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Abstract

Multiview intelligent data analysis explores data from different perspectives to re-
veal various types of structures and knowledge embedded in the data. Each view
may capture a specific aspect of the data and hence satisfy the needs of a particu-
lar group of users. Collectively, multiple views provide a comprehensive description
and understanding of the data. In this paper, we propose a multiview framework
of intelligent data analysis based on modal-style data operators. The classes of the
data operators include basic set assignment, sufficiency, dual sufficiency, necessity
and possibility operators. They demonstrate various types of data relationships and
characterize various features and granulated views of the data. It is shown that
different structures of the data can also be constructed based on the different data
operators.

Key words: Multiview, Intelligent Data Analysis, Modal-style Data Operators,
Concept Lattice, Granular Computing.

1 Introduction

Huge data sets and various data types lead to new types of problems and
require the development of new types of techniques for modern intelligent
data analysis [21]. An important objective of intelligent data analysis is to
reveal and indicate diverse non-trivial features or views of a large amount of
data. Many techniques and models in data mining, machine learning, pattern
recognition, statistics, and other fields have been proposed. Each technique or
model focuses on one particular view of the data and discovers a specific type
of knowledge embedded in data.

In this paper, we propose a multiview approach that provides a unified frame-
work for integrating multiple views of intelligent data analysis. It is easy to
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know that an integrated and unified framework that allows a multiple view
approach on the understanding, computation, and interpretation of data pro-
vides not only a platform to explore different aspects of the data, but also a
tool to integrate many techniques of intelligent data analysis.

Modal-style data operators can be used to define, represent and analyze vari-
ous types of data relations and structures [6,53]. Therefore, these modal-style
data operators can provide a unified way to examine, characterize and con-
struct different types of knowledge. In this paper, the multiview approach are
defined based on modal-style data operators in a formal context.

The rest of the paper is organized as follows. In the next section, discussions
about motivations and some related works are provided. Section 3 introduces
formal contexts and modal-style data operators. In Section 4, we show that
these data operators can be used to define different relations and granular
structures of a universe. Section 5 examines several types of hierarchical struc-
tures defined based on the modal-style data operators. These granular and
hierarchical structures are always be viewed as different types of knowledge
embedded in the data set [11,6,39,53]. The conclusion of this study is given in
Section 6.

2 Motivations and Related Work

In this section, we give motivations of this proposed research work and discuss
some related work.

2.1 Motivations

Many techniques and models have been proposed for intelligent data analysis.
In data mining, association rule mining is to detect the association relationship
between two sets of items [1]. An association rule expresses that a customer
buying one set of items tends to buy another set of items. Association rules
can be considered as a description of association relationships among the data.
In machine learning and pattern recognition, the techniques of classification
and cluster learning focus on prediction of future data, plan future action,
etc. [16,23,28]. They can be viewed as seeking for different types of relation-
ships among the data. Each technique is designed with respect to the specific
properties of the relationships [23]. Some techniques are proposed to detect the
degree of similarity or commonality, such as template matching models [5,19],
nearest neighbor models [13], kernel density models [40]. Some techniques are
designed to construct decision boundaries or a partition based on commonality
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of entities, such as decision tree [9,44,45], neural networks [2,3,35], and sup-
port vector machine [48]. Bayesian networks have been proposed and studied
to classify entities into the class with respect to the maximum posterior proba-
bilities of the entities [23,41]. Clustering is to directly partition unlabeled data
based on some properties of the relationships among the data [22,27]. Many
types of relationships can be used to determine which class the entities belong
to, such as similarity, correlation, dependency, association, and so on [4]. Many
techniques for data clustering have been proposed, such as K-means cluster-
ing [33], hierarchical clustering [26,46,49], nearest neighbor clustering [32], and
density based clustering [15].

Most proposed techniques and models overemphasize the automation and effi-
ciency of the data analysis systems, but neglect the effectiveness of the systems.
To a large extent, the effectiveness determines the quality of the systems and
satisfiability of human users [38]. There are two aspects of the effectiveness
of data analysis systems. On the one hand, from a system or data set, a user
is able to explore different types of knowledge, different features of data, and
different interpretations of data with respect to different techniques, models,
and user preferences. On the other hand, multiple aspects of data understand-
ing, multiple angles of data summarizations or data descriptions, and multiple
types of discovered knowledge are useful for satisfying a wide range of needs
of a large diversity of users.

Therefore, a system providing multiple views of a data set is crucial and nec-
essary for intelligent data analysis. In this paper, we propose an approach
for multiview intelligent data analysis and demonstrate that one can discover
different types of knowledge from a data set.

Modal-style data operators have been studied by many researchers for in-
telligent data analysis [11,14,17,18,50,51,54,55]. These data operators can be
used to define, represent and analyze various types of relations and struc-
tures embedded in the data, which are generally viewed as different types of
knowledge [6,53]. We use these modal-style data operators defined based on a
formal context to examine, characterize and construct different types of data
structures and knowledge.

For example, classifications of the universe induced by the relations produce
various types of granular structures of the universe. Two types of structures,
partition and covering, can be analyzed and discussed with respect to different
modal-style data operators. Some hierarchical structures embedded in the data
can also be defined based on modal-style data operators. Each hierarchical
structure explores a particular organization of the data.
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2.2 Related Work

Multiple view strategies and approaches have been proposed and studied in
many fields, including social sciences, software design, machine learning, and
data analysis [7,8,24,34,62]

Jeffries and Ransford argued that the study of social stratification should not
focus on isolated and fragmented views, but holistic and unified views [24].
The study of social stratification identifies and investigates the characteristics
of social societies. It focuses primarily on the hierarchies of social classes. The
traditional single hierarchy approach based on social classes limits one’s un-
derstanding of the complexities of modern societies. The authors proposed a
multiple hierarchy model to integrate class, ethnicity, gender, and age social
inequality hierarchies. These four hierarchies are considered as separated but
interrelated. The study shows that a multiple hierarchy approach could in-
crease one’s understanding and be more comprehensive and valid for studying
social inequality.

Belkhouche and Lemus-Olalde studied the formal foundations of an abstract
interpretation of multiple views at the software design stage [7,8]. In the pro-
cess of modeling a system, the designer always generates a set of designs, such
as functional, behavioral, structural and data designs. Each design focuses
on a view that describes a subset of relevant features of a system and is ex-
pressed by one or more notations. Different designs show different viewpoints
of the system. Functional designs describe what the system does in terms
of its tasks. Behavioral designs describe the causal links between events and
system responses during execution. Structural designs concern the essentially
static aspects of the system. Data designs concern the data used in system and
relationships between them. The authors argued that a multiple view anal-
ysis framework can be used to systematically compare, identify and analyze
the discrepancies among different views, enhance design quality and provide
a multi-angled understanding of a problem or a project.

