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ABSTRACT

In this paper, we argue that granular computing
may have many potential applications in knowledge
discovery and data mining. Three related basic oper-
ations of granular computing are examined: granula-
tion of the universe, characterization of granules, and
relationships between granules. Their connections to
the tasks of knowledge discovery and data mining are
analyzed.
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1. INTRODUCTION

Basic ingredients of granular computing are sub-
sets, classes, and clusters of a universe [15, 20]. There
are at least three fundamental issues in granular com-
puting: granulation of the universe, description of
granules, and relationships between granules. These
issues have been considered either explicitly or implic-
itly in many fields, such as data and cluster analysis,
concept formation, and knowledge discovery and data
mining. Granulation of a universe involves the de-
composition of the universe into parts, or the group-
ing of individual elements into classes, based on avail-
able information and knowledge. Elements in each
granule may be interpreted as instances of a con-
cept. They are drawn together by indistinguisha-
bility, similarity, proximity or functionality [19, 20].
One may easily establish some connections between
tasks of granular computing and those of concept for-

mation, knowledge discovery, and data mining. One
of the tasks of concept formation may be viewed as
the representation, characterization, description, and
interpretation of granules representing certain con-
cepts. An important function of knowledge discovery
and data mining is to establish relationships between
granules, such as association and causality. The main
objective of this paper is to study these issues in more
detail using a simple framework, based on the theory
of rough sets [8]. In particular, potential applica-
tions of granular computing in knowledge discovery
and data mining are discussed.

2. BASIC FRAMEWORK

We assume that information about objects in a
finite universe are given by an information table [8,
18], in which objects are described by their values on
a finite set of attributes. Formally, an information
table is a quadruple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where

U is a finite nonempty set of objects,

At is a finite nonempty set of attributes,

Va is a nonempty set of values for a ∈ At,

Ia : U → Va is an information function.

Each information function Ia is a total function that
maps an object of U to exactly one value in Va. The



Object Height Hair Eyes Class
o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 1: An information table

rows of the table correspond to objects of the uni-
verse, the columns (from the second to the last) cor-
respond to a set of attributes, and each cell is the
value of an object with respect to an attribute. An
information table represents all available information
and knowledge. Objects are only perceived, observed,
or measured by using a finite number of properties.
Similar representation schemes can be found in many
fields, such as decision theory, pattern recognition,
machine learning, data analysis, data mining, and
cluster analysis [8].

Example 1 Table 1 is an example of information ta-
ble, taken from an example from Quinlan [10]. Each
object is described by four attributes. The column
labeled by Class denotes an expert’s classification of
the objects. 2

With an information table, we can define a cer-
tain language for describing objects or a group of ob-
jects of the universe. For example, an object can
be represented as a conjunction of attribute-value
pairs. A subset of objects can be similarly described.
We adopt the decision logic language (DL-language)
studied by Pawlak [8]. In theDL-language, an atomic
formula is given by (a, v), where a ∈ At and v ∈ Va.
If φ and ψ are formulas in the DL-language, then so
are ¬φ, φ∧ψ, φ∨ψ, φ→ ψ, and φ ≡ ψ. The seman-
tics of the DL-language can be defined in Tarski’s
style through the notions of a model and satisfiabil-
ity. The model is an information table S, which pro-
vides interpretation for symbols and formulas of the
DL-language. The satisfiability of a formula φ by an
object x, written x |=S φ or in short x |= φ if S is
understood, is given by the following conditions:

(1) x |= (a, v) iff Ia(x) = v,

(2) x |= ¬φ iff not x |= φ,

(3) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(4) x |= φ ∨ ψ iff x |= φ or x |= ψ,

(5) x |= φ→ iff x |= ¬φ ∨ ψ,

(6) x |= φ ≡ ψ iff x |= φ→ ψ and ψ → φ.

If φ is a formula, the set mS(φ) defined by:

mS(φ) = {x ∈ U | x |= φ}, (1)

is called the meaning of the formula φ in S. If S is
understood, we simply write m(φ). Obviously, the
following properties hold [8]:

(a) m(a, v) = {x ∈ U | Ia(x) = v},

(b) m(¬φ) = −m(φ),

(c) m(φ ∧ ψ) = m(φ) ∩m(ψ),

(d) m(φ ∨ ψ) = m(φ) ∪m(ψ),

(e) m(φ→ ψ) = −m(φ) ∪m(ψ),

(f) m(φ ≡ ψ) = (m(φ) ∩m(ψ)) ∪

(−m(φ) ∩ −m(ψ)).

