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Abstract. In this paper, we analyze quantitative measures associated
with if-then type rules. Basic quantities are identified and many existing
measures are examined using the basic quantities. The main objective is
to provide a synthesis of existing results in a simple and unified frame-
work. The quantitative measure is viewed as a multi-facet concept, repre-
senting the confidence, uncertainty, applicability, quality, accuracy, and
interestingness of rules. Roughly, they may be classified as representing
one-way and two-way supports.

1 Introduction

In machine learning and data mining, the discovered knowledge from a large
data set is often expressed in terms of a set of if-then type rules [7, 21]. They
represent relationships, such as correlation, association, and causation, among
concepts. Typically, the number of potential rules observable in a large data set
may be very large, and only a small portion of them is actually useful. In order
to filter out useless rules, certain criteria must be established for rule selection.
A common solution is the use of quantitative measures. One may select the
rules which have the highest values. Alternatively, one may choose a threshold
value and select rules whose measures are above the threshold value. The well
known ID3 inductive learning algorithm [23] is an example of the former, and the
approach for mining association rules in transaction databases [1] is an example
of the latter. The use of quantitative measures also play a very important role in
the interpretation of discovered rules, which provides guidelines for the proper
uses of the rules.

Many quantitative measures have been proposed and studied, each of them
captures different characteristics of rules. However, several important issues need
more attention. Different names have been used for essentially the same mea-
sure, or a positive monotonic transformation of the same measure (called order
preserving transformation [15]). Additional measures are being proposed, with-
out realizing that the same measures have been studied in related fields such as
expert systems, pattern recognition, information retrieval, and statistical data



analysis. The relationships between various measures have not been fully in-
vestigated. There is clearly a need for a systematic study on the interpretation,
classification, and axiomatization of quantitative measures associated with rules.
Important initial studies have been reported by Piatetsky-Shapiro [25], and Ma-
jor and Mangano [17] on the axiomatic characterization of quantitative measures,
and by Klösgen [15] on the study of special classes of quantitative measures.

This paper may be viewed as a first step in the study of quantitative mea-
sures. A simple set-theoretic framework is suggested for interpreting if-then type
rules. Basic quantities are identified and many existing measures are examined
using the basic quantities. The results may lay down the groundwork for further
systematic studies.

2 The Basic Framework and Basic Quantities

Consider an if-then type rule of the form:

IF E THEN H with α1, . . . , αm, (1)

which relates two concepts E and H . For clarity, we also simply write E −→ H .
A rule does not necessarily represent a strict logical implication, with logical
implication as the degenerate case. The values α1, . . . , αm quantifies different
types of uncertainty and properties associated with the rule. In principle, one
may connect any two concepts in the above rule form. The quantities α1, . . . , αm

measures the degree or strength of relationships [34]. Examples of quantitative
measures include confidence, uncertainty, applicability, quality, accuracy, and
interestingness of rules.

We use the following set-theoretic interpretation of rules. It relates a rule to
the data sets from which the rule is discovered. Let U denote a finite universe
consisting of objects. Each object may be considered as one instance of a data
set. If each object is described by a set of attribute-value pairs, the concepts E
and H can be formally defined using certain languages, such as propositional and
predicate languages [15]. We are not interested in the exact representation of the
concepts. Instead, we focus on the set-theoretic interpretations of concepts [13,
18, 22]. For a concept E, let m(E) denote the set of elements of U that satisfy
the condition expressed by E. We also say that m(E) is the set of elements
satisfying E. Similarly, the set m(H) consists of elements satisfying H . One may
interpret m as a meaning function that associates each concept with a subset of
U . The meaning function should obey the following conditions:

m(¬E) = U −m(E),

m(E ∧H) = m(E) ∩m(H),

m(E ∨H) = m(E) ∪m(H), (2)

representing the sets of elements not satisfying E, satisfying both E and H , and
satisfying at least one of E and H , respectively. With the meaning function m, a



rule E −→ H may be paraphrased as saying that “IF an element of the universe
satisfies E, THEN the element satisfies H”.

