
An Efficient Algorithm for Inference in
Rough Set Flow Graphs

C.J. Butz, W.Yan, B. Yang

Department of Computer Science, University of Regina, Regina, Canada, S4S 0A2,
{butz,yanwe111,boting}@cs.uregina.ca

Abstract. Pawlak recently introduced rough set flow graphs (RSFGs)
as a graphical framework for reasoning from data. No study, however,
has yet investigated the complexity of the accompanying inference algo-
rithm, nor the complexity of inference in RSFGs. In this paper, we show
that the traditional RSFG inference algorithm has exponential time com-
plexity. We then propose a new RSFG inference algorithm that exploits
the factorization in a RSFG. We prove its correctness and establish its
polynomial time complexity. In addition, we show that our inference
algorithm never does more work than the traditional algorithm. Our dis-
cussion also reveals that, unlike traditional rough set research, RSFGs
make implicit independency assumptions regarding the problem domain.

Keywords: Reasoning under uncertainty, rough set flow graphs.

1 Introduction

Very recently, Pawlak [7,8] introduced rough set flow graphs (RSFGs) as a graph-
ical framework for uncertainty management. RSFGs extend traditional rough set
research [9,10] by organizing the rules obtained from decision tables as a directed
acyclic graph (DAG). Each rule is associated with three coefficients, namely,
strength, certainty and coverage, which have been shown to satisfy Bayes’ theo-
rem [7,8]. Pawlak also provided an algorithm to answer queries in a RSFG and
stated that RSFGs are a new perspective on Bayesian inference [7]. No study,
however, has yet investigated the complexity of Pawlak’s inference algorithm,
nor the complexity of inference in RSFGs.

In this paper, our analysis of the traditional RSFG inference algorithm [7,8]
establishes that its time complexity is exponential with respect to the number
of nodes in a RSFG. We then propose a new inference algorithm that exploits
the factorization in a RSFG. We prove the correctness of our algorithm and es-
tablish its polynomial time complexity. In addition, we show that our algorithm
never does more work than the traditional algorithm, where work is the number
of additions and multiplications needed to answer a query. The analysis in this
manuscript also reveals that RSFGs make implicit assumptions regarding the
problem domain. More specifically, we show that the flow conservation assump-
tion [7] is in fact a probabilistic conditional independency [13] assumption.

It should be noted that the work here is different from our earlier work [2]
in several important ways. In this manuscript, we propose a new algorithm for

RSFG inference and establish its polynomial time complexity. On the contrary,
we established the polynomial complexity of RSFG inference in [2] by utilizing
the relationship between RSFGs and Bayesian networks [11]. Another difference
is that here we show that RSFG inference algorithm in [7,8] has exponential
time complexity, an important result not discussed in [2].

This paper is organized as follows. Section 2 reviews probability theory, RS-
FGs and a traditional RSFG inference algorithm [7,8]. That the traditional infer-
ence algorithm has exponential time complexity is shown in Section 3. In Section
4, we propose a new RSFG inference algorithm. We prove the correctness of this
new algorithm and establish its polynomial time complexity in Section 5. Section
6 shows that it never does more work than the traditional algorithm. In Section
7, we observe that RSFGs make independence assumptions. The conclusion is
presented in Section 8.

2 Definitions

In this section, we review probability theory and RSFGs.

2.1 Probability Theory

Let U = {v1, v2, . . . , vm} be a finite set of variables. Each variable vi has a finite
domain, denoted dom(vi), representing the values that vi can take on. For a
subset X = {vi, . . . , vj} of U , we write dom(X) for the Cartesian product of
the domains of the individual variables in X, namely, dom(X) = dom(vi) ×
. . . × dom(vj). Each element c ∈ dom(X) is called a configuration of X. If c is
a configuration on X and Y ⊆ X, then by cY we denote the configuration on Y
by dropping from c the values of those variables not in Y .

A potential [12] on dom(U) is a function φ on dom(U) such that the following
two conditions both hold: (i) φ(u) ≥ 0, for each configuration u ∈ dom(U), and
(ii) φ(u) > 0, for at least one configuration u ∈ dom(U). For brevity, we refer
to φ as a potential on U rather than dom(U), and we call U , not dom(U), its
domain [12]. By XY , we denote X ∪ Y .

A joint probability distribution (jpd) [12] on U is a function p on U such that
the following two conditions both hold: (i) 0 ≤ φ(u) ≤ 1, for each configuration
u ∈ U , and (ii)

∑
u∈U φ(u) = 1.0.

Example 1. Consider five attributes Manufacturer (M), Dealership (D), Age
(A), Salary (S), Position (P). One jpd p(U) on U = {M, D, A, S, P} is depicted
in Appendix I.

We say X and Z are conditionally independent [13] given Y , denoted
I(X, Y, Z), in a joint distribution p(X,Y, Z,W), if

p(X, Y, Z) =
p(X,Y) · p(Y, Z)

p(Y)
,

where p(V) denotes the marginal [12] distribution of a jpd p(U) onto V ⊆ U
and p(Y) > 0.

The following theorem provides a necessary and sufficient condition for de-
termining when a conditional independence holds in a problem domain.

Theorem 1. [5] I(X, Y, Z) iff there exist potentials φ1 and φ2 such that for
each configuration c on XY Z with p(cY) > 0, p(c) = φ1(cXY) · φ2(cY Z).

Example 2. Recall the jpd p(U) in Example 1. The marginal p(M,D, A) of p(U)
and two potentials φ(M, D), φ(D, A) are depicted in Table 1. By definition,
conditional independence I(M, D,A) holds in p(U) as p(M, D, A) = φ(M, D) ·
φ(D,A).

Table 1: The marginal p(M, D,A) of p(U) in Example 1 and potentials φ(M, D)
and φ(D, A).

M D A p(M, D, A) M D φ(M, D) D A φ(D, A)
Toyota Alice Old 0.036 Toyota Alice 0.120 Alice Old 0.300
Toyota Alice Middle 0.072 Toyota Bob 0.060 Alice Middle 0.600
Toyota Alice Young 0.012 Toyota Dave 0.020 Alice Young 0.100
Toyota Bob Old 0.024 Honda Bob 0.150 Bob Old 0.400
Toyota Bob Middle 0.036 Honda Carol 0.150 Bob Middle 0.600
Toyota Dave Old 0.002 Ford Alice 0.050 Carol Middle 0.600
Toyota Dave Middle 0.006 Ford Bob 0.150 Carol Young 0.400
Toyota Dave Young 0.012 Ford Carol 0.050 Dave Old 0.100
Honda Bob Old 0.060 Ford Dave 0.250 Dave Middle 0.300
Honda Bob Middle 0.090 Dave Young 0.600
Honda Carol Middle 0.090
Honda Carol Young 0.060
Ford Alice Old 0.015
Ford Alice Middle 0.030
Ford Alice Young 0.005
Ford Bob Old 0.060
Ford Bob Middle 0.090
Ford Carol Middle 0.030
Ford Carol Young 0.020
Ford Dave Old 0.025
Ford Dave Middle 0.075
Ford Dave Young 0.150

2.2 Rough Set Flow Graphs

Rough set flow graphs are built from decision tables. A decision table [10] rep-
resents a potential φ(C, D), where C is a set of conditioning attributes and D is
a decision attribute.

