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A DECISION-THEORETIC ROUGH SET MODEL
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Abstract In this paper we propose a generalized rough set model using
decision-theoretic approach. Within this model, the lower and upper approxima-
tions of a given concept are derived from a Bayesian decision procedure such that
the expected risk is minimum. It is explicitly shown that both the algebraic and
probabilistic rough set models are special cases of the proposed model. This new
formulation not only contributes to a deeper understanding of the rough set theory
but also broadens the framework of rough sets for further development of intelli-
gent information systems.

1. Introduction

Representation and management of uncertain knowledge are some of the more difficult
tasks in the design and implementation of intelligent information systems. The uncertainty
may stem from imprecise and incomplete information about the reality. The notion of rough
sets (Pawlak, 1984, 1982) was introduced to provide a systematic framework for the study of
intelligent systems characterized by insufficient information. The successful applications of
the rough set model in a variety of problems (Kowalczyk, & Szymanski, 1989; Srinivasan,
1989; Pettorossi, Ras, & Zemankova, 1987; Wong, Ziarko, & Ye, 1987; Pawlak, Slowinski,
& Slowinski, 1986) have amply demonstrated its usefulness and versatility.

The theory of rough sets is an extension of the ordinary set theory, in which a concept 1s
described by a pair of ordinary sets called the lower and upper approximations. That is, the
lower and upper approximations specify the range within which the given concept lies. How-
ever, there are inherent drawbacks (Pawlak, Wong, & Ziarko, 1988; Wong, Ziarko, & Ye,
1987) in this algebraic approach for the characterization of a concept. The algebraic
dpproach seems to ignore the available statistical information which may be crucial to many
non-deterministic classification problems. For this reason, a probabilistic rough set model
(Pawlak, Wong, & Ziarko, 1988; Wong, & Ziarko, 1987, 1986) was proposed to take advan-
tage of the available statistical information.

We show in this paper that a generalized rough set model can be developed directly from
the Bayesian decision-theoretic approach. The main advantage of this new formulation is that
it not only contributes to a deeper understanding of the rough set theory but also broadens the
framework of rough sets for further development of intelligent information systems.

We first summarize some of the key notions about rough sets in Section 2. Then a gen-
E_ralized model is developed in Section 3. We show that the existing algebraic and probabilis-
He rough set models are indeed special cases of the proposed model.
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2. The Algebraic Rough Set Model

For completeness, we briefly review here the algebraic rough set model (Pawlak, 1984,
1982).

Let U denote the universe (a finite ordinary set), and let R < U x U be an equivalence
(indiscernibility) relation on U. The pair A = (U, R) is called an approximation space. The
equivalence relation R partitions the set U into disjoint subsets. Such a partition of the
universe is denoted by U/R ={E, E,, ..., E,}, where E; is an equivalence class of R. If
two elements ey, €, in U belong to the same equivalence class E € U/R, we say that e¢; and
e, are indistinguishable. The equivalence classes of R and the empty set & are called the ele-
mentary or atomic sets in the approximation space A = (U, R). The union of one or more ele-
mentary sets 18 called a composed set in A. Com (A) denotes the family of all composed sets.

Since it 18 not possible to differentiate the elements within the same equivalence class,
one may not be able to obtain a precise representation for an arbitrary set X < U in terms of
elementary sets in A. Instead, any X may be represented by its lower and upper approxima-
tions defined as follows:

AX) = U E; AX)= U E; . (2.1)
- EcX ENX#0

That 1s, the lower approximation A(X) is _the union of all the elementary sets which are sub-
sets of X, and the upper approximation A(X) is the union of all the elementary sets which
have a non-empty intersection with X. The pair (A(X), A(X)) is the representation of an ordi-
nary set X in the approximation space A = (U, R),_nr simply the rough set of X.

The family Com(A) of all composed sets uniquely defines a topological space
Ty =(U, Com(A)). Com(A) consists of all the open and closed sets in T4. By definition, for
any set X c U, A(X) is the greatest composed set contained in X and A(X) is the least com-
posed set containing X. Thus, the lower and upper approximations of an arbitrary set X
defined by eqn. (2.1) can be interpreted as the interior and closure operations in the topologi-
cal space T4. For any subsets X, ¥ < U:

(I1) AXNY) = AX) NAQY)
(I2) A(XUY) 2 A(X) UA(Y)
(I3) A(=X) = —A(X)
(14) AXNY) C AX)NA(Y)
(I5) A(XUY) = AX) UA(Y)
(16) A(—X) = —A(X)

where —X denotes the complement of X, i.e., =X = U — X.

