [12].

Let φ be a potential on U and x ⊆ U . Then the marginal [12] of φ onto X,
denoted φ(X) is defined as: for each configuration x ∈ dom(X),

φ(x) =
∑

y∈dom(Y )

φ(x, y), (1)

where Y = U −X, and x, y is the configuration of U that we get by combining
the configuration, x of X and y of Y . The marginalization of φ onto X = x can
be obtained from φ(X).

A Bayesian network [10] on U is a DAG on U together with a set of con-
ditional probability tables (CPTs) { p(vi|Pi) | vi ∈ U }, where Pi denotes the
parent set of variable vi in the DAG.

Example 1. One Bayesian network on U = {Manufacturer (M),Dealership (D),
Age (A)} is given in Figure 1.

We say X and Z are conditionally independent [13] given Y in a joint distri-
bution p(X,Y, Z, W ), if

p(X, Y, Z) =
p(X, Y ) · p(Y, Z)

p(Y )
. (2)



AM D

M p ( M ) M D p ( D | M ) D A p ( A | D ) 

Ford 0.20 Ford Alice 0.60 Alice Old 0.30

Honda 0.30 Ford Bob 0.30 Alice Middle 0.60

Toyota 0.50 Ford Carol 0.00 Alice Young 0.10

Ford Dave 0.10 Bob Old 0.40

Honda Alice 0.00 Bob Middle 0.60

Honda Bob 0.50 Bob Young 0.00

Honda Carol 0.50 Carol Old 0.00

Honda Dave 0.00 Carol Middle 0.60

Toyota Alice 0.10 Carol Young 0.40

Toyota Bob 0.30 Dave Old 0.10

Toyota Carol 0.10 Dave Middle 0.30

Toyota Dave 0.50 Dave Young 0.60

Fig. 1. A Bayesian network on {Manufacturer (M), Dealership (D), Age (A)}.

The independencies [13] encoded in the DAG of a Bayesian network indicate
that the product of the CPTs is a unique joint probability distribution.

Example 2. The independency I(M, D, A) encoded in the DAG of Figure 1 in-
dicates that

p(M, D,A) = p(M) · p(D|M) · p(A|D), (3)

where the joint probability distribution p(M,D, A) is shown in Figure 2.

2.2 Rough Set Flow Graphs

Rough set flow graphs are built from decision tables. A decision table is a po-
tential φ(C,D), where C is a set of conditioning attributes and D is a decision
attribute. In [6], it is assumed that the decision tables are normalized, which we
denote as p(C,D).

Example 3. Consider the set C = {Manufacturer (M)} of conditioning at-
tributes and the decision attribute Dealership (D). One decision table φ1(M, D),
normalized as p1(M, D), is shown in Figure 3 (left). Similarly, a decision table on
C = {Dealership (D)} and decision attribute Age (A), normalized as p2(D, A),
is depicted in Figure 3 (right).

Each decision table defines a binary flow graph. The set of nodes in the flow
graph are {c1, c2, . . . , ck}∪ {d1, d2, . . . , dl}, where c1, c2, . . . , ck and d1, d2, . . . , dl

are the values of C and D appearing in the decision table, respectively. For each
row in the decision table, there is a directed edge (ci, dj) in the flow graph, where



M D A p(M,D,A)

Ford Alice Old 0.036

Ford Alice Middle 0.072

Ford Alice Young 0.012

Ford Bob Old 0.024

Ford Bob Middle 0.036

Ford Dave Old 0.002

Ford Dave Middle 0.006

Ford Dave Young 0.012

Honda Bob Old 0.060

Honda Bob Middle 0.090

Honda Carol Middle 0.090

Honda Carol Young 0.060

Toyota Alice Old 0.015

Toyota Alice Middle 0.030

Toyota Alice Young 0.005

Toyota Bob Old 0.060

Toyota Bob Middle 0.090

Toyota Carol Middle 0.030

Toyota Carol Young 0.020

Toyota Dave Old 0.025

Toyota Dave Middle 0.075

Toyota Dave Young 0.150

Fig. 2. The joint probability distribution p(M, D, A) defined by the Bayesian network
in Figure 1.

ci is the value of C and dj is the value of D. For example, given the decision
tables in Figure 3, the respective binary flow graphs are illustrated in Figure 4.