Using the cardinalities of sets, we obtain the following contingency table
representing the quantitative information about the rule E −→ H :

H ¬H Totals

E |m(E) ∩m(H)| |m(E) ∩m(¬H)| |m(E)|

¬E |m(¬E) ∩m(H)| |m(¬E) ∩m(¬H)| |m(¬E)|

Totals |m(H)| |m(¬H)| |U |

where | · | denotes the cardinality of a set. For clarity, we rewrite the table as
follows:

H ¬H Totals
E a b a + b
¬E c d c + d

Totals a + c b + d a + b + c + d = n

The values in the four cells are not independent. They are linked by the constraint
a+b+c+d = n. The 2×2 contingency table has been used by many authors for
representing information of rules [9, 11, 27, 29, 33]. From the contingency table,
we can define some basic quantities.

The generality of E is defined by:

G(E) =
|m(E)|

|U |
=

a + b

n
, (3)

which indicates the relative size of the concept E. A concept is more general if
it covers more instances of the universe. If G(E) = α, then (100α)% of objects
in U satisfy E. The quantity may be viewed as the probability of a randomly
selected element satisfying E. Obviously, we have 0 ≤ G(E) ≤ 1.

The absolute support of H provided by E is the quantity:

AS(H |E) =
|m(H) ∩m(E)|

|m(E)|
=

a

a + b
. (4)

The quantity, 0 ≤ AS(H |E) ≤ 1, shows the degree to which E implies H . If
AS(H |E) = α, then (100α)% of objects satisfying E also satisfy H . It may be
viewed as the conditional probability of a randomly selected element satisfying H
given that the element satisfies E. In set-theoretic terms, it is the degree to which
m(E) is included in m(H). Clearly, AS(H |E) = 1, if and only if m(E) ⊆ m(H).
The change of support of H provided by E is defined by:

CS(H |E) = AS(H |E)−G(H) =
an− (a + b)(a + c)

(a + b)n
. (5)

Unlike the absolute support, the change of support varies from −1 to 1. One
may consider G(H) to be the prior probability of H and AS(H |E) the posterior



probability of H after knowing E. The difference of posterior and prior prob-
abilities represents the change of our confidence regarding whether E actually
causes H . For a positive value, one may say that E causes H ; for a negative
value, one may say that E does not cause H . The mutual support of H and E is
defined by:

MS(E, H) =
|m(E) ∩m(H)|

|m(E) ∪m(H)|
=

a

a + b + c
. (6)

One may interpret the mutual support, 0 ≤MS(E, H) ≤ 1, as a measure of the
strength of the double implication E ←→ H . It measures the degree to which E
causes, and only causes, H . The mutual support can be reexpressed by:

MS(E, H) = 1−
|m(E)∆m(H)|

|m(E) ∪m(H)|
, (7)

where A∆B = (A ∪B)− (A ∩B) is the symmetric difference between two sets.
The measure |A∆B|/|A∪B| is commonly known as the MZ metric for measuring
distance between two sets [19]. Thus, MS may be viewed as a similarity measure
of E and H .

The degree of independence of E and H is measured by:

IND(E, H) =
G(E ∧H)

G(E)G(H)
=

an

(a + b)(a + c)
. (8)

It is the ratio of the joint probability of E ∧ H and the probability obtained
if E and H are assumed to be independent. One may rewrite the measure of
independence as [10]:

IND(E, H) =
AS(H |E)

G(H)
. (9)

It shows the degree of the deviation of the probability of H in the subpopula-
tion constrained by E from the probability of H in the entire data set [16, 31].
With this expression, the relationship to the change of support becomes clear.
Instead of using the ratio, the latter is defined by the difference of AS(H |E) and
G(H). When E and H are probabilistic independent, we have CS(H |E) = 0
and IND(E, H) = 1. Moreover, CS(H |E) ≥ 0 if and only if IND(E, H) ≥ 1,
and CS(H |E) ≤ 0 if and only if IND(E, H) ≤ 1. This provides further support
for use of CS as a measure of confidence that E causes H . However, CS is not
a symmetric measure, while IND is symmetric. The difference of G(H ∧E) and
G(H)G(E):

D(H, E) = G(H ∧ E)−G(H)G(E), (10)

is a symmetric measure. Compared with D(H, E), the measure CS(H |E) may
be viewed as a relative difference.