Based on the lower and upper approximations of a set X < U, the universe U can be
divided into three disjoint regions, the positive region POS4(X), the doubtful region
DOU4(X), and the negative region NEG 4 (X ):
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POS,(X) = AX) = U E;,

E,cX
DOULX) = AX)-AX) = U E;, 2.2)
- E ¢X
E.X#0
NEGAX) = U—-AX)= U E;.
E:AX=2

Note that the upper approximation of a set X is the union of the positive and doubtful regions,
namely, A X)=POS,(X) U DOU4(X). One can say with certainty that any element
e € POS4(X) belongs to X, and that any element e € NEG4(X) does not belong to X. How-
ever, one can not decide with certainty whether or not an element ¢ € DOU4(X) belongs to X.
From properties (I3) and (I6), it follows for any set X C U:

(I7) POS5,(X) = NEG4(—X) ,
(I8) DOU4(X) = DOU4(—X) ,
(I9) NEGA(X) = POS4(=X) .
Thus the two rough sets (A (X), A (X)) and (A (—X), E (—X)) complement each other.

3. A Generalized Rough Set Model

Although the algebraic rough set model has been successfully applied in machine learn-
ing, expert system design, and knowledge representation (Kowalczyk, & Szymanski, 1989;
Pettorossi, Ras, & Zemankova, 1987; Pawlak, Slowinski, & Slowinski, 1986; Wong, &
Ziarko, 1986), it may be inadequate to deal with situations in which the statistical information
plays an important role. Consider, for example, two equivalence classes E; and E; in the
partition U /R such that each has 100 elements. Suppose only a single element in £, belongs
to X, and only a single element in £, does not belong to X. In the algebraic rough set model,
these two equivalence classes are treated in the same way and both will be included in the
doubtful region. From a physical point of view, such an identical treatment of E; and E,
does not seem reasonable. Moreover, the observation that only one element in £; belongs to
X may be just a result of noise. Therefore, the algebraic rough set model can be sensitive to
noise often encountered in many real-world applications. The probabilistic rough set model
(Pawlak, Wong & Ziarko, 1988; Wong, & Ziarko, 1987, 1986) was introduced to overcome
these shortcomings by incorporating the available statistical information. In what follows, we
develop a generalized rough set model based on the Bayesian decision theory. We also show
that our model indeed provides a unified view of the existing rough set models.

Consider a problem of deciding whether an object e € U with description E belongs to a
set X C U, where X represents a given concept. Generally one would like to answer this ques-
tion with a simple yes or no. However, in many situations the cost of making a wrong deci-
sion may be high. In these situations, one may provide the answer doubiful. The answer
doubiful indicates that the available information is insufficient to make any definite conclu-
sions. We can state this decision problem more formally as follows. Let R be an equivalence
relation on a universe of discourse U, and P is a probability measure defined on a c-algebra of
subsets of U. Let U/IR=(E,E5,..., E,) denote the family of equivalence classes
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induced by the relation R. Each equivalence class E € U/R consists of all the objects with a
certain description. Consider a set X < U representing a concept of interest. Suppose all the
conditional probabilities P (X | E) are known. Let POS,, be the set of objects corresponding
to the answer yes, DOU,, to the answer doubiful, and NEG,, to the answer no, where the tri-

ple Ap = (U, R, P) represents the available information. Now, the decision problem reduces
to dividing the universe U into three disjoint regions POS,,, DOUy,, and NEG,,. There are

many ways to construct these three regions. The approach we adopt in this paper is based on
the Bayesian decision theory (Duda, & Hart, 1973; Winkler, 1972; DeGroot, 1970).

An element e € E can be classified into one of the three regions, POS,,, DOUy,, and
NEG,,. In other words, corresponding to these regions one can take one of the following

actions:
aj: decide POS,,; ajp: decide DOU,,; as: decide NEG,,.

Let A(a;1X) denote the loss incurred for taking action aq; when an element ¢ € E in fact
belongs to X, and A(g;|—X) the loss when the element belongs to —X. P(X |E) and
P (=X | E) are the probabilities that an element e € E belongs to X and —X, respectively. The
expected loss R (a;|E) associated with taking action q; for all the elements in E can be
expressed as:

R(a,E)=A P (X |1E)+ApP (=X |E) ,
R(@y|E)=Xy P (X |E)+ApP (—X |E) , (3.1)
R(a31E)=%31P (X |E) + A3oP (=X |E) ,

where A;; =AMa;1X) and A;5 =A(g;| —X). In decision-theoretic terminology, an expected
loss 1s called a risk, and R (aq; | E') is known as the conditional risk. Whenever a particular ele-
ment e € E is encountered, the optimal Bayesian decision procedure suggests that we can
minimize our expected loss by selecting the action minimizing the conditional risk. The
selection of the action minimizing the conditional risk for every equivalence class £ will
minimize the overall risk (Duda, & Hart, 1973; Winkler, 1972; DeGroot, 1970).