Each edge (ci, dj) is labelled with three coefficients: strength p(ci, dj), cer-
tainty p(dj |ci) and coverage p(ci|dj). For instance, the strength, certainty and
coverage of the edges of the flow graphs in Figure 4 are shown in Figure 5.

It should perhaps be emphasized here that all decision tables φ(C, D) define
a binary flow graph regardless of the cardinality of C. Consider a row in φ(C,D),
where c and d are the values of C and D, respectively. Then there is a directed
edge from node c to node d. That is, the constructed flow graph treats the
attributes of C as a whole, even when C is a non-singleton set of attributes.
For instance, in Example 1 of [6], the decision table φ(C,D) is defined over
conditioning attributes C = {M,D} and decision attribute A. One row in this
table has M = “Ford”, D = “Alice” and A = “Middle”. Nevertheless, the
constructed flow graph has an edge from node c1 to node “Middle”, where
c1 = (M = “Ford”, D = “Alice”). For simplified discussion, we will henceforth
present all decision tables in which C is a singleton set.



M D 1 (M,D) p1  ( M,D ) D A 2 (D,A) p2  ( D,A )

Ford Alice 120 0.120 Alice Old 51 0.051

Ford Bob 60 0.060 Alice Middle 102 0.102

Ford Dave 20 0.020 Alice Young 17 0.017

Honda Bob 150 0.150 Bob Old 144 0.144

Honda Carol 150 0.150 Bob Middle 216 0.216

Toyota Alice 50 0.050 Carol Middle 120 0.120

Toyota Bob 150 0.150 Carol Young 80 0.080

Toyota Carol 50 0.050 Dave Old 27 0.027

Toyota Dave 250 0.250 Dave Middle 81 0.081

Dave Young 162 0.162

Fig. 3. Decision tables p1(M, D) and p2(D, A), respectively.

In order to combine the collection of binary flow graphs into a general flow
graph, Pawlak makes the flow conservation assumption [6]. This assumption
means that the normalized decision tables are pairwise consistent [2,13].

Example 4. The two decision tables p1(M, D) and p2(D,A) in Figure 3 are pair-
wise consistent, since p1(D) = p2(D). For instance, p1(D = “Alice”) = 0.170 =
p2(D = “Alice”).

We now introduce the key notion of rough set flow graphs. A rough set flow
graph (RSFG) [6,7] is a DAG, where each edge is associated with the strength,
certainty and coverage coefficients. The task of inference is to compute p(X =
x|Y = y), where x and y are values of two distinct variables X and Y .

Example 5. The rough set flow graph for the two decision tables p1(M, D) and
p2(D, A) in Figure 3 is the DAG in Figure 6 together with the appropriate
strength, certainty and coverage coefficients in Figure 5. From these three coeffi-
cients, the query p(M = “Ford”|A = “Middle”), for instance, can be answered.

3 The Complexity of Inference

In this section, we establish the complexity of inference in RSFGs by polynomi-
ally transforming a RSFG into a Bayesian network and then stating the known
complexity of inference. That is, if the RSFG involves nodes {a1, a2, . . . , ak, b1, b2,
. . . , bl, . . . , k1, k2, . . . , km}, then the corresponding Bayesian network involves
variables U = {A,B, . . . , K}, where dom(A) = {a1, a2, . . . , ak}, dom(B) = {b1, b2,
. . . , bl}, . . . , dom(K) = {k1, k2, . . . , km}.

Let G be a RSFG for a collection of decision tables. It is straightforward to
transform G into a Bayesian network by applying the definition of RSFGs.

We first show that the Bayesian network has exactly one root variable. Let
ai be a root node in G. The strength of ai is denoted as φ(ai). Let a1, a2, . . . , ak



Manufacturer (M) Dealership (D) Dealership (D) Age (A)
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Fig. 4. The respective binary flow graphs for the decision tables in Figure 3, where the
coefficients are given in Figure 5.

be all of the root nodes in G, that is, a1, a2, . . . , ak have no incoming edges in
G. By the definition of throughflow in [6],

k∑

i=1

φ(ai) = 1.0. (4)

In other words, there is one variable A in U , such that dom(A) = {a1, a2, . . . , ak}.
In the Bayesian network, A is the only root variable.