Example 3. Recall the five attributes {M, D, A, S, P} from Example 1. Consider
the set C = {M} of conditioning attributes and the decision attribute D. Then
one decision table φ(M, D) is shown in Table 2. Similarly, decision tables φ(D, A),
φ(A, S) and φ(S, P) are also depicted in Table 2.

Table 2: Decision tables φ(M, D), φ(D, A), φ(A,S) and φ(S, P).

M D φ(M, D) D A φ(D, A)
Toyota Alice 120 Alice Old 51
Toyota Bob 60 Alice Middle 102
Toyota Dave 20 Alice Young 17
Honda Bob 150 Bob Old 144
Honda Carol 150 Bob Middle 216
Ford Alice 50 Carol Middle 120
Ford Bob 150 Carol Young 80
Ford Carol 50 Dave Old 27
Ford Dave 250 Dave Middle 81

Dave Young 162

A S φ(A, S) S P φ(S, P)
Old High 133 High Executive 210
Old Medium 67 High Staff 45
Old Low 22 High Manager 8

Middle High 104 Medium Executive 13
Middle Medium 311 Medium Staff 387
Middle Low 104 Medium Manager 30
Young High 26 Low Executive 3
Young Medium 52 Low Staff 12
Young Low 181 Low Manager 292

Each decision table defines a binary RSFG. The set of nodes in the flow
graph are {c1, c2, . . . , ck}∪ {d1, d2, . . . , dl}, where c1, c2, . . . , ck and d1, d2, . . . , dl

are the values of C and D appearing in the decision table, respectively. For each
row in the decision table, there is a directed edge (ci, dj) in the flow graph,
where ci is the value of C and dj is the value of D. Clearly, the defined graphical
structure is a directed acyclic graph (DAG). Each edge (ci, dj) is labelled with
three coefficients. The strength of (ci, dj) is φ(ci, dj) obtained from the decision
table. From φ(ci, dj), we can compute the certainty φ(dj |ci) and the coverage
φ(ci|dj).

Example 4. Consider the decision tables φ(M, D) and φ(D,A) in Table 2. The
DAGs of the binary RSFGs are illustrated in Fig. 1, respectively. The strength,
certainty and coverage of the edges of the flow graphs in Fig. 1 are shown in the
top two tables of Table 3.

Manufacturer (M) Dealership (D) Dealership (D) Age (A)

Bob

Carol

Dave

Alice

Young

Middle

Old

Bob

Carol

Dave

Alice

Honda

Ford

Toyota

Fig. 1: The DAGs of the binary RSFGs for the decision tables φ(M, D) and
φ(D,A) in Table 2, respectively. The coefficients are given in part of Table 3.

In order to combine the collection of binary flow graphs into a general flow
graph, Pawlak makes the flow conservation assumption [7]. This means that, for
an attribute A appearing as a decision attribute in one decision table φ1(C1, A)
and also as a conditioning attribute in another decision table φ2(A,D2), we have

∑

C1

φ1(C1, A) =
∑

D2

φ2(A,D2).

Example 5. The two binary RSFGs in Example 4 satisfy the flow conservation
assumption, since in Table 3, φ1(D) = φ2(D). For instance, φ1(D = “Alice”) =
0.170 = φ2(D = “Alice”).

A rough set flow graph (RSFG) [7,8] is a DAG, where each edge is associated
with the strength, certainty and coverage coefficients from a collection of decision
tables satisfying the flow conservation assumption.

Example 6. The RSFG for the decision tables in Table 2 is the DAG in Fig. 2
together with the strength, certainty and coverage coefficients in Table 3.

The task of RSFG inference is to compute a binary RSFG on {Ai, Aj},
namely, a DAG on {Ai, Aj} and the coefficient table, denoted Ans(Ai, Aj), which
is a table with strength, certainty and coverage columns. We use the term query
to refer to any request involving strength, certainty or coverage.

Example 7. Consider a query on {M,P} posed to the RSFG in Example 6. The
answer to this query is the binary RSFG defined by Table 4 and Fig. 3.

Table 3: The top two tables are the strength φ(ai, aj), certainty φ(aj |ai) and
coverage φ(ai|aj) coefficients for the edges (ai, aj) in Fig. 1. These two tables
together with the bottom two tables are the coefficients for the edges in Fig. 2.

M D φ1(M, D)φ1(D|M)φ1(M |D) D A φ2(D, A)φ2(A|D)φ2(D|A)
Toyota Alice 0.120 0.600 0.710 Alice Old 0.050 0.300 0.230
Toyota Bob 0.060 0.300 0.160 Alice Middle 0.100 0.600 0.190
Toyota Dave 0.020 0.100 0.070 Alice Young 0.020 0.100 0.080
Honda Bob 0.150 0.500 0.420 Bob Old 0.140 0.400 0.630
Honda Carol 0.150 0.500 0.750 Bob Middle 0.220 0.600 0.420
Ford Alice 0.050 0.100 0.290 Carol Middle 0.120 0.600 0.230
Ford Bob 0.150 0.300 0.420 Carol Young 0.080 0.400 0.310
Ford Carol 0.050 0.100 0.250 Dave Old 0.030 0.100 0.140
Ford Dave 0.250 0.500 0.930 Dave Middle 0.080 0.300 0.150

Dave Young 0.160 0.600 0.620

A S φ3(A, S) φ3(S|A) φ3(A|S) S P φ4(S, P) φ4(P |S) φ4(S|P)
Old High 0.133 0.600 0.506 High Executive 0.210 0.800 0.929
Old Medium 0.067 0.300 0.156 High Staff 0.045 0.170 0.101
Old Low 0.022 0.100 0.072 High Manager 0.008 0.030 0.024

Middle High 0.104 0.200 0.395 Medium Executive 0.013 0.030 0.058
Middle Medium 0.311 0.600 0.723 Medium Staff 0.387 0.900 0.872
Middle Low 0.104 0.200 0.339 Medium Manager 0.030 0.070 0.091
Young High 0.026 0.100 0.099 Low Executive 0.003 0.010 0.013
Young Medium 0.052 0.200 0.121 Low Staff 0.012 0.040 0.027
Young Low 0.181 0.700 0.589 Low Manager 0.292 0.950 0.885

1: Algorithm 1. [7,8]
input : A RSFG and a query on {Ai, Aj}, i < j.
output: The coefficient table Ans(Ai, Aj) of the binary RSFG on {Ai, Aj}.
φ(Aj |Ai) =

∑
Ai+1,...,Aj−1

φ(Ai+1|Ai) · φ(Ai+2|Ai+1) · . . . · φ(Aj |Aj−1);

φ(Ai|Aj) =
∑

Ai+1,...,Aj−1
φ(Ai|Ai+1) · φ(Ai+1|Ai+2) · . . . · φ(Aj−1|Aj);

φ(Ai, Aj) = φ(Ai) · φ(Aj |Ai);
return(Ans(Ai, Aj));

Pawlak proposed Algorithm 1 to answer queries in a RSFG.

Algorithm 1 is used to compute the coefficient table of the binary RSFG
on {Ai, Aj}. The DAG of this binary RSFG has an edge (ai, aj) provided that
φ(ai, aj) > 0 in Ans(Ai, Aj). We illustrate Algorithm 1 with Example 8.