Several researchers proposed frameworks of multistrategy learning to integrate
a wide range of learning strategies [34]. They argued that the research on
multistrategy learning systems is significantly relevant to study on human
learning since human learning is clearly multistrategy. Multistrategy systems
have a potential to be more versatile and more powerful to solve a much
wider range of learning problems than monostrategy systems. Some conceptual
frameworks, such Inferential Theory of Learning and Plausible Justification
Trees, are proposed to investigate the logical capabilities and relationships of
various learning methods and processes. Based on the proposed frameworks,
methodologies and applications for multistrategy task-adaptive learning have
been developed [34].
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Zhong et al. proposed an approach of multiple aspect analysis of human brain
data for investigating human multiperception mechanism [61,62]. By using
different methods and measurements, they can obtain various types of human
brain data. They observed that each type of data extracted by a particular
method or measure matches human ability in a specific aspect. Each approach
to analyze the obtained data is also processed with respect to the specific state
or the related part of a stimulus. They argued that every method or model
of data acquisition and analysis has its own strength and weakness. Thus,
designing psychological and physiological experiments for obtaining various
data from human multiperception mechanism and analyzing such data from
multiple aspects for discovering new models of human multiperception are
the key issues. They proposed a framework of data-mining grid for multiple
human brain data analysis by cooperatively using cognitive and data-mining
techniques, and attempted to change the perspective of cognitive scientists
from a single type of experimental data analysis toward a holistic view.

In data mining, some researchers have already recognized that integration of
association rule mining and classification can produce a more accurate clas-
sifier [31,58,63]. Approaches on integrating clustering and classification tech-
niques can also achieve better classification or clustering results [20,25,29,60].

3 Formal Contexts and Modal-style Data Operators

In this section, definitions for formal contexts and modal-style data operators
are given. Some connections between modal-style data operators are investi-
gated.

3.1 Formal Contexts

We assume that a data set is given in terms of a formal context [50] or a binary
table [39]. It provides a convenient way to describe a finite set of objects by a
finite set of attributes. For simplicity, we only consider a finite set of objects
and a finite set of attributes in this paper. The results may not be true for the
infinite cases.

Let U and V be any two finite sets. Elements of U are called objects and
elements of V are called attributes or properties. The relationships between
objects and attributes are described by a binary relation R between U and
V , which is a subset of the Cartesian product U × V . For a pair of elements
x ∈ U and y ∈ V , if (x, y) ∈ R, written as xRy, we say that x has the
attribute y, or the attribute y is possessed by object x. The triplet (U, V, R) is
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Table 1
A Formal Context From [47]

PO LM SM VM VC AT CS DM IC AD

1. Picture Completion
√ √ √ √

2. Picture Arrangement
√ √ √ √ √ √

3. Block Design
√ √ √ √ √

4. Object Assembly
√ √ √ √ √

5. Digit Symbol
√ √ √

PO: Perceptual Organization, LM: Long-term Memory, SM: Short-term Memory,
VM: Visual Memory, VC: Visual-motor Coordination, AT: Abstract Thought,

CS: Common Sense, DM: Decision Making, IC: Intellectual Curiosity, AD: Attention to Detail.

called a formal context [17,50] or a binary information table [39]. In general, a
multi-valued formal context can be transformed into a binary formal context
through scaling [17]. That is, every information table can be represented by a
formal context [10].

Example 1 Table 1 is an example of a formal context taken from [47]. The
attributes describe the abilities of human brain. The objects represent the re-
alistic actions that need human brain to perform. A binary relation determine
which actions should be performed by which abilities. Thus, objects and at-
tributes in a formal context are described and determined by each other based
on the binary relation.

Based on the binary relation R, we can associate a set of attributes with an
object. An object x ∈ U has the set of attributes:

xR = {y ∈ V | xRy} ⊆ V.

The set of attributes xR can be viewed as a description of the object x. In
other words, object x is described or characterized by the set of attributes xR.
Similarly, an attribute y is possessed by the set of objects:

Ry = {x ∈ U | xRy} ⊆ U.

By extending these notations, we can establish relationships between sets of
objects and sets of attributes. This leads to two types of data operators, one
from 2U to 2V and the other from 2V to 2U , where 2U and 2V are the power
sets of U and V , respectively.
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3.2 Modal-style Data Operators

With a formal context, we can define different types of modal-style data op-
erators. Each of them leads to a different type of rules summarizing the rela-
tionships between objects and attributes.

Basic Set Assignments: For a set of objects A ⊆ U and a set of attributes
B ⊆ V , we can define a pair data operators, b : 2U → 2V and b : 2V → 2U ,
called basic set assignments, as follows [52]:

Ab = {y ∈ V | Ry = A},
Bb = {x ∈ U | xR = B}.

For simplicity and clarity, the same symbol is used for both operators. The
operators b associate a set of objects with a set of attributes and a set of
attributes with a set of objects. They satisfy the following properties: for
A,A1, A2 ⊆ U ,

(b1) ∅b = ∅,
(b2) V =

⋃{Ab | A ⊆ U},
(b3) A1 6= A2 =⇒ Ab

1 ∩ Ab
2 = ∅.

Property (b1) states that the assigned set for an empty set is the empty set.
It should be pointed out that property (b1) holds only if the formal context
satisfies the condition: Ry 6= ∅, for all y ∈ V . Property (b2) shows that the
union of assigned sets of attributes for all subsets of objects is the entire set
of attributes V . Property (b3) means the assignments for different subsets of
objects are distinct and non-overlapping. Properties (b2) and (b3) hold for any
binary relation. The property (b1) holds if an object must have an attribute
or an attribute must be possessed by an object.

Sufficiency Operators: For a set of objects A ⊆ U and a set of attributes
B ⊆ V , we can define a pair data operators, ∗ : 2U → 2V and ∗ : 2V → 2U ,
called sufficiency operators, as follows [17,50]:

A∗ = {y ∈ V | A ⊆ Ry}
=

⋂

x∈A

xR, (1)

B∗ = {x ∈ U | B ⊆ xR}
=

⋂

y∈B

Ry. (2)
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The same symbol is used for both operators. By definition, {x}∗ = xR is
the set of attributes possessed by the object x, and {y}∗ = Ry is the set of
objects having attribute y. For a set of objects A, A∗ is the maximal set of
properties shared by all objects in A. Similarly, for a set of attributes B, B∗

is the maximal set of objects that have all attributes in B.