The generality of a concept is related to the probability that a randomly
selected element will be an instance of the concept. It is the basic quantity from



which all other quantities can be expressed as follows:

AS(H |E) =
G(H ∧ E)

G(E)
,

CS(H |E) =
G(H ∧ E)−G(H)G(E)

G(E)
,

MS(E, H) =
G(E ∧H)

G(E ∨H)
,

IND(E, H) =
G(E ∧H)

G(E)G(H)
,

D(H, E) = G(H ∧ E)−G(H)G(E). (11)

From the above definitions, we can establish the following relationships:

G(E) = AS(E|U),

CS(H |E) = (IND(E, H)− 1)G(H),

AS(H |E) =
G(H)

G(E)
AS(E|H),

MS(E, H) =
1

1
AS(E|H) + 1

AS(H|E) − 1
,

D(H, E) = CS(H |E)G(E). (12)

In summary, all measures introduced in this section have a probability related
interpretation. They can be roughly divided into three classes:

generality: G,
one-way association (single implication): AS, CS,
two-way association (double implication): MS, IND, D.

Each type of association measures can be further divided into absolute support
and change of support. The measure of absolute one-way support is AS, and
the measure of absolute two-way support is MS. The measures of change of
support are CS for one-way, and IND and D for two-way. It is interesting to
note that all measures of change of support are related to the deviation of joint
probability of E ∧ H from the probability obtained if E and H are assumed
to be independent. In other words, a stronger association is presented if the
joint probability is further away from the probability under independence. The
association can be either positive or negative.

3 A Review of Existing Measures

This section is not intended to be an exhaustive survey of quantitative measures
associated with rules. We will only review some of the measures that fit in the
framework established in the last section.



3.1 Generality

The generality is one of the two standard measures used for mining association
rules [1]. For rule E −→ H , the generality:

G(E ∧H) =
a

n
(13)

is commonly known as the support of the rule. It represents the percentage of
positive instances of E that support the rule. On the other hand, the generality
G(E) is the percentage of instances to which the rule can be applied. Iglesia
et al. [13] called the quantity G(E) the applicability of the rule. Klösgen [15]
referred to it as a measure of coverage of the concept E.

3.2 One-way support

The absolute support AS(H |E) is the other standard measure used for mining
association rules [1], called confidence of the rule E −→ H . Different names were
given to this measure, including the accuracy [13, 29], strength [8, 15, 26], and
certainty factor [15]. In the context of information retrieval, the same measure
is referred to as the measure of precision [32]. Tsumoto and Tanaka [29] used
the quantity AS(E|H) for measuring the coverage or true positive rate. It is
regarded as a measure of sensitivity by Klösgen [15]. The same measure was also
used by Choubey et al. [5]. In the context of information retrieval, the measure is
referred to as the measure of recall [32]. The use of change of support CS(H |E)
was discussed by some authors [4, 25].

Additional measures of one-way support can be obtained by combining basic
quantities introduced in the last section. Yao and Liu [31] used the following
quantity for measuring the significance of a rule E −→ H :

S1(H |E) = AS(H |E) log IND(E, H) =
a

a + b
log

an

(a + b)(a + c)
. (14)

The measure is a product of a measure of one-way support AS(S|E) and the
logarithm of a measure of two-way support IND(E, H). Since logarithm is a
monotonic increasing function, it reflects the properties of IND(E, H). Gray
and Orlowska [10] proposed a measure of one-way support, called measure of
rule interestingness, by combining generality and absolute support:

i(H |E) =
(

IND(E, H)l − 1
)

G(E ∧H)m = ((
an

(a + b)(a + c)
)l − 1)(

a

n
)m. (15)

where l and m are parameters to weigh the relative importance of the two mea-
sures. Klösgen [15] studied another class of measures:

K(H |E) = G(E)α(AS(H |E)−G(H)). (16)

It is a combination of generality and change of support. When α = 0, the measure
reduced to the change of support.



Following Duda, Gasching, and Hart [6], Kamber and Shinghal [14], Schlim-
mer and Granger [24] used the measure of logical sufficiency:

LS(H |E) =
AS(E|H)

AS(E|¬H)
=

a(b + d)

b(a + c)
. (17)

and the measure of logical necessity:

LN(H |E) =
AS(¬E|H)

AS(¬E|¬H)
=

c(b + d)

d(a + c)
. (18)

McLeish et al. [20] viewed LS as the weight of evidence if one treats E as a piece
of evidence. A highly negative weight implies that there is significant reason to
belief in ¬H , and a positive weight supports H . It should pointed out that weight
of evidence plans an important rule in Bayesian inference. Ali, Manganaris and
Srikant [2] defined the relative risk of a rule E −→ H as follows:

r(H |E) =
AS(H |E)