Example 8. Given a query on {M,P} posed to the RSFG in Fig. 2. Let us focus
on M = “Ford ” and P = “Staff ”, which we succinctly write as “Ford ” and
“Staff ”, respectively. The certainty φ(“Staff ”|“Ford ”) is computed as:

φ(“Staff ”|“Ford ”) =
∑

D,A,S

φ(D|“Ford ”) · φ(A|D) · φ(S|A) · φ(“Staff ”|S).

The coverage φ(“Ford ”|“Staff ”) is computed as:

φ(“Ford ”|“Staff ”) =
∑

D,A,S

φ(“Ford ”|D) · φ(D|A) · φ(A|S) · φ(S|“Staff ”).

Salary (S)Dealership (D) Age (A) Position (P)Manufacturer (M)

Old

Middle

Young

High

Medium

Low Mana

Executive

ger

Staff

Bob

Carol

Dave

Alice

Honda

F rdo

Toyota

Fig. 2: The rough set flow graph (RSFG) for {M,D, A, S, P}, where the strength,
certainty and coverage coefficient are given in Table 3.

The strength φ(“Ford ”, “Staff ”) is computed as:

φ(“Ford ”, “Staff ”) = φ(“Ford ”) · φ(“Staff ”|“Ford ”).

The DAG of this binary RSFG on {M,P} is depicted in Fig. 3.
In Example 8, computing coefficients φ(“Ford ”, “Staff ”), φ(“Staff ”|“Ford ”)

and φ(“Ford ”|“Staff ”) in Ans(M, P) in Table 4 required 181 multiplications
and 58 additions. No study, however, has formalized the time complexity of
Algorithm 1.

Table 4: Answering a query on {M,P} posed to the RSFG in Fig. 2 consists of
this coefficient table Ans(M,P) and the DAG in Fig. 3.

M P φ(M, P) φ(P |M) φ(M |P)
Toyota Executive 0.053132 0.265660 0.234799
Toyota Staff 0.095060 0.475300 0.214193
Toyota Manager 0.051808 0.259040 0.157038
Honda Executive 0.067380 0.224600 0.297764
Honda Staff 0.140820 0.469400 0.317302
Honda Manager 0.091800 0.306000 0.278259
Ford Executive 0.105775 0.211550 0.467437
Ford Staff 0.207925 0.415850 0.468505
Ford Manager 0.186300 0.372600 0.564703

 M P

Ford

Honda

Toyota

 Manager

 Staff

Executive

Fig. 3: Answering a query on {M, P} posed to the RSFG in Fig. 2 consists of
the coefficient table Ans(M, P) in Table 4 and this DAG on {M, P}.

3 Complexity of Traditional Algorithm in RSFG

In this section, we establish the time complexity of Algorithm 1.

Theorem 2. Consider a RSFG on m variables U = {A1, A2, . . . , Am}. Let
|dom(Ai)| = n, for i = 1, . . . , m. Let (ai, ai+1) be an edge in the RSFG, where
ai ∈ dom(Ai), ai+1 ∈ dom(Ai+1) and i = 1, . . . , m − 1. To answer a query on
{Ai, Aj}, the time complexity of Algorithm 1 is O(lnl), where l = j − i + 1.

Proof. To compute the certainty φ(Aj |Ai), let

ψ1(Ai, Ai+1, . . . , Aj) = φ(Ai+1|Ai) · φ(Ai+2|Ai+1) · . . . · φ(Aj |Aj−1). (1)

The potential ψ1(Ai, Ai+1, . . . , Aj) has nl rows, since |dom(Ai)| = n for each
variable. By Equation (1), computing the certainty for one row requires l −
2 multiplications. Therefore, ψ1(Ai, Ai+1, . . . , Aj) is constructed by (l − 2)(nl)
multiplications. The second step is to determine

φ(Aj |Ai) =
∑

Ai+1,...,Aj−1

ψ1(Ai, Ai+1, . . . , Aj). (2)

There are exactly nl−2 rows in ψ1(Ai, Ai+1, . . . , Aj) with Ai = ai and Aj = aj .
Thus, computing φ(Aj = aj |Ai = ai) requires nl−2 − 1 additions. Since there
are n2 configurations in φ(Aj |Ai), to compute φ(Aj |Ai) requires (n2)(nl−2 − 1)
additions. That is, nl − n2 additions are required for Equation (2). As shown
above, the complexity to compute Equation (1) is O(lnl) and that to compute
Equation (2) is O(nl). Therefore, computing the certainty φ(Aj |Ai) has time
complexity O(lnl). It is easily seen that computing the coverage φ(Ai|Aj) re-
quires exactly the same amount of work as required for computing the certainty
φ(Aj |Ai). Thus, computing the coverage φ(Ai|Aj) has time complexity O(lnl).
The strength φ(Ai, Aj) is defined as the product φ(Ai) ·φ(Aj |Ai), which involves
n2 multiplications. Since the computation of Algorithm 1 is dominated by that
for certainty (coverage), the time complexity is O(lnl). 2

The exponential time complexity of Algorithm 1 lies in the fact that it does
not exploit the factorization during inference. However, this does not mean that
Algorithm 1 is always inefficient in all practical situations.

4 An Efficient Algorithm for RSFG Inference

In this section, we will introduce an efficient algorithm to answer queries in a
RSFG and establish its complexity.

The main idea is to exploit the factorization to eliminate variables one by
one, instead of all at once as Algorithm 1 does. We focus on computing the
coefficient table Ans(Ai, Aj) with the DAG of the output RSFG understood.

2: Algorithm 2.
input : A RSFG and a query on {Ai, Aj}, i < j.
output: The coefficient table Ans(Ai, Aj) of the binary RSFG on {Ai, Aj}.
for k = (i + 1) to (j − 1) do

φ(Ak+1|Ai) =
∑

Ak
φ(Ak|Ai) · φ(Ak+1|Ak);

φ(Ai|Ak+1) =
∑

Ak
φ(Ai|Ak) · φ(Ak|Ak+1);

end
φ(Ai, Aj) = φ(Ai) · φ(Aj |Ai);
return(Ans(Ai, Aj));

We illustrate Algorithm 2 with the following example.

Example 9. Recall Example 8. Again, we focus on the edge (“Ford ”, “Staff ”)
in the DAG in Fig. 3. According to Algorithm 2, variables {D,A, S} need be
eliminated. Consider variable D. The certainty φ(A|“Ford ”) is

φ(A|“Ford ”) =
∑

D

φ(D|“Ford ”) · φ(A|D),

while the coverage φ(“Ford ”|A) is

φ(“Ford ”|A) =
∑

D

φ(“Ford ”|D) · φ(D|A).

The consequence is that variable D has been eliminated, while variables M and
A have been linked via the certainty φ(A|“Ford ”) and coverage φ(“Ford ”|A).
Similarly, eliminating A yields φ(S|“Ford ”) and φ(“Ford ”|S). Finally, consider
eliminating variable S. The certainty φ(“Staff ”|“Ford ”) is

φ(“Staff ”|“Ford ”) =
∑

S

φ(S|“Ford ”) · φ(“Staff ”|S),

while the coverage φ(“Ford ”|“Staff ”) is

φ(“Ford ”|“Staff ”) =
∑

S

φ(“Ford ”|S) · φ(S|“Staff ”).