Dual Sufficiency Operators: For a set of objects A ⊆ U and a set of
attributes B ⊆ V , we can define a pair data operators, # : 2U → 2V and
# : 2V → 2U , called dual sufficiency operators, as follows [55]:

A# = {y ∈ V | A ∪Ry 6= U},
B# = {x ∈ U | B ∪ xR 6= V }.

The same symbol is again used for both operators. For a subset A ⊆ U , an
attribute in A# is not possessed by at least one object not in A.

The following properties hold for the sufficiency operators [17,50]: for A,A1, A2 ⊆
U ,

(s1) ∅∗ = U,

(s2) A∗ = Ac#c,

(s3) A∗∗∗ = A∗,
(s4) A1 ⊆ A2 =⇒ A∗

1 ⊇ A∗
2,

(s5) (A1 ∪ A2)
∗ = A∗

1 ∩ A∗
2.

where Ac presents the complement of the set of A. The dual sufficiency oper-
ators have the following properties [55]: for A,A1, A2 ⊆ U ,

(d1) U# = ∅,
(d2) A# = Ac∗c,

(d3) A### = A#,

(d4) A1 ⊆ A2 =⇒ A#
1 ⊆ A#

2 ,

(d5) (A1 ∩ A2)
# = A#

1 ∪ A#
2 ,

The properties (s1) and (d1) mean that the operation ∗ on the empty set will
be the universe, and the operation # on the universe will be the empty set.
The properties (s2) and (d2) show that the operators ∗ and # are dual to
each other. Property (s4) shows that the operator ∗ is monotonic decreasing
with respect to set inclusion while property (d4) shows that the operator #

is monotonic increasing. Similar properties hold for the operators ∗ and # on
sets of attributes.
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A pair of dual mappings, ∗ : 2U → 2V and ∗ : 2V → 2U , is indeed a Galois
connection between two partially ordered sets 〈2U ,⊆〉 and 〈2V ,⊆〉 [14,51].

Necessity Operators: For a set of objects A ⊆ U and a set of attributes
B ⊆ V , we can define a pair data operators, 2 : 2U → 2V and 2 : 2V → 2U ,
called necessity operators, as follows [14,18,54,55]:

A2 = {y ∈ V | Ry ⊆ A},
B2 = {x ∈ U | xR ⊆ B}.

The same symbol is used for both operators. By definition, an object having
an attribute in A2 is necessarily in A. The operators are referred to as the
necessity operators.

Possibility Operators: For a set of objects A ⊆ U and a set of attributes
B ⊆ V , we can define a pair data operators, 3 : 2U → 2V and 3 : 2V → 2U ,
called possibility operators, as follows [14,18,54,55]:

A3 = {y ∈ V | Ry ∩ A 6= ∅}
=

⋃

x∈A

xR,

B3 = {x ∈ U | xR ∩B 6= ∅}
=

⋃

y∈B

Ry.

The same symbol is again used for both operators. An object having an at-
tribute in A3 is only possibly in A. The operators are referred to as the
possibility operators.

The necessity operators have the following properties [54]: for A, A1, A2 ⊆ U ,

(n1) U2 = V,

(n2) A2 = Ac3c,

(n3) A1 ⊆ A2 =⇒ A2
1 ⊆ A2

2 ,

(n4) (A1 ∩ A2)
2 = A2

1 ∩ A2
2 .

The possibility operators have the following properties [54]: for A,A1, A2 ⊆ U ,

(p1) U3 = V,

(p2) A3 = Ac2c,

(p3) A1 ⊆ A2 =⇒ A3
1 ⊆ A3

2 ,

(p4) (A1 ∪ A2)
3 = A3

1 ∪ A3
2 .
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The properties (n1) and (p1) state that the universe U are mapped to the
entire set of attribute V . The properties (n2) and (p2) show that the operators
2 and 3 are dual to each other. The properties (n3) and (p3) say that these
two operators are monotonic increasing. Property (n4) states that the operator
2 is distributive over set intersection ∩, while property (p4) states that the
operator 3 is distributive over set union ∪.

3.3 Connections between Data Operators

Since the modal-style data operators are defined based on the binary relation
R of a formal context, there exist connections among these modal-style data
operators [55]. In terms of the basic set assignment, we can re-express operators
∗, 2 and 3 as:

(1) A∗ =
⋃{Xb | X ⊆ U,A ⊆ X},

(2) A# =
⋃{Xb | X ⊆ U,X ∪ A 6= U},

(3) A2 =
⋃{Xb | X ⊆ U,X ⊆ A},

(4) A3 =
⋃{Xb | X ⊆ U,A ∩X 6= ∅}.

In other words, the sufficiency, dual sufficiency, necessity and possibility oper-
ations on a set A can be expressed by a union of some particular basic assigned
sets for A.

Conversely, one can re-express operator b by using operators ∗ and 2 as:

(5) Ab = A∗ ∩ A2,

(6) Ab = A∗ −⋃{X∗ | A ⊂ X},
(7) Ab = A2 −⋃{X2 | X ⊂ A}.

The basic set assignment on a set A is the intersection of sufficiency and
necessity operations on A. Moreover, for a set A, the result of removing the
union of the sufficiency operations on all proper subset of A from the sufficiency
operation on set A is the basic set assignment on A. Similarly, the result of
removing the union of the necessity operations on all proper superset of A
from the necessity operation on set A is also the basic set assignment on A.

Example 2 A simple example is provided to illustrate the semantic meanings
of each modal-style data operator.

The formal context in Table 1 describes the relationships between actions and
human brain abilities. In this table, the objects represent the actions, such
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as picture completion, picture arrangement, block design, object assembly and
digit symbol. The attributes represent the brain abilities needed to complete the
actions.

The relation xRy, where x ∈ U and y ∈ V is interpreted as “Action x is
performed by using the brain ability y”. Suppose A denotes a behavior, a set of
actions, and y denotes a brain ability. The data operators can be interpreted
as follows:

y ∈ Ab ⇐⇒ The ability y is needed for performing exactly the set of actions A,

y ∈ A∗ ⇐⇒ The ability y is sufficient to perform all actions in A,

y ∈ A# ⇐⇒ Not all actions in Ac can be performed by y,

y ∈ A2 ⇐⇒ The actions performed by using y are necesarily in A,

y ∈ A3 ⇐⇒ The ability y is possibly used to perform some action in A.

Suppose B denotes a set of abilities, and x denotes an action. The data oper-
ators can be interpreted as follows:

x ∈ Bb ⇐⇒ The action x is exactly performed by all abilities in B,

x ∈ B∗ ⇐⇒ The action x is sufficiently performed by all abilities in B,

x ∈ B# ⇐⇒ Not all abilities in Bc can perform x,

x ∈ B2 ⇐⇒ The ability to perform the action x is necessarily in B,

x ∈ B3 ⇐⇒ The action x is possibly performed by some ability in B.

