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Abstract— Formal concept analysis (FCA) and hierarchical
classes analysis (HCA) can be viewed as two approaches of
data analysis on data description and summarization, and focus
on different characteristics of data in a formal context. In
this paper, we propose a framework for classes analysis. The
equivalence classes defined on object and attribute universes
can be viewed as basic units of information in a formal
context. The different data structures in FCA and HCA can
be developed based on the equivalence classes. Furthermore,
some basic sets of objects and attributes formed by equivalence
classes can be used to compose other object and attribute sets,
and they demonstrate connections between FCA and HCA.
Through our studies, one can obtain an in-depth understanding
of data analysis based on FCA and HCA.

I. INTRODUCTION

Formal concept analysis (FCA) and hierarchical classes
analysis (HCA) are regarded as two approaches or frame-
works to describe, characterize and summarize data for data
analysis. Each of them provides a type of visual represen-
tation of information and knowledge derived from a simple
binary information table, which is called a formal context.
They focus on presentation of different characteristics of data
by using set-theoretical methods.

FCA provides a formal and graphical way to organize data
as formal concepts [12]. In a formal context, a pair of a set
of objects and a set of attributes that uniquely associate with
each other is called a formal concept. The set of objects is
referred to as the extension, and the set of attributes as the
intension, of a formal concepts. The family of all formal
concepts is a complete lattice. The hierarchy of concepts
in a concept lattice can be defined by an order relation on
extensions or intensions of concepts. Many researches have
been proposed on this area [14], [15], [16].

HCA is another approach on description and summariza-
tion of data [2], [3], [4], [6]. In a formal context, equivalence
classes, which are viewed as basic information units, can
be defined based on an equivalence relation [13], [17].
The graphical hierarchies of the classes are defined and
constructed by an order relation on the associated object or
attribute sets.

Zhang et al. studied a method of attribute reduction in
concept lattice. Their studies can be regarded as a related
work to data analysis. Some attributes are considered as
necessary attributes to form concepts. By removing unnec-
essary attributes, attribute reduction in concept lattice can

be made for discovery of implicit knowledge easier and the
representation simpler.

In this paper, we propose a framework for equivalence
classes analysis. Some specific sets of objects and attributes
can be formed based on equivalence classes. They can be
used to compose other object and attribute sets, even the
universe of objects and the universe of attributes. Thus, They
are considered as basic sets. Some important properties of
these basic sets are able to describe the equivalence relation
and reflect the order relation among the classes. Furthermore,
our studies explore that these basic sets of objects and
attributes can be a bridge to connect FCA and HCA. That is,
these basic sets not only can reflect the notion of hierarchies
of classes, but also can be used to form concepts. In fact,
they present some very important characteristics of data in
a formal context.

The rest of this paper is organized as following. The next
section is an overview of the simple classification in formal
contexts. Then, we will discuss the associations between
objects and attributes in Section III. In Section IV and V,
we review the basic notions of formal concept analysis and
hierarchical class analysis. In Section VI, we will show
connections between HCA and FCA by considering some
basic sets of classes. The conclusion will finally be given in
Section VII.

II. CLASSIFICATION BASED ON FORMAL CONTEXTS

An information table provides a simple and powerful tool
for data analysis. All available information and knowledge
can be provided and derived by an information table [13].
Generally, an information table is constituted by a finite
nonempty set of objects, a finite nonempty set of attributes,
and the values of objects on attributes. A binary information
table is a sample information table in which each entry
contains binary value 0 or 1. Table I is an example of binary
information table. Every information table can be represented
by a binary information table [1].

Let U be a finite nonempty set representing the universe
of objects. Let V be another finite nonempty set representing
the universe of attributes. A binary relation R between the
two universes U and V is a subset of the Cartesian product
U × V . For an object x ∈ U and an attribute y ∈ V , if
(x, y) ∈ R, written as xRy, we say that an object x possesses
the attribute y. Therefore, based on the binary relation R, the
objects and attributes describe and associate with each other.