The strength φ(“Ford ”, “Staff ”) is determined as

φ(“Ford ”, “Staff ”) = φ(“Ford ”) · φ(“Staff ”|“Ford ”).

In Example 9, computing φ(“Ford ”, “Staff ”), φ(“Staff ”|“Ford ”) and
φ(“Ford ”|“Staff ”) in Ans(M, P) in Table 4 only required 45 multiplications
and 30 additions. Recall that Algorithm 1 required 181 multiplications and 58
additions.

5 Theoretical Foundation

In this section, we show correctness of Algorithm 2 and prove Algorithm 2 is
efficient by analyzing its time complexity in the worst case.

5.1 Correctness of the New RSFG Inference Algorithm

Here we prove that Algorithm 2 is correct. Let us first review two well known
results.

Lemma 1. [12] If φ is a potential on U , and X ⊆ Y ⊆ U , then marginalizing
φ onto Y and subsequently onto X is the same as marginalizing φ onto X.

Lemma 1 indicates that a marginal can be obtained by a series of marginaliza-
tions in any order. For example,

∑

A,B

φ(A,B, C) =
∑

A

(
∑

B

φ(A,B, C)) =
∑

B

(
∑

A

φ(A,B, C)).

Lemma 2. [12] If φ is a potential on X and ψ is a potential on Y , then the mar-
ginalization of φ ·ψ onto X is the same as φ multiplied with the marginalization
of ψ onto X ∩ Y .

For instance,
∑

C

φ(A,B) · φ(B, C) = φ(A,B) ·
∑

C

φ(B,C).

Now let us turn to the correctness of Algorithm 2.

Theorem 3. Given a query on {Ai, Aj} posed to a RSFG on U = {A1, A2, . . . ,
Am}, where 1 ≤ i < j ≤ m. The answer produced by Algorithm 2 is correct.

Proof. We show the claim by proving that the answer table Ans(Ai, Aj) pro-
duced by Algorithm 2 contains the strength φ(Ai, Aj), the certainty φ(Aj |Ai)
and the coverage φ(Ai|Aj) computed by Algorithm 1. To answer the certainty
φ(Aj |Ai), Algorithm 1 is expressed by Equation (3),

φ(Aj |Ai) =
∑

Ai+1,Ai+2,...,Aj−1

φ(Ai+1|Ai) · φ(Ai+2|Ai+1) · . . . · φ(Aj |Aj−1). (3)

By Lemma 1 and Equation (3), φ(Aj |Ai) is equal to
∑

Ai+1

∑

Ai+2

. . .
∑

Aj−2

∑

Aj−1

φ(Ai+1|Ai) · φ(Ai+2|Ai+1) · . . . · φ(Aj |Aj−1). (4)

By Lemma 2 and Equation (4), φ(Aj |Ai) is equal to
∑

Ai+1

∑

Ai+2

. . .
∑

Aj−2

φ(Ai+1|Ai) · . . . ·φ(Aj−2|Aj−3) ·
∑

Aj−1

φ(Aj−1|Aj−2) ·φ(Aj |Aj−1).

(5)
By recursively using Lemma 2, Equation (5) can be rewritten as,

∑

Ai+1

φ(Ai+1|Ai) ·
∑

Ai+2

φ(Ai+2|Ai+1) · . . . ·
∑

Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (6)

By Equations (3) - (6), the computation of the certainty φ(Aj |Ai) by Algorithm
1 is expressed as,

φ(Aj |Ai) =
∑

Ai+1

φ(Ai+1|Ai) · . . . ·
∑

Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (7)

Equation (7) is the construction of the certainty φ(Aj |Ai) in Algorithm 2. It can
be similarly shown that the strength φ(Ai, Aj) and coverage φ(Ai|Aj) produced
by Algorithms 1 and 2 are the same. 2

5.2 Complexity of the New RSFG Inference Algorithm

In this subsection, we establish the computational complexity of Algorithm 2.

Theorem 4. Consider a RSFG on m variables U = {A1, A2, . . . , Am}. Let
|dom(Ai)| = n, for i = 1, . . . , m. Let (ai, ai+1) be an edge in the RSFG, where
ai ∈ dom(Ai), ai+1 ∈ dom(Ai+1) and i = 1, . . . , m − 1. To answer a query on
{Ai, Aj}, the time complexity of Algorithm 2 is O(ln3), where l = j − i + 1.

Proof. The certainty φ(Aj |Ai) is computed by eliminating each variable Ak be-
tween Ai and Aj in the RSFG. For a variable Ak, Algorithm 2 first computes

ψ2(Ak−1, Ak, Ak+1) = φ(Ak|Ak−1) · φ(Ak+1|Ak). (8)

The potential ψ2(Ak−1, Ak, Ak+1) has n3 rows, since |dom(Ai)| = n for each vari-
able. Computing the certainty for one row requires 1 multiplication. Therefore,

potential ψ2(Ak−1, Ak, Ak+1) is constructed by n3 multiplications. The second
step is to determine

φ(Ak+1|Ak−1) =
∑

Ak

ψ2(Ak−1, Ak, Ak+1). (9)

There are n rows in ψ2(Ak−1, Ak, Ak+1) with Ak−1 = ak−1 and Ak+1 = ak+1.
Thus, computing φ(Ak+1 = ak+1|Ak−1 = ak−1) requires n − 1 additions. Since
there are n2 configurations in φ(Ak+1|Ak−1), (n2)(n− 1) additions are required
to compute φ(Ak+1|Ak−1) in Equation (9). Therefore, the time complexity to
compute the certainty φ(Ak+1|Ak−1) is O(n3). Since there are l−2 variables be-
tween Ai and Aj , the time complexity to compute the desired certainty φ(Aj |Ai)
has time complexity O(ln3). Similar to the proof of Theorem 2, it follows that
the time complexity of Algorithm 2 is O(ln3). 2

Theorem 4 shows that Algorithm 2 has polynomial time complexity in the
worst case. Therefore, Algorithm 2 is an efficient algorithm for RSFG inference
in all practical situations.

6 Related Work

In this section, we show Algorithm 2 never performs more work than Algorithm
1. To show this claim let us first characterize the computation performed by
Algorithm 1 and Algorithm 2 when answering a query.

We need only focus on how the certainty φ(Aj |Ai) is computed from a RSFG
on U = {A1, A2, . . . , Am} with certainties φ(A2|A1), φ(A3|A2), . . . , φ(Am|Am−1).
For simplicity, we eliminate variables in the following order: Aj−1, Aj−2,. . . , Ai+1.

Algorithm 1 computes the following product ψ1(Ai, Ai+1, . . . , Aj):

ψ1(Ai, Ai+1, . . . , Aj)
= φ(Ai+1|Ai) · . . . · φ(Aj−2|Aj−3) · φ(Aj−1|Aj−2) · φ(Aj |Aj−1)

via a series of binary multiplications, namely,

ψ1(Ai, Ai+1, . . . , Aj)
= φ(Ai+1|Ai) · [. . . · [φ(Aj−2|Aj−3) · [φ(Aj−1|Aj−2) · φ(Aj |Aj−1)]] . . .].(10)

According to Equation (10), the first multiplication is as follows,

ψ1(Aj−2, Aj−1, Aj) = φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (11)

The intermediate multiplications are performed as follows,

ψ1(Ak−1, Ak, . . . , Aj) = φ(Ak|Ak−1) · ψ1(Ak, Ak+1, . . . , Aj), (12)

where k = (j − 2), . . . , (i + 1).