Based on these modal-style data operators, one can compose new data oper-
ators to express various features of the data. In the next two sections, we will
show that the modal-style data operators can not only be used to define vari-
ous types of relations between objects and induced granular structures of the
universe, but also be used to define different types of hierarchical structures
of the data.

4 Granular Structures of the Universe

In this section, we investigate various relations between objects and granular
structures induced by the relations based on modal-style data operators.
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4.1 Granulation and Granular structure

Granular computing has emerged as a multi-disciplinary study of problem
solving and information processing [6,30,36,39,42,43,53,59]. It provides a gen-
eral, systematic and natural way to analyze, understand, represent, and solve
real world problems. Granulation and granular structure of the universe are
fundamental issues in granular computing. Granular structures are used to
classify and characterize the data [53,59].

Granulation deals with the grouping of individual elements of a universe into
classes or sets called granules. A family of granules provides a granulated view
of the universe. Elements in a granule are grouped together by indistinguisha-
bility, similarity, proximity or functionality [36,59]. There are both semantics
and algorithmic aspects of granulation. A semantic interpretation explains
why two objects are put into the same granule and an algorithm determines
how two objects are related with each other. The granules in a granulated
view can be either disjoint or overlapping and are regarded as a level of un-
derstanding the subject matter of the study. The different granulated views
can be viewed as different granular structures of a universe. Generally, there
are two types of granulations, and the corresponding granular structures are
partition and covering of the universe.

A simple way for the granulation of a universe U is through a binary relation <
on U . A binary relation < over a universe U is a subset of the Cartesian product
U×U . Based on <, a 1-neighborhood system of objects can be constructed [56].
For two objects x, x′ ∈ U , if x<x′, we say that x is a predecessor of x′, and x′ is
a successor of x. The set of predecessors of x is called predecessor neighborhood
and denoted by <x = {x′ ∈ U | x′<x}, and the set of successors of x is called
successor neighborhood and denoted by x< = {x′ ∈ U | x<x′}. A binary
relation < on U is called an equivalence relation if it is reflexive, symmetric
and transitive:

Reflective : for all x ∈ U, x<x,

Symmetric : for all x ∈ U, x<x′ =⇒ x′<x,

Transitive : for all x ∈ U, [x<x′, x′<x′′] =⇒ x < x′′.

An equivalence relation partitions the universe U into a family of disjoint
subsets. This partition of the universe is denoted by U/E [57]. The elements
of the partition U/E are called granules and satisfy the following properties:

(I) Xi ∩Xj = ∅, where Xi, Xj ∈ U/E, i 6= j,

(II) U =
⋃{X | X ∈ U/E}.
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Conversely, given a partition of the universe, we can construct uniquely an
equivalence relation that produces the same partition. There is a one-to-one
correspondence between partitions of a universe and equivalence relations on
the universe.

The notion of a covering of a universe is a generalization of a partition by
removing the non-overlapping condition (I). Let C be a family of subsets of
U . It is called a covering of U if the following condition holds:

(III) U =
⋃{X | X ∈ C}.

Unlike the case of equivalence relations, we cannot establish a one-to-one cor-
respondence between coverings and a class of binary relations. Nevertheless,
for a reflexive relation <, the family of successor neighborhoods {x< | x ∈ U}
is a covering of the universe.

The binary relations between objects in turn can induce different granular
structures. Modal-style data operators can be used to define different relations
between objects.

4.2 Granular Structures Induced by Modal-style Operators

Many types of binary relations between objects have been studied [37,56]. The
relations between objects can be defined based on the relations between their
descriptions, i.e. sets of attributes. In other words, one can use the relations
between objects and attributes, R : U × V , to define the relations between
objects, < : U × U . In this paper, we consider four types of relations: equiva-
lence relation, partial order relation, similarity relation and negative similarity
relation.

Equivalence Relation: Two objects may be viewed as being equivalent if
they have the same description, i.e. they share the same set of attributes [39].
An equivalence relation can be defined by: for x, x′ ∈ U ,

x ≡U x′ ⇐⇒ xR = x′R.

With equivalence relation ≡U , an object has the same predecessor and succes-
sor neighborhood. For an object x ∈ U , the set of objects that are equivalent
to x is called an equivalence class of x and defined by:

≡U x = {x′ ∈ U | x′ ≡U x},
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= {x′ ∈ U | x ≡U x′},
= x≡U ,

= [x].

The equivalence classes can be re-expressed by using modal-style data opera-
tors. In a formal context (U, V, R), for an object x ∈ U , its equivalence class
can be re-expressed by:

[x] = {x′ ∈ U | x′ ≡U x},
= {x′ ∈ U | xR = x′R},
= {x′ ∈ U | x′R = {x}∗},
= {x}∗b.

The objects in [x] are considered to be indistinguishable from x. One is there-
fore forced to consider [x] as a whole. In other words, under an equivalence
relation, equivalence classes are the smallest non-empty observable, measur-
able, or definable subsets of U .

A subset of objects A ⊆ U is called a focal set of objects if Ab 6= ∅. Similarly,
we can define a focal set of attributes. By the properties of the basic set
assignment, the partition U/E is indeed the assignments of the focal sets of
attributes:

U/ ≡U = {Y b 6= ∅ | Y ⊆ V }.

This can be easily seen from the fact that each object x ∈ Y b possesses exactly
the set of attribute Y .

Similarity Relation: If two objects x and x′ have some overlapping at-
tributes, they are regarded as being similar to each other. This type of relation
is defined by [37]: for x, x′ ∈ U ,

x ≈U x′ ⇐⇒ x′R ∩ xR 6= ∅.

The relation is reflexive and symmetric, but not necessarily transitive.

Based on the similarity relation≈U , for an object, its predecessor and successor
neighborhoods are the same because of the symmetric property of ≈U . In a
formal context (U, V, R), for an object x ∈ U , the≈U predecessor and successor
neighborhood are given by:

≈U x = x≈U ,

= {x′ ∈ U | x ≈U x′},
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= {x′ ∈ U | x′ ≈U x},
= {x′ ∈ U | x′R ∩ xR 6= ∅},
= {x}33.

The objects in {x}33 must share some attributes of x. The union of all such
sets of objects is the universe U , that is, U =

⋃{{x}33 | x ∈ U}. Thus, the
family of all sets of objects induced by similarity relation ≈U is a covering of
the universe U .

Negative Similarity Relation: For two objects x and x′, if the union of
their attributes is not the whole set of attributes, we can consider them as
being negatively similar [37]. This type of relation is defined by: for x, x′ ∈ U ,

x ³U x′⇐⇒xRc ∩ x′Rc 6= ∅,
⇐⇒xR ∪ x′R 6= V,

where Rc is the complement of the relation R. The negative similarity relation
is only symmetric.