The meaning of a formula φ is therefore the set of all
objects having the property expressed by the formula
φ. In other words, φ can be viewed as the descrip-
tion of the set of objects m(φ). Thus, a connection
between formulas of the DL-language and subsets of
U is established.

A formula φ is said to be true in an information
table S, written |=S φ, if and only if m(φ) = U ,
namely, φ is satisfied by all objects in the universe.
Two formulas φ and ψ are equivalent in S if and only
if m(φ) = m(ψ). By definition, the following proper-
ties hold [8]:

(i) |=S φ iff m(φ) = U,

(ii) |=S ¬φ iff m(φ) = ∅,

(iii) |=S φ→ ψ iff m(φ) ⊆ m(ψ),

(iv) |=S φ ≡ ψ iff m(φ) = m(ψ).

Thus, we can study the relationships between con-
cepts described by formulas of theDL-language based
on the relationships between their corresponding sets
of objects.

Example 2 Consider Table 1. The following expres-
sions are some of the formulas of the DL-language:

(Height, tall),

(Height, short),

(Hair, dark),

(Height, tall) ∨ (Height, short),

(Height, tall) ∧ (Hair, dark),

(Height, tall) ∨ (Hair, dark),

(Hair, dark) → (Height, tall),

(Hair, dark) ≡ (Height, tall).



The subsets of objects satisfying these formulas are
given by:

m(Height, tall) = {o3, o4, o5, o6, o7},

m(Height, short) = {o1, o2, o8},

m((Height, tall) ∨ (Height, short)) = U,

m(Hair, dark) = {o4, o5, o7},

m((Height, tall) ∧ (Hair, dark)) = {o4, o5, o7},

m((Height, tall) ∨ (Hair, dark)) =

{o3, o4, o5, o6, o7},

m((Hair, dark) → (Height, tall)) = U,

m((Hair, dark) ≡ (Height, tall)) =

{o1, o2, o4, o5, o7, o8}.

Among these formulas, two are true in the informa-
tion table, namely:

|=S (Height, tall) ∨ (Height, short),

|=S (Hair, dark) → (Height, tall).

The first represents the fact that in the information
table an object’s Height is either tall or short. The
second represents the fact that if an object’s Hair
is dark, then its Height is tall. It is interesting to
note that the second formula can be used to analyze
the relationships between concepts. Conceptually, an
important task of knowledge discovery and data min-
ing may be formulated as searching for such formulas
with respect to an information table. 2

3. GRANULATION

When objects are represented through a finite set
of attributes, some objects may have the same de-
scription and cannot be distinguished. Based on the
attribute values, we can cluster objects in the uni-
verse. For example, one may group objects based
equality, equivalence, or similarity of attribute val-
ues [18]. More generally, a fuzzy similarity relation
on attribute values may be used. This process in fact
involves the granulation of attribute values, which is
then used to granulate the universe. A granulation of
the attribute values can be supplied by experts, repre-
senting additional knowledge about the information
table. For example, attribute values can be granu-
lated based on some concept hierarchies [3]. Granu-
lated views of the universe represent our knowledge
about the universe such that each granule represents
a certain concept. Granulation of the universe can
be flat or hierarchical. In this section, we present a
simple granulation method.

Consider an attribute a ∈ At. It may happen that
two objects x and y have the same value on a, namely,
Ia(x) = Ia(y). In this case, one cannot differentiate
x from y based solely on their values on attribute a.
Thus, they may be put into the same granule. For a
value v ∈ Va, one obtains a granule with respect to
an atomic formula of the DL-language [9]:

m(a, v) = {x | Ia(x) = v}. (2)

It consists of all objects whose value on attribute a
equals to v, and may be interpreted as the granule de-
fined by an equality constraint in the sense discussed
by Zadeh [20]. The family of granules,

π{a} = {m(a, v) 6= ∅ | v ∈ Va}, (3)

form a partition of the universe [8]. The correspond-
ing equivalence relation E{a} on U is given by:

xE{a}y ⇐⇒ Ia(x) = Ia(y). (4)

A granule is indeed an equivalence class of the rela-
tion E{a}. The equivalence class containing x ∈ U ,
written [x]E{a}

, is:

[x]E{a}
= m(a, Ia(x))

= {y ∈ U | Ia(y) = Ia(x)}. (5)

It consists of all objects whose value on attribute a
is the same as that of the object x. The partition
π{a} of the universe is also referred to as a quotient
set of U and is denoted by U/E{a}. It represents a
granulated view of the universe.