After computing ψ1(Ai, Ai+1, . . . , Aj), Algorithm 1 eliminates variables Ai+1,
Ai+2, . . . , Aj−1 via a series of marginalizations, namely,

∑

Ai+1

∑

Ai+2

. . .
∑

Aj−1

ψ1(Ai, Ai+1, . . . , Aj).

An intermediate marginalization takes the form,

ψ1(Ai, . . . , Al−1, Aj) =
∑

Al

ψ1(Ai, . . . , Al−1, Al, Aj), (13)

where l = (j − 1), . . . , (i + 2). The final marginalization yields

φ(Aj |Ai) =
∑

Ai+1

ψ1(Ai, Ai+1, Aj). (14)

Now consider how Algorithm 2 computes the certainty φ(Aj |Ai). As previ-
ously mentioned, Algorithm 2 eliminates variables Aj−1, . . . , Ai+1 one by one.
Algorithm 2 computes,

φ(Aj |Ai)

=
∑

Ai+1

φ(Ai+1|Ai) · . . . ·
∑

Aj−2

φ(Aj−2|Aj−3) ·
∑

Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1).

(15)

According to Equation (15), the first multiplication in Algorithm 2 is,

ψ2(Aj−2, Aj−1, Aj) = φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (16)

Algorithm 2 then performs intermediate additions and multiplications, itera-
tively,

φ(Aj |Aj−2) =
∑

Aj−1

ψ2(Aj−2, Aj−1, Aj),

ψ2(Aj−3, Aj−2, Aj) = φ(Aj−2|Aj−3) · φ(Aj |Aj−2),

φ(Aj |Aj−3) =
∑

Aj−2

ψ2(Aj−3, Aj−2, Aj),

...
ψ2(Ai, Ai+1, Aj) = φ(Ai+1|Ai) · φ(Aj |Ai+1).

Therefore, an intermediate marginalization takes the form,

φ(Aj |Al−1) =
∑

Al

ψ2(Al−1, Al, Aj), (17)

where l = (j − 1), . . . , (i + 2). An intermediate multiplication takes the form,

ψ2(Ak−1, Ak, Aj) = φ(Ak|Ak−1) · φ(Aj |Ak), (18)

where k = (j − 2), . . . , (i + 1). After these intermediate additions and multipli-
cations, the final marginalization yields the desired certainty φ(Aj |Ai):

φ(Aj |Ai) =
∑

Ai+1

ψ2(Ai, Ai+1, Aj). (19)

Lemma 3 shows that the intermediate potentials computed in the multi-
plication process of Algorithm 2 are marginalizations of the larger potentials
computed in Algorithm 1. Lemma 4 shows that the intermediate potentials com-
puted in the marginalization process of Algorithm 2 have no more rows than the
marginalizations of the larger potentials computed in Algorithm 1.

Lemma 3. To answer a query on {Ai, Aj} posed to a RSFG on U = {A1, A2,
. . . , Am}, φ(Aj |Ak) in Equation (18) of Algorithm 2 is a marginal of ψ1(Ak, Ak+1,
. . . , Aj) in Equation (12) of Algorithm 1.

Proof. By definition, the marginal of ψ1(Ak, Ak+1, . . . , Aj) onto {Ak, Aj} is:
∑

Ak+1,...,Aj−1

ψ1(Ak, Ak+1, . . . , Aj). (20)

By Algorithm 1, Equation (20) is equal to,
∑

Ak+1,...,Aj−1

φ(Ak+1|Ak) · . . . · φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (21)

By Lemmas 1 and 2, Equation (21) can be rewritten as:
∑

Ak+1

φ(Ak+1|Ak) · . . . ·
∑

Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (22)

By Equation (7),

φ(Aj |Ak) =
∑

Ak+1

φ(Ak+1|Ak) · . . . ·
∑

Aj−1

φ(Aj−1|Aj−2) · φ(Aj |Aj−1). (23)

By Equations (20) - (23),

φ(Aj |Ak) =
∑

Ak+1,...,Aj−1

ψ1(Ak, Ak+1, . . . , Aj).

Therefore, φ(Aj |Ak) is the marginal of ψ1(Ak, Ak+1, . . . , Aj) onto variables {Ak,
Aj}. 2

Lemma 4. To answer a query on {Ai, Aj} posed to a RSFG on U = {A1, A2,
. . . , Am}, ψ2(Al−1, Al, Aj) in Equation (17) of Algorithm 2 has no more rows
than the marginal of ψ1(Ai, . . . , Al−1, Al, Aj) in Equation (13) of Algorithm 1
onto variables {Al−1, Al, Aj}.

Proof. By definition, the marginal of ψ1(Ai,. . . , Al−1, Al, Aj) onto variables {Al−1,
Al, Aj} is: ∑

Ai,...,Al−2

ψ1(Ai, . . . , Al−1, Al, Aj). (24)

By Algorithm 1, Equation (24) is equal to,
∑

Ai,...,Al−2

φ(Ai+1|Ai) · . . . · φ(Al−2|Al−3) · φ(Al−1|Al−2) · φ(Al|Al−1) · φ(Aj |Al).

(25)
By Lemma 2, Equation (25) is equal to,

φ(Al|Al−1) · φ(Aj |Al) ·
∑

Ai,...,Al−2

φ(Ai+1|Ai) · . . . · φ(Al−2|Al−3) · φ(Al−1|Al−2).

(26)
By Lemmas 1 and 2, Equation (26) can be rewritten as:

φ(Al|Al−1)·φ(Aj |Al)·
∑

Ai

(
∑

Ai+1

φ(Ai+1|Ai)·. . .·
∑

Al−2

φ(Al−2|Al−3)·φ(Al−1|Al−2)).

(27)
By Equation (7),

∑
Ai+1

φ(Ai+1|Ai) · . . . · ∑
Al−2

φ(Al−2|Al−3) · φ(Al−1|Al−2)
yields φ(Al−1|Ai). Thus, Equation (27) can be rewritten as:

φ(Al|Al−1) · φ(Aj |Al) ·
∑

Ai

φ(Al−1|Ai). (28)

By Equation (18),

ψ2(Al−1, Al, Aj) = φ(Al|Al−1) · φ(Aj |Al). (29)

Substituting Equation (29) into Equation (28), we obtain:

ψ2(Al−1, Al, Aj) ·
∑

Ai

φ(Al−1|Ai).) (30)

By Equations (24) - (30),
∑

Ai,...,Al−2

ψ1(Ai, . . . , Al−1, Al, Aj) = ψ2(Al−1, Al, Aj) ·
∑

Ai

φ(Al−1|Ai).

Therefore, ψ2(Al−1, Al, Aj) has no more rows than the marginal of ψ1(Ai, . . . ,
Al−1, Al, Aj) onto variables {Al−1, Al, Aj}. 2

We use the above analysis to show the following two results. Lemma 5 says
that Algorithm 2 never performs more multiplications than Algorithm 1 when
answering a query. Lemma 6 says the same except for additions.