For the negative similarity relation ³U , the predecessor and successor neigh-
borhoods for an object are the same. For an object x ∈ U , the ³U predecessor
and successor are:

³U x = x³U ,

= {x′ ∈ U | x ³U x′},
= {x′ ∈ U | x′ ³U x},
= {x′ ∈ U | xR ∪ x′R 6= V },
= {x}∗#.

For an object x′ in {x}∗#, there must exist at least one attribute that is not
possessed by both x and x′. The family of all sets of objects {x}∗# induced
by the negative similarity relation ³U may not be necessarily a partition or
covering of the universe U .

Partial Order Relation: A partial order relation on objects can be defined
based on set inclusion: for x, x′ ∈ U ,

x ¹U x′ ⇐⇒ xR ⊆ x′R.

It is reflexive and transitive.

A partial order relation is not necessarily symmetric. In this case, we have
different predecessor and successor neighborhoods for an object. For an object
x ∈ U , the ¹U successor neighborhood is given by:
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x¹U = {x′ ∈ U | x ¹U x′},
= {x′ ∈ U | xR ⊆ x′R},
= {x′ ∈ U | {x}∗ ⊆ x′R},
= {x}∗∗.

For an object x ∈ U , the ¹U predecessor neighborhood is given by:

¹U x = {x′ ∈ U | x′ ¹U x},
= {x′ ∈ U | x′R ⊆ xR},
= {x′ ∈ U | x′R ⊆ {x}3},
= {x}32.

The set {x}∗∗ is the maximal set of objects that have all attributes in {x}∗.
In other words, any objects in {x}∗∗ has at least all attributes of x. In fact,
each set {x}∗∗ is the extension of an object concept in formal concept anal-
ysis [17,50]. The union of all such sets of objects is the universe U , that is,
U =

⋃{{x}∗∗ | x ∈ U}. Thus, the family of all sets of objects {x}∗∗ induced
by the partial order relation ¹ is a covering the universe U . The set {x}32

is the maximal set of objects whose attributes are subsets of {x}3. In other
words, any object in {x}32 has at most all attributes of x. The union of all
such sets of objects is the universe U , that is, U =

⋃{{x}32 | x ∈ U}. Thus,
the family of all sets of objects {x}32 induced by the partial order relation
¹U is a covering the universe U .

4.3 Connections between Granular Structures

These types of data operators induce different types of granulated views of
the universe. They can be considered as different types of strategies to divide
the universe or classify the objects.

The connections among various types of granular structures can be established
based on the connections of the data operators. In fact, the equivalence classes
can be used to re-express other types of sets of objects.

{x}∗∗ =
⋃{[x′] | xR ⊆ x′R},

{x}∗# =
⋃{[x′] | xR ∪ x′R 6= V },

{x}32 =
⋃{[x′] | xR ⊇ x′R},

{x}33 =
⋃{[x′] | xR ∩ x′R 6= ∅}.
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Similar to the granulations on objects, we can also define the various granu-
lations on attributes by using modal-style data operators. The detailed defi-
nitions and formulas of these granulations on attributes are given in the Ap-
pendix.

5 Hierarchical Structures Embedded in Data

In the classical view, a concept is determined by its extension and intention.
The extension consists of all objects belonging to the concept. The intension
includes all attributes that are used to measure the objects belonging to the
concept. A pair of extension and intention is considered as a representation
of a concept. Lattice theory provides a proper vocabulary for hierarchical
structures and can be applied to construct concept lattices [17,50,54,55].

In this section, the modal-style data operators are examined to construct dif-
ferent types of concept lattices. Several types of concept lattices are derived
from a same formal context and reflect various features of the data and to
represent a diversity of knowledge embedded in the data.

5.1 Class-oriented Formal Concept Lattice

An equivalence relation between objects can induce a partition of the universe.
Each element in the partition is called an elementary definable set [39]. One
can construct a definable set by taking a union of some equivalence classes. The
family of all definable sets on the universe U is an σ-algebra σ(U/≡U) ⊆ 2U

with basis U/≡U , where 2U is the power set of U [57]. The following properties
hold:

(E1) ∅ ∈ σ(U/≡U),

(E2) U ∈ σ(U/≡U),

(E3) X ∈ σ(U/≡U) ⇒ Xc ∈ σ(U/≡U),

(E4) A1, A2 ∈ σ(U/≡U) ⇒ A1 ∩ A2 ∈ σ(U/≡U),

(E5) A1, A2 ∈ σ(U/≡U) ⇒ A1 ∪ A2 ∈ σ(U/≡U).

The properties (E1) and (E2) state that the empty set ∅ and the universe
U are in σ(U/≡U). The properties (E3) - (E5) express that the complement,
intersection and union of some definable sets in σ(U/≡U) are still definable
sets in σ(U/≡U). In other words, σ(U/≡U) is closed under set complement,
intersection and union operations. Similarly, the family of all definable sets on
the universe V is also an σ-algebra σ(U/≡U) ⊆ 2U with basis V/≡U .
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Example 3 In Table 1, the equivalence classes over the universe of objects
are:

[1] = {1}, assigned to the focal set {PO, LM, V M, AD},
[2] = {2}, assigned to the focal set {PO, AT, CS, DM, IC, AD},
[3] = [4] = {3, 4}, assigned to the focal set {PO, V C,AT,DM,AD},
[5] = {5}, assigned to the focal set {SM, V M, V C}.

The equivalence classes over the universe of attributes are:

[PO] = [AD] = {PO,AD}, assigned to the focal set {1, 2, 3, 4},
[AT ] = [DM ] = {AT, DM}, assigned to the focal set {2, 3, 4},
[CS] = [IC] = {CS, IC}, assigned to the focal set {2},
[LM ] = {LM}, assigned to the focal set {1},
[SM ] = {SM}, assigned to the focal set {5},
[V M ] = {V M}, assigned to the focal set {1, 5},
[V C] = {V C}, assigned to the focal set {3, 4, 5}.

A pair (A,B), A ⊆ U,B ⊆ V , is called a class-oriented formal concept if
A ∈ σ(U/≡U)) and B = A∗. The set of objects A is called the extension of
the concept (A,B), and the set of attributes B is called the intension.

For two class-oriented concepts (A1, B1) and (A2, B2), we say that (A1, B1) is
a sub-concept of (A2, B2), and (A2, B2) is a super-concept of (A1, B1), if and
only if A1 ⊆ A2.