Stated formally, we can decide a region to which any element e € E belongs by using
the following set of minimum-risk decision rules:

(P) Decide POS,, if R(a;|E) < R(a,|E) and R(a;|E) < R(as|E);
(D) Decide DOUy, if R(ay1E) < R(ay|E) and R(az|E) < R(a3|E);
(N) Decide NEG,, if R(a3|E) < R(ay1E) and R(aslE) < R(a,|E).

The actions that produce the same minimum risk are regarded equivalent in the decision-
making process. In other words, the Bayesian decision theory can not differentiate actions
producing the same risk. Depending on the application, one may use any convenient tie-
breaking criteria to resolve this problem. In the decision rules (P), (D), and (N), we have not
explicitly specified the tie-breaking criteria. Since P (X |E)+ P (—X | E) = 1, the above deci-
sion rules may be simplified so that only the probabilities P (X | E) are involved. Thus, we
can decide the region for any element ¢ € E based on the probability P (X | E) and the loss
functionAj; i=1,2,3,j=1, 2).

Consider a special loss function with A;; <A1 < A3q and A35 < Ay < Aqp. That is, the
loss of classifying an element e € X into the POS,, region is less than or equal to the loss of
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classifying e into the DOU,,, region, and both of these losses are strictly less than the loss of
classifying e into the NEG4, region. The reverse order of losses are associated with classify-

ing an element that does not belong to X. With this loss function, the minimum-risk decision
rules (P), (D), and (N) can be simplified to:

(P) Decide POS,, if P(X1E)2B and P(XIE)2y,
(D) Decide DOU,, if 8<P(XIE)<B,
(N) Decide NEG,, if P(X|E)<y and P(X1E)<3 ,

where
. A2 —A3p
(A31 —A32) — (A1 —Aq2)
Ao — A —A
3 12— A2 5 A2z — A3z (32)

B (A1 —A22) — (Aqp —Aq2) - (A31 —A3) — (Ag; —Ap)

From the assumptions, Aj; €Ay < A3; and A3y £Ayy < Aqg, it is not difficult to verify that
Be (0,1],ve (0, 1),and & € [0, 1). One can also see that the loss function l;j should satisfy
the condition & < B; otherwise, the classification problem would reduce to the one with only
two disjoint regions instead of three as originally assumed. The decision rules (P), (D), and
(N) provide a systematic way of partitioning the universe U into three disjoint regions using
the parameters [, ¥, and . It should perhaps be emphasized that these parameters are deter-
mined by a loss function which can be easily obtained from the user.

Now let us introduce the tie-breaking criteria for two separate cases: (i) 0 < 3, and (ii)

5= B

Case (i) 6<P

In this case, we have 0 <Y< [. When the risk of choosing POS,, or DOUy, is the
same, we will always decide POS,,. Similarly, if the risk of choosing NEG,, or DOUy,, is
the same, we will always decide NEG4,. With these tie-breaking criteria, we arrive at a much
simpler set of decision rules:

(P1) Decide POS,, if P(XIE)2

(D1) Decide DOU,, if 6<PXIE)<p ,

(N1) Decide NEG,, if P(X|E)<d .

Using these decision rules, the universe U is partitioned into the positive, doubtful, and nega-

tive regions, which can be expressed explicitly in terms of the pair of parameters 8 and [ as
follows:

POS, (X, B, 8) = o By,
4, &, B, 0) PXIE)2B
DOU, (X, B, §) = v E, (3.3)
Ei'CP(XlE.}{.E
NEGAP(X, B, 5) = U E,: ;
PXI1E)<H

Based on these three regions, we may define the lower and upper approximations of X as
Ap(X, B, 8) and Ap(X, B, &):
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A X‘l ’ = P X& ’ = Ef ] .
Ap(X, B, 0) 0S4, (X, B, 0) P h}},-)zﬂ (3.4)
Ap(X, B, 8) = POS,, (X, B, 8) UDOU,, (X, B, d)
= U—-NEG4 (X, B, 8) = B 3.5
A, X, B, 0) bz FL-'E::-}}E (3.5)

_The algebraic approximations of X can be derived from the approximations Ap(X, B, 0)
and Ap(X, B, 0). Consider the following loss function:

My =Aa =1, Ay =2~ =A3p=A =0.

This means that there is a unit cost if the system classifies an element belonging to X into the
negative region of X or if an element not belonging to X into the positive region; otherwise
there is no cost. For such a loss function, egn. (3.2) yields p=1 and d=0. Hence, according
to eqns. (3.4) and (3.5) we have:

Ap(X, 1,0) = U E; , EF(X, 1; ) = U E; . (3.6)
= PXIE)=1 P(X|E)>0

Suppose the probabilities P (X | E;) can be estimated from the cardinalities of X NE; and E;,
namely, P (X | E;)= | XNE;|/1E;|. In this case, Ap(X, 1, 0) and Ap(X, 1, 0) can be rewritten
as:

Ap(X, 1,00 = U E, Ap(X,1,00= U E;. 3.7)
K E.cX EnX @

These are exactly the lower and upper approximations of X as defined by egn. (2.1) in the
algebraic theory of rough sets. The results we obtain here clearly indicate that the algebraic
rough set model is indeed a special case of our generalized model.