TABLE I

A BINARY INFORMATION TABLE TAKEN FROM [4]

a b c d e f g h i j k l
1 1 1 0 0 1 1 0 0 0 0 0 1
2 1 1 0 0 1 1 0 0 0 0 0 1
3 1 1 0 0 1 1 0 0 0 0 0 1
4 0 0 1 1 1 1 0 0 0 1 1 1
5 0 0 1 1 1 1 0 0 0 1 1 1
6 0 0 0 0 0 0 1 1 1 1 1 1
7 0 0 0 0 0 0 1 1 1 1 1 1
8 0 0 1 1 1 1 1 1 1 1 1 1
9 0 0 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1

The triplet S = (U, V, R), where U is the universe
of objects, V is the universe of attributes and R is a
binary relation between two universes, represents a binary
information table and is called a formal context [7], [12].

In a formal context, given an object x, the set of attributes
that are possessed by an object x is denoted as xR and
defined by:

xR = {y ∈ V | xRy} ⊆ V.

For an attribute y, the set of objects that possess y is denoted
as Ry:

Ry = {x ∈ U | xRy} ⊆ U.

By the notation xR, objects may be viewed as equivalent if
they have the same set of attributes. Thus, an equivalence
relation between objects can be formally defined. Let EU ⊆
U × U denote an equivalence relation on U .

Definition 1: Two objects x and x′ in the universe U are
equivalent if xR = x′R, that is,

x EU x′ ⇐⇒ xR = x′R.

The equivalent objects can be grouped together into a same
set, which is called an equivalence class and denoted as
[x] [10].

Definition 2: An equivalence class of objects including
the object x is defined by:

[x] = {x′ ∈ U | x′ EU x},
= {x′ ∈ U | xR = x′R}.

Another view to look at the equivalence classes is that the
equivalence relation EU partitions the universe of objects U
into disjoint subsets, which are the equivalence classes of
objects [9], [10], [11].

Within an equivalence class of objects, each element is
regarded as indiscernible. Each equivalence class is con-
sidered as a whole instead of individuals inside [11], [13].
Thus, an equivalence class may be viewed as a basic unit of
information or knowledge.

Furthermore, the partition of the universe U is the family
of all equivalence classes of objects, and commonly known
as the quotient set U/EU on U induced by EU . The universe
U is in fact the union of existing equivalence classes of
objects.

TABLE II

THE REDUCTION OF TABLE I

[a] [c] [e] [g] [j] [l]
[1] 1 0 1 0 0 1
[4] 0 1 1 0 1 1
[6] 0 0 0 1 1 1
[8] 0 1 1 1 1 1
[10] 1 1 1 1 1 1

Similarly, attributes may also be regarded as equivalent
if they are possessed by the same set of objects. The
equivalence relation EV on V can be defined by:

y EV y′ ⇐⇒ Ry = Ry′.

And an equivalence class of attributes is defined by:

[y] = {y′ ∈ V | y′ EV y},
= {y′ ∈ V | Ry = Ry′}.

The partition of the universe V is the family of all equiv-
alence classes of attributes and the quotient set V/EV on
V induced by EV . The universe V is the union of existing
equivalence classes of attributes.

In this paper, for simplicity, we call the equivalence classes
of objects as object classes, and the equivalence classes of
attributes as attribute classes.

Since object and attribute classes are viewed as basic
units of information, they can be used to reconstruct the
formal context instead of individual objects and attributes.
Therefore, a reduction of a formal context can be done by
using the classes. The reduction of Table I is illustrated
in Table II. In a reduced information table, the object and
attribute classes associate with each other.

Object and attribute classes can also be defined by a
particular type of mappings between U and V . That is,
b : 2U −→ 2V and b : 2V −→ 2U .

Definition 3: For a set of objects X ⊆ U and a set of
attributes Y ⊆ V , we have,

Xb = {y ∈ V | Ry = X},
Y b = {x ∈ U | xR = Y }.

For simplicity, the same symbol is used for both mappings.
The mapping b is called basic set assignment [15], which
associate an object class with a set of attributes and an
attribute class with a set of objects. In fact, the family
{Xb �= ∅ | X ⊆ U} is the family of attribute classes,
and the family {Y b �= ∅ | Y ⊆ V } is the family of
object classes. Let AT denote the family of all sets of
attributes that each associates with an object class, that is,
AT = {Y | Y ⊆ V, Y b �= ∅}. Let OB denote the family
of all sets of objects that each associates with an attribute
class, that is, OB = {X | X ⊆ U, Xb �= ∅}.