The family of all class-oriented formal concepts forms a complete lattice called
class-oriented formal concept lattice. This lattice gives a hierarchical structure
of the elements in σ(U/≡U) and their corresponding attributes. The meet ∧
and the join ∨ are defined by:

(A1, B1) ∧ (A2, B2) = ((A1 ∩ A2), (A1 ∩ A2)
∗),

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2), (B1 ∩B2)).

Example 4 The lattice derived from Table 1 is illustrated in Figure 1 in which
each rectangle represents a class-oriented formal concept, i.e., a definable set
in the system of σ(U/≡) and its correspondent attributes. The lines associating
the rectangles is considered as the partial order relations between class-oriented
formal concepts.
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({1,2,3,4,5}, ø  )

({1,2,5}, ø  ) ({1,2,3,4}, {PO,AD}) ({2,3,4,5}, ø  ) ({1,3,4,5}, ø )

({1,2}, {PO,AD}) ({1,3,4}, {PO,AD}) ({1,5}, {VM}) ({2,3,4}, {PO,AT,DM,AD}) ({2,5}, ø  ) ({3,4,5}, {VC})

({1}, {PO,LM,VM,AD}) ({2}, {PO,AT,CS,DM,IC,AD}) ({3,4}, {PO,VC,AT,DM,AD}) ({5}, {SM,VM,VC})

(ø   , {PO,LM,SM,VM,VC,AT,CS,DM,IC,AD})

Fig. 1. A Class-oriented Formal Concept Lattice

5.2 Formal Concept Lattice

Wille and Ganter use efficiency operators to define a lattice of formal con-
cepts [17,50]. A pair (A,B), A ⊆ U,B ⊆ V , is called a formal concept if
A = B∗ and B = A∗. The set of objects A is referred to as the extension of
the concept (A,B), and the set of attributes Y is referred to as the intension.
Objects in A share all attributes B, and only attributes in B are possessed by
all objects in A.

For two formal concepts (A1, B1) and (A2, B2), we say that (A1, B1) is a sub-
concept of (A2, B2), and (A2, B2) is a super-concept of (A1, B1), if and only if
A1 ⊆ A2, or equivalently, if and only if B2 ⊆ B1.

The family of all formal concepts is a complete lattice called a formal concept
lattice [17,50]. The meet ∧ and the join ∨ in formal concept lattice are defined
by:

(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, (B1 ∪B2)
∗∗),

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2)
∗∗, B1 ∩B2).

Example 5 Figure 2 is the formal concept lattice formed based on Table 1.
Each rectangle represents a formal concept in the lattice. Lines between rect-
angles represent the partial order relations between the concepts.

Consider an operator ∗∗ : 2U → 2U , which is closure operator on 2U [14,17,18].
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({1,2,3,4,5}, ø  )

({1,2,3,4}, {PO,AD}) ({1,5}, {VM})

({2,3,4}, {PO,AT,DM,AD}) ({3,4,5}, {VC})

({1}, {PO,LM,VM,AD})({2}, {PO,AT,CS,DM,IC,AD}) ({3,4}, {PO,VC,AT,DM,AD}) ({5}, {SM,VM,VC})

(ø   , {PO,LM,SM,VM,VC,AT,CS,DM,IC,AD})

Fig. 2. A Formal Concept Lattice

The properties of the operator ∗∗ are: for A,A1, A2 ⊆ U ,

(SI) U∗∗ = U,

(SII) A ⊆ A∗∗,
(SII) A∗∗ = A∗∗∗∗,

(SIV) A1 ⊆ A2 =⇒ A∗∗
1 ⊆ A∗∗

2 .

Property (SI) states that the operation ∗∗ on the universe U will be the universe
itself. Property (SII) and (SIV) mean that ∗∗ is a monotonically increasing
operator. Property (SIII) shows that ∗∗ is a idempotent operator. The operator
∗∗ : 2V → 2V is a closure operator on 2V and has similar properties of the
operator ∗∗ : 2U → 2U over the universe U .

Let (U,∗∗ ) denote the family of sets (U,∗∗ ) = {A∗∗ | A ⊆ U}. In fact, (U,∗∗ ) ⊆
2U containing the universe U is the set of the extensions of all formal concepts.
The system (U,∗∗ ) is closed under the operator ∗∗ and set intersection operator,
but not set union operator. That is, the system (U,∗∗ ) is a closure system
defined by the following properties [12]:

(S1) U ∈ (U,∗∗ ),

(S2) A1, A2 ∈ (U,∗∗ ) =⇒ A1 ∩ A2 ∈ (U,∗∗ ).

In fact, the system (U,∗∗ ) consists of all fixed points of operator ∗∗, that is,
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(U,∗∗ ) = {A∗∗ = A | A ⊆ U}. Furthermore, for a non-empty set A ∈ (U,∗∗ )
and the corresponding formal concept (A,A∗), we have [17]:

(A,A∗) =
∨{({x}∗∗, {x}∗) | x ∈ A}.

That is, {x}∗∗ can be used to re-express the sets in the system (U,∗∗ ). The
whole system (U,∗∗ ) can be generated by the sets of {x}∗∗, x ∈ U . In fact, a
pair ({x}∗∗, {x}∗), x ∈ U , is a formal concept called an object concept [17].
{x}∗∗ is the extension of an object concept. A formal concept in the lattice
can be generated, composed or re-expressed by some object concepts. In other
words, the whole formal concept lattice can be generated by object concepts.

5.3 Dual Formal Concept Lattice

Similar to the efficiency operators for formal concept lattice, the dual efficiency
operators can be used to define a lattice of dual formal concepts. A pair (A,B),
A ⊆ U,B ⊆ V , is called a dual formal concept if A = B# and B = A#. The
set of objects A is referred to as the dual extension of the concept (A,B), and
the set of attributes Y is referred to as the dual intension. It can be easily
seen that a pair (A,B) is a dual formal concept if and only if (Ac, Bc) is a
standard formal concept. For a dual concept (A,B), only objects not in A
share all attributes not in B, and only attributes not in B are possessed by
all objects not in A.

For two dual formal concepts (A1, B1) and (A2, B2), we say that (A1, B1) is
a sub-concept of (A2, B2), and (A2, B2) is a super-concept of (A1, B1), if and
only if A1 ⊆ A2, or equivalently, if and only if B2 ⊆ B1.

The family of all dual formal concepts forms a complete lattice called dual
formal concept lattice. The meet ∧ and the join ∨ in dual formal concept
lattice are defined by:

(A1, B1) ∧ (A2, B2) = ((A1 ∩ A2)
##, (B1 ∪B2)),

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2), (B1 ∩B2)
##).

Because of the property of duality of the operators ∗ and #, one can re-express
one operator with the other operator as # =c∗c and hence ## =c∗∗c. In other
words, a dual formal concept can be obtained by taking the set complement
of the extension and intention of the formal concept.