Case (ii) 0=0

We have 0 == 3 in this case. Whenever the risk of classifying an equivalence class
into POS,, or DOU,, is the same, we will always decide DOUy,. Similarly, if the risk of
classifying an equivalence class into NEG4, or DOUy, is the same, we will always choose
DOU,,. From these tie-breaking criteria, we immediately obtain the following decision

rules:
(P2) Decide POSy, if P(X|E) >y,
(D2) Decide DOUy, if P(X |E)=Y ,
(N2) Decide NEG,, if PX IE) <Yy .

The above decision rules partition the universe U into three disjoint regions based on the
parameter 7y

POSA, X, v, = Vv E;,
P(XI|E)>y
PO (X, Y. T = E: 5 :
4, (X, %, ) P(XE-M (3.8)
NEGy X, v, V)= U E;.

PXIE)<Y
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Similar to case (i), we can define the lower and upper approximations of X as follows:

Ap(X, v, Y) = POS,. (X, v, Y) = U E; , 3.9
Ap(X, Y, ) 4N Y . (3.9)

EP(Xr g f 'Y) = PQSAF (X: Ys T) UDOUAF(X-: Y T)

U —-NEG4 (X, 7, ) = E; . 3.10
A K % Y) P{X!L-éﬁ? (3.10)

Il

Consider the following loss function:
111=132=0, M1=l22=”2, 7‘».31=?'|.12=1*

That is, there is a unit cost if the system classifies an element belonging to X into the negative
region or an element not belonging to X into the positive region. If any element is classified
into the doubtful region there is half a unit cost. For other cases there is no cost. Substituting
this loss function into eqgn. (3.2), we obtain 0= =y=1/2. It is interesting to note that
replacing ¥ by 1/2 in eqn. (3.8) immediately leads to the same disjoint regions as defined by
Pawlak, Wong, and Ziarko (1988). Also, Ap(X, 1/2, 1/2) and Ap(X, 1/2, 1/2) are identical to
their probabilistic lower and upper approximations of X. We have thus demonstrated that our
approach based on the Bayesian decision theory is a generalization of the probabilistic rough
set model as well.

For the pair of real numbers p e (0, 1] and & € [0, 1) with & < derived from the class
of loss functions satisfying the conditions Aj; €Az <231 and Azy SAy; < Ay, we have
defined the lower and upper approximations Ap(X, B, 8) and Ap(X, B, 8) for a given set
X < U. Although these lower and upper approximations no longer correspond to the interior
and closure operations in the topological space T4 = (U, Com (A)), they satisfy the following
properties:

(1) Ap(XNY, B, 8) < Ap(X, B, 8) NAp(Y, B, &)
(II12) Ap(XVY, B, 6) 2 Ap(X, B, 0) WAR(Y, B, 0)
(3) Ap(—X, B, 8) = —Ap(X, 1-8, 1-P)
(I14) Ap(XNY, B, 8) < Ap(X, B, 8) N Ap(¥, B, &)
(TI5) Ap(XUY, B, 8) 2 Ap(X, B, 8) U Ap(Y, B, 8)
(16) Ap(=X, B, 8) = —Ap(X, 1-5, 1-P)

These properties are in fact a generalized version of the properties (I1)-(I6) in the algebraic
rough set model. They subsume those given by Pawlak, Wong, and Ziarko (1988) in the pro-
babilistic rough set model. From properties (II3) and (116), we obtain:

(I17) POSs, (X, B, 8) = NEG4, (=X, 1-8, 1-B) ,
(II8) DOU,, (X, B, 8) = DOU,,(—X, 1-8, 1-B) ,
(I19) NEG,, (X, B, 8) = POS,,(—X, 1-3, 1-B) .

Thus we say that (Ap(X, B, 8), Ap(X, B, 8)) and (Ap(=X, 1-9, 1-P), EP(—tX, 1-9, 1-3))
complement each other with respect to Ap = (U, R, P).
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4. Conclusion

In this paper we have suggested a generalized rough set model based on the Bayesian
decision theory. The lower and upper approximations of a given concept are derived from a
Bayesian decision procedure, where a set of objects are partitioned into three disjoint regions.
These three regions are uniquely determined by a loss function which can be easily obtained
from the user. It has been shown that both the algebraic and probabilistic rough set models
can be viewed as special cases of the proposed generalized model.
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