Lemma 5. Given a query on {Ai, Aj} posed to a RSFG on U = {A1, A2, . . . ,
Am}, Algorithm 2 never performs more multiplications than Algorithm 1.

Proof. It can be seen from Equations (11) and (16) that Algorithms 1 and 2 use
the same number of multiplications to compute the first potential ψ1(Aj−2, Aj−1,
Aj) and ψ2(Aj−2, Aj−1, Aj). Therefore, Algorithm 1 and Algorithm 2 perform
the same number of multiplications provided that precisely two potentials need
be multiplied to answer a query. On the other hand, Algorithm 2 never per-
forms more multiplications than Algorithm 1 provided that there are at least
three potentials to be multiplied. By Lemma 3, φ(Aj |Ak) is the marginal of
ψ1(Ak, Ak+1, . . . , Aj) onto {Ak, Aj}. Therefore, all multiplications in Equation
(18) performed by Algorithm 2 for computing the certainty φ(Aj |Ai) must nec-
essarily be performed in Equation (12) by Algorithm 1. It can be similarly shown
that Algorithm 2 never performs more multiplications than Algorithm 1 when
computing the strength φ(Ai, Aj) or coverage φ(Ai|Aj). Therefore, Algorithm 2
never performs more multiplications than Algorithm 1 when answering a query.
2

Lemma 6. Given a query on {Ai, Aj} posed to a RSFG on U = {A1, A2, . . . ,
Am}, Algorithm 2 never performs more additions than Algorithm 1.

Proof. It can be seen from Equations (14) and (19) that Algorithms 1 and 2
use the same number of additions to eliminate the last variable Ai+1 from the
potential ψ1(Ai, Ai+1, Aj) and ψ2(Ai, Ai+1, Aj). Therefore, Algorithm 1 and Al-
gorithm 2 perform the same number of additions provided that precisely one
variable need be eliminated to answer a query. On the other hand, Algorithm
2 never performs more additions than Algorithm 1, provided that there are at
least two variables to be eliminated. By Lemma 4, ψ2(Al−1, Al, Aj) has no more
rows than the marginal of ψ1(Ai, . . . , Al−1, Al, Aj) onto {Al−1, Al, Aj}. There-
fore, summing out Al from ψ2(Al−1, Al, Aj) combines no more rows than needed
from ψ1(Ai, . . . , Al−1, Al, Aj). Since combining n rows requires n− 1 additions,
Algorithm 2 never performs more additions than Algorithm 1 for computing the
certainty φ(Aj |Ai). That Algorithm 2 never performs more additions than Al-
gorithm 1 when computing the strength φ(Ai, Aj) or coverage φ(Ai|Aj) follows
in a similar fashion. Therefore, Algorithm 2 never performs more additions than
Algorithm 1 when answering a query. 2

Lemmas 5 and 6 indicate that Algorithm 2 never performs more work than
Algorithm 1.

7 Other Remarks on Rough Set Flow Graphs

One salient feature of rough sets is that they serve as a tool for uncertainty
management without making assumptions regarding the problem domain. On
the contrary, we establish in this section that RSFGs, in fact, make implicit
independency assumptions regarding the problem domain.

Two tables φ1(Ai, Aj) and φ2(Aj , Ak) are pairwise consistent [3,13], if

φ1(Aj) = φ2(Aj). (31)

Example 10. In Table 3, φ1(M, D) and φ2(D, A) are pairwise consistent. For
instance, φ1(D = “Alice”) = 0.170 = φ2(D = “Alice”).

Consider m−1 potentials φ1(A1, A2), φ2(A2, A3), . . . , φm−1(Am−1, Am), such
that each consecutive pair is pairwise consistent, namely,

φi(Ai+1) = φi+1(Ai+1), (32)

for i = 1, 2, . . . , m − 2. Observe that the schemas of these decision tables form
an acyclic hypergraph [1]. Dawid and Lauritzen [3] have shown that if a given
set of potentials satisfies Equation (32) and are defined over an acyclic hyper-
graph, then the potentials are marginals of a unique potential φ(A1, A2, . . . , Am),
defined as:

φ(A1, A2, . . . , Am) =
φ1(A1, A2) · φ2(A2, A3) · . . . · φm−1(Am−1, Am)

φ1(A2) · . . . · φm−2(Am−1)
. (33)

In [7,8], the flow conservation assumption is made. This means that a given
set of m − 1 decision tables φ1(A1, A2), φ2(A2, A3), . . . , φm−1(Am−1, Am) satis-
fies Equation (32). By [3], these potentials are marginals of a unique potential
φ(A1, A2, . . . , Am) defined by Equation (33), which we will call the collective
potential. The collective potential φ(A1, A2, . . . , Am) represents the problem do-
main from a rough set perspective.

In order to test whether independencies are assumed to hold, it is necessary
to normalize φ(A1, A2, . . . , Am). (Note that the normalization process has been
used in [7,8].) Normalizing φ(A1, A2, . . . , Am) yields a jpd p(A1, A2, . . . , Am)
by multiplying 1/N , where N denotes the number of all cases. It follows from
Equation (33) that

p(A1, A2, . . . , Am) =
1
N
· φ(A1, A2, . . . , Am)

=
1
N
· φ1(A1, A2) · φ2(A2, A3) · . . . · φm−1(Am−1, Am)

φ1(A2) · . . . · φm−2(Am−1)
. (34)

We now show that RSFGs make implicit independency assumptions regard-
ing the problem domain.

Theorem 5. Consider a RSFG defined by m − 1 decision tables φ1(A1, A2),
φ2(A2, A3), . . . , φm−1(Am−1, Am). Then m− 2 probabilistic independencies
I(A1, A2, A3 . . . Am), I(A1A2, A3, A4 . . . Am), . . . , I(A1 . . . Am−2, Am−1, Am) are
satisfied by the jpd p(A1, A2, . . . , Am), where p(A1, A2, . . . , Am) is the normaliza-
tion of collective potential φ(A1, A2, . . . , Am) representing the problem domain.

Proof. Consider I(A1, A2, A3 . . . Am). By Equation (34), let

φ′(A1, A2) = φ1(A1, A2) (35)

and

φ′′(A2, A3, . . . , Am) =
1
N
· φ2(A2, A3) · . . . · φm−1(Am−1, Am)

φ1(A2) · . . . · φm−2(Am−1)
. (36)

By substituting Equations (35) and (36) into Equation (34),

p(A1, A2, . . . , Am) = φ′(A1, A2) · φ′′(A2, A3, . . . , Am). (37)

By Theorem 1, Equation (37) indicates that I(A1, A2, A3 . . . Am) holds. It can
be similarly shown that I(A1A2, A3, A4 . . . Am), . . . , I(A1 . . . Am−2, Am−1, Am)
are also satisfied by the jpd p(A1, A2, . . . , Am). 2

Example 11. Decision tables φ(M, D), φ(D,A), φ(A,S) and φ(S, P) in Table 2
satisfy Equation (32) and are defined over an acyclic hypergraph {MD, DA, AS,
SP}. This means they are marginals of a unique collective potential,

φ(M, D,A, S, P) =
φ(M, D) · φ(D, A) · φ(A,S) · φ(S, P)

φ(D) · φ(A) · φ(S)
. (38)

The normalization of φ(M,D, A, S, P) is a jpd p(M,D, A, S, P),

p(M,D, A, S, P) =
1

1000
· φ(M,D) · φ(D,A) · φ(A,S) · φ(S, P)

φ(D) · φ(A) · φ(S)
, (39)

where the number of all cases N = 1000. To show I(M,D, ASP) holds, let

φ′(M, D) = φ(M,D) (40)

and

φ′′(D, A, S, P) =
1

1000
· φ(D,A) · φ(A,S) · φ(S, P)

φ(D) · φ(A) · φ(S)
. (41)

Substituting Equations (40) and (41) into Equation (39),

p(M, D,A, S, P) = φ′(M, D) · φ′′(D, A, S, P). (42)

By Theorem 1, the independence I(M, D, ASP) holds in p(M, D, A, S, P). It can
be similarly shown that I(MD, A, SP) and I(MDA, S, P) are also satisfied by
p(M, D,A, S, P).