Example 6 A dual formal concept lattice derived from Table 1 is illustrated
in Figure 3. Each rectangle represents a dual formal concept. A line describes
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({1,2,3,4,5}, ø )

({5}, {LM,SM,VM,VC,AT,CS,DM,IC})({2,3,4}, {PO,LM,SM,VC,AT,CS,DM,IC,AD})

({1,5}, {LM,SM,VM,VC,CS,,IC})

({1,2}, {PO,LM,SM,VM,AT,CS,DM,IC,AD})

({2,3,4,5}, {SM,VC,AT,CS,DM,IC}) ({1,3,4,5}, {LM,SM,VM,VC}) ({1,2,5}, {LM,SM,VM,CS,IC})

({1,2,3,4}, {PO,LM,AT,CS,DM,IC,AD})

(ø   , {PO,LM,SM,VM,VC,AT,CS,DM,IC,AD})

Fig. 3. A Lattice of Dual Formal Concepts

a partial order relation between the concepts. From Figure 3 and Figure 2, one
can reveal that a dual formal concept in the lattice can be obtained by taking
the set complements of the formal concept in the formal concept lattice, and
vice verse.

Consider the operator ## : 2U → 2U , which is an interior operator on 2U . The
properties of this operator are: for A,A1, A2 ⊆ U .

(NI) ∅## = ∅,
(NII) A## ⊆ A,

(NIII) A## = A####,

(NIV) A1 ⊆ A2 =⇒ A##
1 ⊆ A##

2 .

Property (NI) states that the application of operator ## on the empty set is
the empty set. The properties (NIII) - (NIV) mean that ## is an idempotent
and monotonically decreasing operator.

Let (U,## ) denote the family of sets (U,# #) = {A## | A ⊆ U}. In fact,
(U,## ) ⊆ 2U contains the empty set ∅ and the set of the extensions of all dual
formal concepts. The system (U,## ) has the following properties:

(N1) ∅ ∈ (U,## ),

(N2) A1, A2 ∈ (U,## ) =⇒ A1 ∪ A2 ∈ (U,## ).
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That is, the system (U,## ) is closed under the operator ## and set union ∪,
but not closed under the set intersection ∩. The system (U,## ) consists of all
fixed points of operator ##, that is, (U,## ) = {A## = A | A ⊆ U}.

5.4 Property-oriented Concept Lattice

The approximation operators 3 and 2 can be used to form two different types
of lattices, property-oriented formal concept lattice and object-oriented formal
concept lattice [18,51,54].

A pair (A,B), A ⊆ U,B ⊆ V , is called a property-oriented formal concept if
A = B2 and B = A3. The set of objects A is referred to as the extension of
the concept (A,B), and the set of attributes Y is referred to as the intension.
If an attribute is possessed by an object in A then the attribute must be in
B. Moreover, only attributes B are possessed by objects in A.

For two property-oriented formal concepts (A1, B1) and (A2, B2), we say that
(A1, B1) is a sub-concept of (A2, B2), and (A2, B2) is a super-concept of (A1, B1),
if and only if A1 ⊆ A2, or equivalently, if and only if B1 ⊆ B2.

The family of all property-oriented formal concepts is a complete lattice called
property-oriented formal concept lattice [54]. The meet ∧ and the join ∨ in
property-oriented formal concept lattice are defined by:

(A1, B1) ∧ (A2, B2) = ((A1 ∩ A2), (B1 ∩B2)
23),

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2)
32, (B1 ∪B2)).

Example 7 The property-oriented concept lattice of Table 1 is illustrated in
Figure 4. Each rectangle stands for a property-oriented formal concept in the
lattice. The lines between rectangles demonstrate partial order relations be-
tween the property-oriented formal concepts.

Consider the operator 32 : 2U → 2U , which is a closure operator on 2U [14,18].
The properties of this operator are: for A,A1, A2 ⊆ U .

(PI) U32 = U,

(PII) A ⊆ A32,

(PIII) A32 = A3232,

(PIV) A1 ⊆ A2 =⇒ A32
1 ⊆ A32

2 .

The property (PI) and (PII) state that the universe U will not be changed
under the operator 32. The properties (PIII) - (PIV) mean that 32 is an
idempotent and monotonically increasing operator.
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({1,2,3,4,5}, {PO,LM,SM,VM,VC,AT,CS,DM,IC,AD} )

({1,2,3,4},
{PO,LM,VM,VC,AT,CS,DM,IC,AD})

({2,3,4,5},
{PO,SM,VM,VC,AT,CS,DM,IC,AD})

({1,3,4,5},
{PO,LM,SM,VM,VC,AT,DM,AD})

({1,2},
{PO,LM,VM,AT,CS,DM,IC,AD})

({1,3,4},
{PO,LM,VM,VC,AT,DM,AD})

({1,5},
{PO,LM,SM,VM,VC,AD )

({2,3,4},
{PO,AT,CS,DM,IC,AD})

({3,4,5},
{PO,SM,VM,VC,AT,DM,AD})

({1}, {PO,LM,VM,AD}) ({2}, {PO,AT,CS,DM,IC,AD}) ({3,4}, {PO,VC,AT,DM,AD})({5}, {SM,VM,VC})

( ø , ø )

Fig. 4. The Lattice of Property-oriented Concepts

Let (U,32 ) denote the family of sets (U,32 ) = {A32 | A ⊆ U}. It contains
the universe U and the empty set ∅ and is the set of the extensions of all
property-oriented formal concepts in the lattice. The system (U,32 ) is closed
under the operator 32 and the set intersection ∩, but not closed under the
set union ∪. That is, the system (U,32 ) is a closure system with the following
properties:

(P1) ∅ ∈ (U,32 ),

(P2) A1, A2 ∈ (U,32 ) =⇒ A1 ∩ A2 ∈ (U,32 ).

Furthermore, for a non-empty set A ∈ (U,32 ), we can have:

(A,A3) =
∨{({x}32, {x}3) | x ∈ A}.

That is, the {x}32 can be used to re-express the sets in the system (U,32 ).
The whole system (U,32 ) can be generated by the sets of {x}32, x ∈ U . The
pair ({x}32, {x}3) is a property-oriented formal concept and can be used to
generate other property-oriented formal concepts in the lattice.

5.5 Object-oriented Concept Lattice

Another type of concept lattice formed by approximation operators 3 and 2

is object-oriented concept lattice [18,51,54]. A pair (A,B), A ⊆ U,B ⊆ V , is
called an object-oriented formal concept if A = B3 and B = A2. The set of
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objects A is referred to as the extension of the concept (A,B), and the set of
attributes Y is referred to as the intension. If an object has an attribute in B
then the object belongs to A. Moreover, only objects in A possess attributes
in B.