AS(H |¬E)
=

a(c + d)

c(a + b)
. (19)

It is fact related to the measure LS, if one change the places of E and H .
Based on the probability related interpretation of AS(H |E), Smyth and

Goodman [28] defined the information content of rules. For E −→ H , we have:

J(H ||E) = G(E)

(

AS(H |E) log
AS(H |E)

G(H)
+ AS(¬H |E) log

AS(¬H |E)

G(¬H)

)

= G(E) (AS(H |E) log IND(E, H) + AS(¬H |E) log IND(¬H, E))

=
1

n

(

a log
an

(a + b)(a + c)
+ b log

bn

(a + b)(b + d)

)

. (20)

This measure is closely related to the divergence measure proposed by Kullback
and Leibler [12].

3.3 Two-way support

The measure of independence IND has been used by many authors. Silverstein
et al. [27] referred to it as a measure of interest. Büchter and Wirth [3] regarded
it as a measure of dependence. Gray and Orlowska [10] used the same measure,
and provided the interpretation given by equation (9).

The measure of two-way support corresponding to equation (14) is given by
Yao and Liu [31] as:

S2(E, H) = G(E ∧H) log IND(E, H) =
a

n
log

an

(a + b)(a + c)
. (21)

By setting l = m = 1 in equation (15), we have:

i(H |E) = IND(E, H)D(E, H), (22)



which is a multiplication of two basic measures of two-way support. By setting
α = 1 in equation (16), we immediately obtain the measure D.

The measure of two support corresponding to the measure of divergence (20)
is given by the measure of mutual information. For rule E −→ H , we have:

M(E; H) = G(E ∧H) log
G(E ∧H)

G(E)G(H)
+ G(E ∧ ¬H) log

G(E ∧ ¬H)

G(E)G(¬H)
+

G(¬E ∧H) log
G(¬E ∧H)

G(¬E)G(H)
+ G(¬E ∧ ¬H) log

G(¬E ∧ ¬H)

G(¬E)G(¬H)

=
1

n

(

a log
an

(a + c)(a + b)
+ b log

bn

(b + d)(a + b)
+

c log
cn

(a + c)(c + d)
+ d log

dn

(b + d)(c + d)

)

(23)

The relationship between J and M can be established as:

M(E; H) = J(H ||E) + J(H ||¬E). (24)

By extending the above relationship, in general one may obtain measures of
two-way support by combining measures of one-way support. For example, both
AS(H |E)+AS(E|H) and AS(H |E)AS(E|H) are measures of two-way support.

3.4 Axioms for quantitative measures of rules

Piatetsky-Shapiro [25] suggested that a quantitative measure of rule E −→ H
may be computed as a function of G(E), G(H), G(E ∧ H), rule complex-
ity, and possibly other parameters such as the mutual distribution of E and
H or the domain size of E and H . For the evaluation of rules, Piatetsky-
Shapiro [25] introduced three axioms. Major and Mangano [17] added a fourth
axioms. Klösgen [15] studied a special class of measures that are characterized by
two quantities, the absolute one-way support AS(H |E) and the generality G(E).
The generality G(H ∧ E) is obtained by AS(H |E)G(E). Suppose Q(E, H) is a
measure associated with rule E −→ H . The version of the four axioms given by
Klösgen [15] is:

(i). Q(E, H) = 0 if E and H are statistically independent,

(ii). Q(E, H) monotonically increases in AS(H |E) for fixed G(E),

(iii). Q(E, H) monotonically decreases in G(E) for fixed G(E ∧H),

(iv). Q(E, H) monotonically increases in G(E) for fixed AS(H |E) > G(H).

Axiom (i) implies that only measures of change of support are considered. Other
axioms states that all measures must have the property of monotonicity. Many
of the measures discussed in this paper fall into this class.



4 Conclusion

We have presented a simple and unified framework for the study of quantitative
measures associated with rules. Some basic measures have been proposed and
studied. Many existing measures have been investigated in terms of these basic
measures.

This paper is a preliminary step towards a systematic study on quantitative
measures associated with rules. Further investigations on the topic are planed.
We will examine the semantics and implications of various measures, and study
axioms for distinct types of measures.
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