The important point is that the flow conservation assumption [7] used in the
construction of RSFGs implicitly implies probabilistic conditional independen-
cies holding in the problem domain.

8 Conclusion

Pawlak [7,8] recently introduced the notion of rough set flow graph (RSFGs)
as a graphical framework for reasoning from data. In this paper, we established
that the RSFG inference algorithm suggested in [7,8] has exponential time com-
plexity. The root cause of the computational explosion is a failure to exploit the
factorization defined by a RSFG during inference. We proposed a new RSFG al-
gorithm exploiting the factorization. We showed its correctness and established
its time complexity is polynomial with respect to number of nodes in a RSFG.

In addition, we showed that it never performs more work than the traditional
algorithm [7,8]. These are important results, since they indicate that RSFGs
are an efficient framework for uncertainty management. Finally, our study has
revealed that RSFGs, unlike previous rough set research, make implicit indepen-
dency assumptions regarding the problem domain. Future work will report on
the complexity of the inference in generalized RSFGs [4]. As the order in which
variables are eliminated affects the amount of computation performed [6], we
will also investigate this issue in RSFGs.

Acknowledgments

The authors would like to thank A. Skowron for constructive comments and
suggestions.

References

1. Beeri, C., Fagin, R., Maier, D. and Yannakakis, M.: On The Desirability of Acyclic
Database Schemes. Journal of the ACM, 30(3) (1983) 479-513

2. Butz, C.J., Yan, W. and Yang, B.: The Computational Complexity of Inference
Using Rough Set Flow Graphs. The Tenth International Conference on Rough Sets,
Fuzzy Sets, Data Mining, and Granular Computing, Vol. 1 (2005) 335-344

3. Dawid, A.P. and Lauritzen, S.L.: Hyper Markov Laws in The Statistical Analysis of
Decomposable Graphical Models. The Annals of Satistics, Vol. 21 (1993) 1272-1317

4. Greco, S., Pawlak, Z. and Slowinski, R.: Generalized Decision Algorithms, Rough
Inference Rules and Flow Graphs. The Third International Conference on Rough
Sets, and Current Trends in Computing (2002) 93-104

5. Hajek, P., Havranek T. and Jirousek R.: Uncertain Information Processing in Ex-
pert System. (1992)

6. Madson, A.L. and Jensen, F.V.: Lazy Propagation: A Junction Tree Inference
Algorithm based on Lazy Evaluation, Artificial Intelligence, 113 (1-2) (1999) 203-
245.

7. Pawlak, Z.: Flow Graphs and Decision Algorithms. The Ninth International Con-
ference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (2003)
1-10

8. Pawlak, Z.: In Pursuit of Patterns in Data Reasoning from Data - The Rough Set
Way. The Third International Conference on Rough Sets, and Current Trends in
Computing (2002) 1-9

9. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-
ences, Vol. 11, Issue 5 (1982) 341-356

10. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic (1991)

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, California (1988)

12. Shafer, G.: Probabilistic Expert Systems. Society for the Institute and Applied
Mathematics, Philadelphia (1996)

13. Wong, S.K.M., Butz, C.J. and Wu, D.: On the Implication Problem for Probabilis-
tic Conditional Independency, IEEE Transactions on Systems, Man, and Cyber-
netics, Part A: Systems and Humans, Vol. 30, Issue 6. (2000) 785-805

Appendix I

Table 5: A jpd p(U) is shown in Tables 5 and 6, where U = {M, D, A, S, P}.
M D A S P p(U) M D A S P p(U)

ToyotaAlice Old High Executive 0.017280 Toyota Dave Old Medium Staff 0.000540
ToyotaAlice Old High Staff 0.003672 Toyota Dave Old Medium Manager 0.000042
ToyotaAlice Old High Manager 0.000648 Toyota Dave Old Low Executive 0.000002
ToyotaAlice Old MediumExecutive 0.000324 Toyota Dave Old Low Staff 0.000008
ToyotaAlice Old Medium Staff 0.009720 Toyota Dave Old Low Manager 0.000190
ToyotaAlice Old Medium Manager 0.000756 Toyota Dave Middle High Executive 0.000960
ToyotaAlice Old Low Executive 0.000036 Toyota Dave Middle High Staff 0.000204
ToyotaAlice Old Low Staff 0.000144 Toyota Dave Middle High Manager 0.000036
ToyotaAlice Old Low Manager 0.003420 Toyota Dave MiddleMediumExecutive 0.000108
ToyotaAliceMiddle High Executive 0.011520 Toyota Dave MiddleMedium Staff 0.003240
ToyotaAliceMiddle High Staff 0.002448 Toyota Dave MiddleMedium Manager 0.000252
ToyotaAliceMiddle High Manager 0.000432 Toyota Dave Middle Low Executive 0.000012
ToyotaAliceMiddleMediumExecutive 0.001296 Toyota Dave Middle Low Staff 0.000048
ToyotaAliceMiddleMedium Staff 0.003888 Toyota Dave Middle Low Manager 0.001140
ToyotaAliceMiddleMedium Manager 0.003024 Toyota Dave Young High Executive 0.000960
ToyotaAliceMiddle Low Executive 0.000144 Toyota Dave Young High Staff 0.000204
ToyotaAliceMiddle Low Staff 0.000576 Toyota Dave Young High Manager 0.000036
ToyotaAliceMiddle Low Manager 0.013680 Toyota Dave Young MediumExecutive 0.000072
ToyotaAlice Young High Executive 0.000960 Toyota Dave Young Medium Staff 0.002160
ToyotaAlice Young High Staff 0.000204 Toyota Dave Young Medium Manager 0.000168
ToyotaAlice Young High Manager 0.000036 Toyota Dave Young Low Executive 0.000084
ToyotaAlice Young MediumExecutive 0.000072 Toyota Dave Young Low Staff 0.000336
ToyotaAlice Young Medium Staff 0.002160 Toyota Dave Young Low Manager 0.007980
ToyotaAlice Young Medium Manager 0.000168 Honda Bob Old High Executive 0.028800
ToyotaAlice Young Low Executive 0.000084 Honda Bob Old High Staff 0.006120
ToyotaAlice Young Low Staff 0.000336 Honda Bob Old High Manager 0.001080
ToyotaAlice Young Low Manager 0.007980 Honda Bob Old MediumExecutive 0.000540
Toyota Bob Old High Executive 0.011520 Honda Bob Old Medium Staff 0.016200
Toyota Bob Old High Staff 0.002448 Honda Bob Old Medium Manager 0.001260
Toyota Bob Old High Manager 0.000432 Honda Bob Old Low Executive 0.000060
Toyota Bob Old MediumExecutive 0.000216 Honda Bob Old Low Staff 0.000240
Toyota Bob Old Medium Staff 0.006480 Honda Bob Old Low Manager 0.005700
Toyota Bob Old Medium Manager 0.000504 Honda Bob Middle High Executive 0.014400
Toyota Bob Old Low Executive 0.000024 Honda Bob Middle High Staff 0.003060
Toyota Bob Old Low Staff 0.000096 Honda Bob Middle High Manager 0.000540
Toyota Bob Old Low Manager 0.002280 Honda Bob MiddleMediumExecutive 0.001620
Toyota Bob Middle High Executive 0.005760 Honda Bob MiddleMedium Staff 0.048600
Toyota Bob Middle High Staff 0.001224 Honda Bob MiddleMedium Manager 0.003780
Toyota Bob Middle High Manager 0.000216 Honda Bob Middle Low Executive 0.000180
Toyota Bob MiddleMediumExecutive 0.000648 Honda Bob Middle Low Staff 0.000720
Toyota Bob MiddleMedium Staff 0.019440 Honda Bob Middle Low Manager 0.017100
Toyota Bob MiddleMedium Manager 0.001512 Honda CarolMiddle High Executive 0.014400
Toyota Bob Middle Low Executive 0.000072 Honda CarolMiddle High Staff 0.003060
Toyota Bob Middle Low Staff 0.000288 Honda CarolMiddle High Manager 0.000540
Toyota Bob Middle Low Manager 0.006840 Honda CarolMiddleMediumExecutive 0.001620
ToyotaDave Old High Executive 0.000960 Honda CarolMiddleMedium Staff 0.048600
ToyotaDave Old High Staff 0.000204 Honda CarolMiddleMedium Manager 0.003780
ToyotaDave Old High Manager 0.000036 Honda CarolMiddle Low Executive 0.000180
ToyotaDave Old MediumExecutive 0.000018 Honda CarolMiddle Low Staff 0.000720