Example 1: In Table II, the object classes and their asso-



ciated sets of attributes are:

Y b
1 = [1], Y1 = {[a], [e], [l]},

Y b
2 = [4], Y2 = {[c], [e], [j], [l]},

Y b
3 = [6], Y3 = {[g], [j], [l]},

Y b
4 = [8], Y4 = {[c], [e], [g], [j], [l]},

Y b
5 = [10], Y5 = {[a], [c], [e], [g], [j], [l]}.

The attribute classes and their associated sets of objects
are:

Xb
1 = [a], X1 = {[1], [10]},

Xb
2 = [c], X2 = {[4], [8], [10]},

Xb
3 = [e], X3 = {[1], [4], [8], [10]},

Xb
4 = [g], X4 = {[6], [8], [10]},

Xb
5 = [j], X5 = {[4], [6], [8], [10]},

Xb
6 = [l], X6 = {[1], [4], [6], [8], [10]}.

A class may be considered as a basic definable unit in
the universe [11], [16]. In other words, under an equivalence
relation, a class is the smallest non-empty observable, mea-
surable, or definable subset of 2U . A union of some classes
is called a composed class [10], [11]. By extending the
definability of equivalence classes, we assume that a union
of some classes is also definable. By adding the empty set
∅, a new family of all composed classes σ(U/EU ), which is
a subsystem of 2U , can be constructed. σ(U/EU ) is closed
under set complement, intersection, and union. Obviously,
a subsystem σ(V/EV ) of 2V can be developed based on
the universe V and the equivalence relation EV . Rough
set approximations can be defined based on the subsystem
σ(U/EU ) [11], [16].

Based on the subsystems on U and V , the set of attributes
xR for an object class [x] is the union of some attribute
classes, and the set of objects Ry for an attribute class [y]
is the union of some object classes.

III. ASSOCIATIONS BETWEEN OBJECTS AND

ATTRIBUTES

By extending the notations xR and Ry, we can establish
relationships between subsets of objects and subsets of
attributes [7], [12]. This leads to two operators, one from
2U to 2V and the other from 2V to 2U .

Definition 4: Suppose (U, V, R) is a formal context. For
a set of objects, we associate it with a set of attributes:

X∗ = {y ∈ V | ∀x ∈ U(x ∈ X =⇒ xRy)}
= {y ∈ V | X ⊆ Ry}
=

⋂

x∈X

xR. (1)

For a set of attributes, we associate it with a set of objects:

Y ∗ = {x ∈ U | ∀y ∈ V (y ∈ Y =⇒ xRy)}
= {x ∈ U | Y ⊆ xR}
=

⋂

y∈Y

Ry. (2)

For simplicity, the same symbol is used for both operators.
The actual role of the operators can be easily seen from the
context.

Düntsch and Gediga referred to ∗ as a modal-style opera-
tor, called the sufficiency operator [5], [8]. In fact, it reflects
a unique association between an object set and an attribute
set. Moreover, X∗ for an object set X is the maximal set
of attributes possessed by all objects in the set X . That is,
the set X∗ consists of necessary attributes of an object in
X . In other words, an object in X must have attributes in
X∗. Similarly, Y ∗ for an attribute set Y is the maximal set
of objects that have all attributes in Y . That is, an attribute
in Y must have objects in Y ∗, and Y ∗ consists of necessary
objects of an attribute in Y . Furthermore, the sufficiency
operator ∗ can also be defined on the quotient sets U/EU

and V/EV .
Consequently, [x]∗ = xR is the set of attributes possessed

by elements in the object class [x]. [y]∗ = Ry is the set of
objects having the attributes in the attribute class [y].

The further studies of sufficiency operator and its relation-
ships with other modal-style operators in a formal context
are provided by Yao [15].

The sufficiency operator holds the following properties:
For X, X1, X2 ⊆ U and Y, Y1, Y2 ⊆ V ,

(1) X1 ⊆ X2 =⇒ X∗
1 ⊇ X∗

2 ,

Y1 ⊆ Y2 =⇒ Y ∗
1 ⊇ Y ∗

2 ,

(2) X ⊆ X∗∗,
Y ⊆ Y ∗∗,

(3) X∗∗∗ = X∗,
Y ∗∗∗ = Y ∗,

(4) (X1 ∪ X2)∗ = X∗
1 ∩ X∗

2 ,

(Y1 ∪ Y2)∗ = Y ∗
1 ∩ Y ∗

2 ,

By Property (2), one can know that an object class [x] is
included in an object set [x]∗∗, and an attribute class [y] is
include in an attribute set [y]∗∗.