By definition, the outflow [6] from one node in G is 1.0. Let {b1, b2, . . . , bl} be
the set of all nodes in G such that each bi, 1 ≤ i ≤ l, has at least one incoming

M D p1(M,D) p1(D|M) p1(M|D) D A p2(D,A) p2(A|D) p2(D|A)

Ford Alice 0.12 0.60 0.71 Alice Old 0.05 0.30 0.23 

Ford Bob 0.06 0.30 0.16 Alice Middle 0.10 0.60 0.19 

Ford Dave 0.02 0.10 0.07 Alice Young 0.02 0.10 0.08 

Honda Bob 0.15 0.50 0.42 Bob Old 0.14 0.40 0.63 

Honda Carol 0.15 0.50 0.75 Bob Middle 0.22 0.60 0.42 

Toyota Alice 0.05 0.10 0.29 Carol Middle 0.12 0.60 0.23 

Toyota Bob 0.15 0.30 0.42 Carol Young 0.08 0.40 0.31 

Toyota Carol 0.05 0.10 0.25 Dave Old 0.03 0.10 0.14 

Toyota Dave 0.25 0.50 0.93 Dave Middle 0.08 0.30 0.15 

Dave Young 0.16 0.60 0.62 

Fig. 5. The strength p(ai, aj), certainty p(aj |ai) and coverage p(ai|aj) coefficients for
the edges (ai, aj) in the two flow graphs in Figure 4, respectively.



Manufacturer (M) Dealership (D) Age (A)
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Fig. 6. The rough set flow graph (RSFG) for the two decision tables in Figure 3, where
the strength, certainty and coverage coefficients can be found in Figure 5.

edge from a root node a1, a2, . . . , ak. By the definition of throughflow in [6],

l∑

j=1

φ(bj) = 1.0. (5)

This means there is a variable B ∈ U such that dom(B) = {b1, b2, . . . , bl}. In the
constructed Bayesian network of G, the root variable A has exactly one child
B. This argument can be repeated to show that variable B has precisely one
child, say C, and so on. The above discussion clearly indicates the structure of
the Bayesian network constructed from G is a chain. In other words, there is
only one root variable, and each variable except the last has exactly one child
variable.

We now turn to the quantitative component of the constructed Bayesian
network. For each variable vi, a CPT p(vi|Pi) is required. Consider the root
variable A. The CPT p(A) is obtained from the strengths φ(a1), φ(a2), . . . , φ(ak).
By Equation (4), p(A) is a marginal distribution. We also require the CPT
p(B|A). Recall that every outgoing edge from nodes a1, a2, . . . , ak must be an
incoming edge for nodes b1, b2, . . . , bl. Moreover, let ai be any node with at least
one edge going to b1, b2, . . . , bl. Without loss of generality, assume ai has edges
to b1, b2, . . . , bj . This means we have edges (ai, b1), (ai, b2), . . . , (ai, bj)∈ G. By
definition, the certainty is

φ(B = bj |A = ai) =
φ(A = ai, B = bj)

φ(A = ai)
. (6)



Since every decision table is normalized, φ(A = ai, B = bj) = p(A = ai, B = bj).
Therefore, the certainty in Equation (6) is, in fact,

p(B = bj |A = ai). (7)

Hence,
j∑

m=1

p(B = bm|A = ai) = 1.0. (8)

Equation (8) holds for each value a1, a2, . . . , ak of A. Therefore, the conditional
probabilities for all edges from a1, a2, . . . , ak into b1, b2, . . . , bl define a single
CPT p(B|A). This argument can be repeated for the remaining variables in the
Bayesian network. Therefore, given a RSFG, we can construct a corresponding
Bayesian network in polynomial time.

Example 6. Given the RSFG in Figure 6, the corresponding Bayesian network
is shown in Figure 1.