Table 6: A jpd p(U) is shown in Tables 5 and 6, where U = {M, D, A, S, P}.
M D A S P p(U) M D A S P p(U)

HondaCarolMiddle Low Manager 0.017100 Ford Bob MiddleMedium Staff 0.048600
HondaCarol Young High Executive 0.004800 Ford Bob MiddleMedium Manager 0.003780
HondaCarol Young High Staff 0.001020 Ford Bob Middle Low Executive 0.000180
HondaCarol Young High Manager 0.000180 Ford Bob Middle Low Staff 0.000720
HondaCarol Young MediumExecutive 0.000360 Ford Bob Middle Low Manager 0.017100
HondaCarol Young Medium Staff 0.010800 FordCarolMiddle High Executive 0.004800
HondaCarol Young Medium Manager 0.000840 FordCarolMiddle High Staff 0.001020
HondaCarol Young Low Executive 0.000420 FordCarolMiddle High Manager 0.000180
HondaCarol Young Low Staff 0.001680 FordCarolMiddleMediumExecutive 0.000540
HondaCarol Young Low Manager 0.039900 FordCarolMiddleMedium Staff 0.016200
Ford Alice Old High Executive 0.007200 FordCarolMiddleMedium Manager 0.001260
Ford Alice Old High Staff 0.001530 FordCarolMiddle Low Executive 0.000060
Ford Alice Old High Manager 0.000270 FordCarolMiddle Low Staff 0.000240
Ford Alice Old MediumExecutive 0.000135 FordCarolMiddle Low Manager 0.005700
Ford Alice Old Medium Staff 0.004050 FordCarol Young High Executive 0.001600
Ford Alice Old Medium Manager 0.000315 FordCarol Young High Staff 0.000340
Ford Alice Old Low Executive 0.000015 FordCarol Young High Manager 0.000060
Ford Alice Old Low Staff 0.000060 FordCarol Young MediumExecutive 0.000120
Ford Alice Old Low Manager 0.001425 FordCarol Young Medium Staff 0.003600
Ford Alice Middle High Executive 0.004800 FordCarol Young Medium Manager 0.000280
Ford Alice Middle High Staff 0.001020 FordCarol Young Low Executive 0.000140
Ford Alice Middle High Manager 0.000180 FordCarol Young Low Staff 0.000560
Ford Alice MiddleMediumExecutive 0.000540 FordCarol Young Low Manager 0.013300
Ford Alice MiddleMedium Staff 0.016200 Ford Dave Old High Executive 0.012000
Ford Alice MiddleMedium Manager 0.001260 Ford Dave Old High Staff 0.002550
Ford Alice Middle Low Executive 0.000060 Ford Dave Old High Manager 0.000450
Ford Alice Middle Low Staff 0.000240 Ford Dave Old MediumExecutive 0.000225
Ford Alice Middle Low Manager 0.005700 Ford Dave Old Medium Staff 0.006750
Ford Alice Young High Executive 0.000400 Ford Dave Old Medium Manager 0.000525
Ford Alice Young High Staff 0.000085 Ford Dave Old Low Executive 0.000025
Ford Alice Young High Manager 0.000015 Ford Dave Old Low Staff 0.000100
Ford Alice Young MediumExecutive 0.000030 Ford Dave Old Low Manager 0.002375
Ford Alice Young Medium Staff 0.000900 Ford Dave Middle High Executive 0.012000
Ford Alice Young Medium Manager 0.000070 Ford Dave Middle High Staff 0.002550
Ford Alice Young Low Executive 0.000035 Ford Dave Middle High Manager 0.000450
Ford Alice Young Low Staff 0.000140 Ford Dave MiddleMediumExecutive 0.001350
Ford Alice Young Low Manager 0.003325 Ford Dave MiddleMedium Staff 0.040500
Ford Bob Old High Executive 0.028800 Ford Dave MiddleMedium Manager 0.003150
Ford Bob Old High Staff 0.006120 Ford Dave Middle Low Executive 0.000150
Ford Bob Old High Manager 0.001080 Ford Dave Middle Low Staff 0.000600
Ford Bob Old MediumExecutive 0.000540 Ford Dave Middle Low Manager 0.014250
Ford Bob Old Medium Staff 0.016200 Ford Dave Young High Executive 0.012000
Ford Bob Old Medium Manager 0.001260 Ford Dave Young High Staff 0.002550
Ford Bob Old Low Executive 0.000060 Ford Dave Young High Manager 0.000450
Ford Bob Old Low Staff 0.000240 Ford Dave Young MediumExecutive 0.000900
Ford Bob Old Low Manager 0.005700 Ford Dave Young Medium Staff 0.027000
Ford Bob Middle High Executive 0.014400 Ford Dave Young Medium Manager 0.002100
Ford Bob Middle High Staff 0.003060 Ford Dave Young Low Executive 0.001050
Ford Bob Middle High Manager 0.000540 Ford Dave Young Low Staff 0.004200
Ford Bob MiddleMediumExecutive 0.001620 Ford Dave Young Low Manager 0.099750