In terms of the basic set assignment, we can re-express
operation ∗ as [15]:

X∗ =
⋃

{Ab | A ⊆ U, X ⊆ A},
Y ∗ =

⋃
{Bb | B ⊆ V, Y ⊆ B}.

This formulation presents the connection between basic set
assignment b and the modal-style operator ∗. Moreover, by
combing the two operators, one can easily have that Xb∗ =
X and Y b∗ = Y , where X ⊆ U , Xb �= ∅, Y ⊆ V and
Y b �= ∅.

IV. FORMAL CONCEPT ANALYSIS

Formal concept analysis deals with a visual presentation
and analysis of data [7], [12]. It follows the traditional notion
of concept, namely, a concept is constituted by an extension
and an intension. The extension is referred to as instances
of a concept. The intension is referred to as properties or
features of a concept.



([1][4][6][8][10];[l])

([4][6][8][10];[j][l])

([10];[a][c][e][g][j][l])

([1][10];[a][e][l])([8][10];[c][e][g][j][l])

([4][8][10];[c][e][j][l])([6][8][10];[g][j][l])

([1][4][8][10];[e][l])

Fig. 1. Formal concept lattice induced from the Table II

A. Formal Concepts

FCA focuses on a unique association between the ex-
tension represented by a set of objects and the intension
represented by a set of attributes. That is, a pair of a set of
objects and a set of attributes, which uniquely associate with
each other, is a formal concept.

Definition 5: A pair (X, Y ), where X ⊆ U , Y ⊆ V , is
called a formal concept in the context (U, V, R) if X = Y ∗

and Y = X∗.

X is referred to as the extension, and Y is referred to as the
intension, of the concept. Consequently, a pair (X, X∗), X ⊆
U , that satisfies X = X∗∗ is a formal concept. Equivalently,
a pair (Y ∗, Y ) satisfying Y ⊆ V and Y = Y ∗∗ is a formal
concept.

The family of all formal concepts induced from a formal
context can be constructed as a complete lattice, called
concept lattice. The Figure 1 illustrates the concept lattice
for the formal context of Table II.

The meet and join of the formal concepts in the lattice are
characterized by the following operations [7], [12].

Theorem 1: The formal concept lattice is a complete
lattice in which the meet and join are given by:

∧

t∈T

(Xt, Yt) = (
⋂

t∈T

Xt, (
⋃

t∈T

Yt)∗∗),

∨

t∈T

(Xt, Yt) = ((
⋃

t∈T

Xt)∗∗,
⋂

t∈T

Yt),

where T is an index set and for every t ∈ T , (Xt, Yt) is a
formal concept.

B. Hierarchy of Concepts

The order relation of the concepts can be defined based
on the set inclusion relation.

Definition 6: For two formal concepts (X1, Y1) and
(X2, Y2), (X1, Y1) is a sub-concept of (X2, Y2), written
(X1, Y1) � (X2, Y2), and (X2, Y2) is a super-concept of
(X1, Y1), if and only if X1 ⊆ X2, or equivalently, if and
only if Y2 ⊆ Y1.

It is easy to know that a more general concept is repre-
sented by a larger set of object classes that share a smaller
set of attribute classes. Conversely, a more specific concept
has a smaller set of object classes and a larger set of attribute
classes.

V. HIERARCHICAL CLASSES ANALYSIS

In a formal context, hierarchical classes analysis is pro-
posed to describe and summarize the data by using the order
relation among the equivalence classes [2], [4].

A. Hierarchies of Classes

Based on the notation xR, there exists an order relation,
denoted as , between the object classes.

Definition 7: Given two object classes [x] and [x′] on U ,
an order relation  between them is defined by:

[x]  [x′] ⇐⇒ xR ⊆ x′R.