There are various classes of Bayesian networks [10]. A chain Bayesian network
has exactly one root variable and each variable except the last has precisely one
child variable. A tree Bayesian network has exactly one root variable and each
non-root variable has exactly one parent variable. A singly-connected Bayesian
network, also known as a polytree, has the property that there is exactly one
(undirected) path between any two variables. A multiply-connected Bayesian
network means that there exist two nodes with more than one (undirected) path
between them. Probabilistic inference in Bayesian networks means computing
p(X = x|Y = y), where X,Y ⊆ U , x ∈ dom(X) and y ∈ dom(Y ). While Cooper
[1] has shown that the complexity of inference in multiply-connected Bayesian
networks is NP-hard, the complexity of inference in tree Bayesian networks is
polynomial. Inference, which involves additions and multiplications, is bounded
by multiplications. For a m-ary tree Bayesian network with n values in the
domain for each node, one needs to store n2+mn+2n real numbers and perform
2n2 + mn + 2n multiplications for inference [11].

We can now establish the complexity of inference in RSFGs by utilizing
the known complexity of inference in the constructed Bayesian network. In this
section, we have shown that a RSFG can be polynomially transformed into
a chain Bayesian network. A chain Bayesian network is a special case of tree
Bayesian network, that is, where m = 1. By substitution, the complexity of
inference in a chain Bayesian network is O(n2). Therefore, the complexity of
inference in RSFGs is O(m2), where m = max(|dom(vi)|), vi ∈ U . In other
words, the complexity of inference is polynomial with respect to the largest
domain of the variables in the decision tables. This means that RSFGs are an
efficient tool for uncertainty management.

4 Other Remarks on Rough Set Flow Graphs

One salient feature of rough sets is that they serve as a tool for uncertainty
management without making assumptions regarding the problem domain. On



a

b

c d

e

( ii )

a

b

c

d e

( iii )

a

b c

d

( iv )( i )

b

c

d

e

a

Fig. 7. Types of Bayesian network: (i) chain, (ii) tree, (iii) singly connected, and (iv)
multiply-connected.

the contrary, we establish in this section that RSFGs, in fact, make implicit
independency assumptions regarding the problem domain.

The assumption that decision tables p1(A1, A2), p2(A2, A3),. . ., pm−1(Am−1,
Am) are pairwise consistent implies that the decision tables are marginals of a
unique joint probability distribution p(A1, A2, . . . , Am) defined as follows

p(A1, A2, . . . , Am) =
p1(A1, A2) · p2(A2, A3) · . . . · pm−1(Am−1, Am)

p1(A2) · . . . · pm−1(Am−1)
. (9)

Example 7. Assuming the two decision tables p1(M,D) and p2(D, A) in Figure 3
are pairwise consistent implies that they are marginals of the joint distribution,

p(M,D, A) =
p1(M,D) · p2(D, A)

p1(D)
, (10)

where p(M, D,A) is given in Figure 2.

Equation (9), however, indicates that the joint distribution p(A1, A2, . . . , Am)
satisfies m−2 probabilistic independencies I(A1, A2, A3 . . . Am), I(A1A2, A3, A4

. . . Am), . . ., I(A1 . . . Am−2, Am−1, Am). In Example 7, assuming p1(M,D) and
p2(D, A) are pairwise consistent implies that the independence I(M, D, A) holds
in the problem domain p(M,D, A).

The important point is that the flow conservation assumption [6] used in the
construction of RSFGs implicitly implies probabilistic conditional independen-
cies holding in the problem domain.



5 Conclusion

Pawlak [6,7] recently introduced the notion of rough set flow graph (RSFGs)
as a graphical framework for reasoning from data. In this paper, we established
that the computational complexity of inference using RSFGs is polynomial with
respect to the largest domain of the variables in the decision tables. This result in-
dicates that RSFGs provide an efficient framework for uncertainty management.
At the same time, our study has revealed that RSFGs, unlike previous rough
set research, makes implicit independency assumptions regarding the problem
domain. Moreover, RSFGs are a special case of Bayesian networks. Future work
will study the complexity of inference in generalized RSFGs [3].
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