For two object-oriented formal concepts (A1, B1) and (A2, B2), we say that
(A1, B1) is a sub-concept of (A2, B2), and (A2, B2) is a super-concept of (A1, B1),
if and only if A1 ⊆ A2, or equivalently, if and only if B1 ⊆ B2.

The family of all object-oriented formal concepts is a complete lattice called
object-oriented formal concept lattice [54]. The meet ∧ and the join ∨ in
object-oriented formal concept lattice are defined by:

(A1, B1) ∧ (A2, B2) = ((A1 ∩ A2)
23, (B1 ∩B2)),

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2), (B1 ∪B2)
32).

Moreover, because of the property of duality of the operators 2 and 3, one
can re-express one operator with the other operator. That is, 23 =c32c and
c23c =32. In other words, the concepts in object-oriented formal concept lat-
tice can be obtained by taking the set complements of the concepts in property-
oriented formal concept lattice.

Example 8 Based on Table 1, an object-oriented formal concept lattice can
be derived and illustrated in Figure 5. Rectangles represent the object-oriented
formal concepts in the lattice. Lines between rectangles express the partial order
relations among the concepts. From Figure 4 and Figure 5, one can reveal that
a concept in the object-oriented concept lattice can be obtained by taking the
set complements of the concept in the property-oriented concept lattice, and
vice verse.

Consider the operator 23 : 2U → 2U , which is an interior operator on 2U [14,18].
The properties of this operator are: for A,A1, A2 ⊆ U .

(LI) ∅23 = ∅,
(LII) A ⊆ A23,

(LIII) A23 = A2323,

(LIV) A1 ⊆ A2 =⇒ A23
1 ⊆ A23

2 .

The properties (LI) and (LII) state that the empty set ∅ will not be changed
under the operator 23. The properties (LIII) - (LIV) mean that 23 is an
idempotent and monotonically decreasing operator.

Let (U,23 ) denote the family of sets (U,23 ) = {A23 | A ⊆ U}. It contains
the universe U and the empty set ∅ and is the family of the extension of all
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({1,2,3,4,5}, {PO,LM,SM,VM,VC,AT,CS,DM,IC,AD})

({1,2,5}, {LM,SM,VM,CS,IC}) ({1,2,3,4}, {PO,LM,AT,CS,DM,IC,AD}) ({2,3,4,5}, {SM,VC,AT,CS,DM,IC}) ({1,3,4,5}, {LM,SM,VM,VC})

({1,2}, {LM,CS,IC}) ({1,5}, {LM,SM,VM} ) ({2,3,4}, {AT,CS,DM,IC}) ({2,5}, {SM,CS,IC}) ({3,4,5}, {SM,VC})

({1}, {LM}) ({2}, {CS,IC}) ({5}, {SM})

( ø , ø )

Fig. 5. The Lattice of Object-oriented Concepts

object-oriented formal concepts. The properties of the system (U,23 ) are:

(L1) U ∈ (U,23 ),

(L2) A1, A2 ∈ (U,23 ) =⇒ A1 ∪ A2 ∈ (U,23 ).

These properties state that the system (U,23 ) is closed under the operator 23

and the set union ∪, but not closed under set intersection ∩.

5.6 Connections between Different Lattices

Based on the connections of modal-style data operators, the concepts in vari-
ous lattices can be expressed by equivalence classes as follows. For A ⊆ U,B ⊆
V ,

A∗∗ =
⋃{[x] | x ∈ U,A∗ ⊆ xR},

A## =
⋃{[x] | x ∈ U,A# ∪ xR 6= V },

A23 =
⋃{[x] | x ∈ U,A2 ∩ xR 6= ∅},

A32 =
⋃{[x] | x ∈ U, xR ⊆ A3},

and

B∗∗ =
⋃{[y] | y ∈ V, B∗ ⊆ Ry},
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B## =
⋃{[y] | y ∈ V, B# ∪Ry 6= V },

B23 =
⋃{[y] | y ∈ V, B2 ∩Ry 6= ∅},

B32 =
⋃{[y] | y ∈ V, Ry ⊆ B3}.

It follows that different types of lattices can be connected and transformed
from each other by using equivalence classes. The equivalence classes can be
considered as a base to construct different types of lattices.

6 Conclusion

In this paper, we propose an approach to investigate multiple views of intelli-
gent data analysis based on modal-style data operators. We provides a basic
framework to explore the significant importance of multiview for the research
on intelligent data analysis. The integration of these multiple views may bring
more powerful and useful data analysis tools.

By defining various types of data operators, we present various data relation-
ships and construct different types of hierarchical structures, which provides
different granulated views of the data. A type of data relationships has a spe-
cific semantic interpretation and may be considered as a type of knowledge
discovered from a data set. Different types of data relationships present dif-
ferent types of knowledge. Different hierarchical structures defined based on
modal-style data operators represent various aspects or features of data and
can be viewed as multiple types of knowledge embedded in the data.

For future work, we will study the connections and transformations between
different data relationships or data structures. A general framework to study
different views and their connections and transformations may bring more
insights into intelligent data analysis.
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Appendix

The four binary relations on attributes are defined as follows.

Equivalence Relation. For y, y′ ∈ V , y ≡V y′ ⇐⇒ Ry = Ry′, which is
reflective, symmetric and transitive.
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Partial Order Relation. For y, y′ ∈ V , y ¹V y′ ⇐⇒ Ry ⊆ Ry′, which is
reflective and transitive.

Similarity Relation: For y, y′ ∈ V , y ≈V y′ ⇐⇒ Ry′ ∩ Ry 6= ∅, which is
reflective and symmetric.

Negative Similarity Relation: For y, y′ ∈ V , y ³V y′ ⇐⇒ Ryc ∩ Ry′c 6=
∅ ⇐⇒ Ry ∪Ry′ 6= U , which is symmetric.

Modal-style data operators defined for relations between attributes are listed
as follows.

In a formal context (U, V, R), for an attribute y ∈ V , its equivalence class can
be defined by: ≡V y = y ≡V = [y] = {y}∗b.

In a formal context (U, V, R), for an attribute y ∈ V , the ¹V successor neigh-
borhood is given by: y ¹V = {y}∗∗.

In a formal context (U, V, R), for an attribute y ∈ V , the ¹V predecessor
neighborhood is given by: ¹V y = {y}32.

In a formal context (U, V, R), for an attribute y ∈ V , the ≈V predecessor and
successor neighborhood are given by: ≈V y = y ≈V = {y}33.

In a formal context (U, V, R), for an attribute y ∈ V , the ³V predecessor and
successor is: ³V y = y ³V = {y}∗#.
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