[x] is called a sub-class of [x′]. Conversely, [x′] is called
a super-class of [x]. For simplicity, [x] is [x′]’s sub-class,
and [x′] is [x]’s super-class. This formulation means that
one can order the object classes by using their associated set
of attributes. An object class having no sub-class is called
object bottom class.

Similarly, we can have the definition of order relation
between the attribute classes.

Definition 8: For two attribute classes [y] and [y′] on V ,
the order relation  between them is defined by:

[y]  [y′] ⇐⇒ Ry ⊆ Ry′.

[y] is a sub-class of [y′] and [y′] is a super-class of [y]. Or, [y]
is [y′]’s sub-class, and [y′] is [y]’s super-class. An attribute
class having no sub-class is called attribute bottom class.

By analyzing the basic set assignment and the order
relation, it is easy to know that if an object class associates
with an attribute class, it also associates with all super-classes
of the attribute class. Likewise, an attribute class associates
with an object class and all its the super-classes [2], [4].

According to the order relation between the classes, a
hierarchical structure of the classes for a formal context
can be constructed. For example, hierarchies of classes for
Table II is illustrated as Figure 2. The hierarchy of attribute
classes in the part (b) of Figure 2 is presented upside down in
the part (c). The hierarchies of object classes in the part (a)
and attribute classes in the part (b) are combined together by
linking the bottom classes of two hierarchies with dot lines.

VI. BASIC SETS OF CLASSES

The hierarchies of classes may be viewed as a description
of data within a formal context. The order relation is a
relationship of set inclusion on attribute sets of object classes
or object sets of attribute classes.

A set of attributes in AT may be a union of some other
sets of attributes in AT . If a set of attributes Y ∈ AT is



( a ) (b)

( c )

[10]

[e] [j]

[a]

[10]

[4][1] [6]

[a]

[l]

[e]

[g][c]

[8]

[j]

[8]

[1] [4] [g][c]

[l]

[6]

Fig. 2. Hierarchies of classes induced from the Table II

the union of other sets of attributes in AT , then we say that
Y is expressed by some other sets of attributes and is an
expressible set of attributes, otherwise, it is an inexpressible
set of attributes.

Similarly, a set of objects in OB may be a union of some
other sets of objects in OB. If a set of objects X ∈ OB is
the union of some other sets of objects in OB, then we say
that X is expressed by some other sets of objects and is an
expressible set of objects, otherwise, it is an inexpressible
set of objects.

According to the definitions of order relation on object
and attribute classes, an expressible attribute set xR ∈ AT
must associate with an object super-class [x] because it is the
union of the attribute sets x′R of [x]’s sub-classes [x′]. For
an object bottom class, its attribute set must be inexpressible
because it has no sub-class. In other words, its attribute set
is not a union of some other attribute sets in AT . With the
same way, an expressible object set Ry ∈ OB must associate
with an attribute super-class [y] because it is the union of the
object sets Ry′ of the [y]’s sub-classes [y′]. For an attribute
bottom class, its object set is inexpressible because it has no
sub-class.

An expressible set must be a union of some inexpressible
sets. The inexpressible sets can be considered as the basic
units for expressing other sets. An inexpressible object set in
OB is called an object block. An inexpressible attribute set
in AT is called an attribute block. The object and attribute
blocks can be formally defined as following.

Definition 9: In a formal context, an object set X ∈ OB
is called an object block if

X �=
⋃

{A | A ∈ OB, A �= X, Ab  Xb}.
The family of all object blocks is denoted by BO.

Definition 10: In a formal context, an attribute set Y in
AT is called an attribute block if

Y �=
⋃

{B | B ∈ AT, B �= Y, Bb  Y b}.

The family of all attribute blocks is denoted as BA.
An object (attribute) expressible set is a union of some

object (attribute) blocks. Therefore, one can defined the
membership of object (attribute) blocks included in an object
(attribute) set.

Definition 11: For an object set X ∈ OB, the set of object
blocks included in X is denoted as M(X) and defined by:

M(X) = {A | A ∈ BO, A ⊆ X}.

Definition 12: For an attribute set Y ∈ AT , the set of
attribute blocks included in Y is denoted as M(X) and
defined by:

M(Y ) = {B | B ∈ BA, B ⊆ Y }.
By analyzing the object block sets BO, the following

properties can be held:

1) U =
⋃{A | A ∈ BO}.

2) For X ∈ BO, X∗∗ = X .

3) For [y] and [y′], [y]  [y′] ⇐⇒ M(Ry) ⊆ M(Ry′).

Property (1) means that the union of all object blocks
is the universe U of objects. Since each object set in OB
associates with an attribute class. The union of all the
attribute classes is the universe V of attributes. Consequently,
the union of all the object sets in OB is the universe U of
objects. Additionally, the expressible object sets in OB can
be composed of object blocks. Therefore, by replacing the
expressible object sets with object blocks, the universe of
objects U must be the union of all object blocks.

Property (2) means that the pair (X, X∗) is a formal
concept. Since the object set X ∈ BO associates with an
attribute class, that is, Xb �= ∅, so we know that Xb∗ = X .
By considering the Property (3) of the sufficiency operator
∗, we can have that X = Xb∗ = Xb∗∗∗ = X∗∗. Thus, based
on formal concept analysis, the pair (X, X∗) that satisfies
X = X∗∗ is a formal concept.

Property (3) means that the order relation between at-
tribute classes can be redefined by using membership of
object blocks. An attribute class [y] is a sub-class of an
attribute class [y′] if the set of object blocks included in
Ry is a subset of the set of object blocks included in Ry′.
In other words, an attribute super-class must associate with
more object blocks than any of its sub-classes does.

Since each block consists of classes, so the elements in a
class must be in the same set of blocks. That is, equivalence
relation can also be redefined by considering the membership
of an object (attribute) in object (attribute) blocks.

Similarly, the attribute block sets BA have the following
properties:

1) V =
⋃{B | B ∈ BA}.

2) For Y ∈ BA, Y ∗∗ = Y .



3) For [x] and [x′], [x]  [x′] ⇐⇒ M(xR) ⊆ M(x′R).

Property (1) indicates that the union of all attribute blocks
is the universe of attributes V . Property (2) says that the
pair (Y ∗, Y ) that satisfies Y ∗∗ = Y is a formal concept.
The property (3) shows that the order relation between
object classes can be redefined by using membership of
attribute blocks. An object super-class must associate with
more attribute blocks than any of its sub-classes does.

Example 2: In Table II, the object blocks and attribute
blocks are:

X1 = {[1], [10]}, Y1 = {[a], [e], [l]},
X2 = {[4], [8], [10]}, Y2 = {[c], [e], [j], [l]},
X3 = {[6], [8], [10]}, Y3 = {[g], [j], [l]}.

We know that U = X1 ∪ X2 ∪ X3 and V = Y1 ∪ Y2 ∪ Y3.
By considering the sufficiency operator ∗, we know that

X∗
1 = X∗∗

1 . So, the pair (X1, X
∗
1 ) is a formal concept.

For the object class [1], it associates with the set of
attributes {[a], [e], [l]}. The membership of attribute blocks
for the set of attributes {[a], [e], [l]} is:

M({[a], [e], [l]}) = {Y1}.

For the object class [10], it associates with the whole universe
V = {[a], [c], [e], [g], [j], [l]}. Thus, the membership of
attribute blocks for V is:

M(V ) = {Y1, Y2, Y3}.

Therefore, the object class [10] is a super-class of the object
class [1] because the membership of attribute blocks for
[10]’s attribute set includes the membership of attribute
blocks for [1]’s attribute set, that is, [1]  [10] ⇐⇒
M([a], [e], [l]) ⊆ M(V ).

The family of object blocks BO and the family of attribute
blocks BA have similar properties. However, the sizes of
them are not necessarily equal. In fact, when every object
block associates with an attribute bottom class, and every
attribute block associates with an object bottom class, the
sizes of BO and BA are equal, just like the example
demonstrated in Example 2.

VII. CONCLUSION

FCA and HCA may be considered as two different ap-
proaches on visual representation of data. They focus on
different data structures and provide two different types of
knowledge derived from a formal context based on different
notions. We focus on some specific object and attribute sets
that are considered as basic sets to compose other sets. We
provide a set-theoretical analysis to show some connections
between FCA and HCA based on these basic sets. Our
studies reveal some basic common characteristics of FCA
and HCA, and may be useful for further research on data
analysis.
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