The sets in π{a} are called elementary granules,
as they are the smallest granules derivable based on
values of attribute a. From the elementary granules,
larger granules may be built by taking union of fam-
ilies of elementary granules. That is, it is possible
to build a hierarchy of granules. If the empty set ∅
is added, one obtains a sub-Boolean algebra of the
Boolean algebra formed by the power set of U .

The elementary granules constructed by using val-
ues of Va may be too large. In order to resolve this
problem, additional attributes are used. For a pair of
attributes a, b ∈ At and two values v ∈ Va, w ∈ Vb,
one can obtain the following granule with respect to
the formula (a, v) ∧ (b, w) of the DL-language [9]:

m((a, v) ∧ (b, w)) = {x | Ia(x) = v ∧

Ib(x) = w}. (6)

The granule is defined by two equality constraints.
The family of granules:

π{a,b} = {m((a, v) ∧ (b, w)) 6= ∅ | v ∈ Va, w ∈ Vb}, (7)



is a partition of the universe. The corresponding
equivalence relation is given by E{a,b} = E{a} ∩E{b},
namely,

xE{a,b}y ⇐⇒ Ia(x) = Ia(y) ∧ Ib(x) = Ib(y). (8)

Granules in the partition π{a,b} may be smaller than
granules in partitions π{a} and π{b}.

The argument for constructing granules can be
easily extended to a subset of attributes A =
{a1, . . . , am} ⊆ At. The equivalence relation is given
by EA =

⋂m
i=1

E{ai}, each equivalence class (granule)
is defined by the equality constraints

∧m

i=1
Iai

(x) =
vi, where vi ∈ Vai

. The algebra ({EA}A⊆At,∩) is a
lower semilattice with the zero element EAt [7]. For
two subsets of attributes A,B ⊆ At, if EA ⊂ EB , we
say that the partition πA is finer than πB , or πB is
coarser than πA. We will also say that πA is a special-
ization, or refinement, of πB, or πB is a generalization,
or coarsing, of πA [8]. The order relation of the semi-
lattice represents the generalization-specialization re-
lationships between partitions, i.e., families of ele-
mentary granules. The empty set ∅ produces the
coarsest equivalence relation, i.e., E∅ = U ×U , where
× denotes the Cartesian product of sets. The entire
set of attributes produces the finest relation EAt. In
the formulation of granules, the addition of an at-
tribute leads to a specialization, and hence smaller
elementary granules. Conversely, the deletion of an
attribute leads to a generalization, and hence larger
elementary granules.

Example 3 In Table 1, if the attribute A = {Hair}
is chosen, we can partition the universe into equiva-
lence classes:

{o1, o2, o6, o8}, {o3}, {o4, o5, o7},

indicating the colour of Hair being blond, red and
dark, respectively. These granules correspond to for-
mulas (Hair, blond), (Hair, red), and (Hair, dark).
Similarly, the use of attribute Height produces the
partition:

{o1, o2, o8}, {o3, o4, o5, o6, o7}.

When the pair of attributes, Height and Hair, is used,
we have the following formulas of the DL-language:

(Height, short) ∧ (Hair, blond),

(Height, tall) ∧ (Hair, blond),

(Height, short) ∧ (Hair, red),

(Height, tall) ∧ (Hair, red),

(Height, short) ∧ (Hair, dark),

(Height, tall) ∧ (Hair, dark).

They produce the partition of the universe:

{o1, o2, o8}, {o3}, {o4, o5, o7}, {o6}.

This partition is finer than the ones produced by us-
ing either Height or Hair. 2

There are restrictions on the granulation struc-
tures defined by using the trivial equality relation =
on attribute values. We seek granulation structures
characterized by partitions of the universe. Given a
fixed information table, a subset of attributes defines
a partition. The converse is not necessarily true. For
an arbitrary partition, one may not be able to find a
subset of the attributes producing the same partition.
Nevertheless, one may easily generalize the discussion
by considering other types of binary relations on the
attribute values, in order to obtain additional granu-
lation structures [14, 16, 18].

4. CONCEPT FORMATION,

KNOWLEDGE DISCOVERY,

AND DATA MINING

In the granulation process introduced in the last
section, we start from a formula φ of the DL-language
and find the corresponding subset of objects satisfy-
ing the formula. The granule obtained has a very
clear meaning in the sense that the formula φ may be
considered as a description of the granule m(φ). In
this way, one assigns a name to each granule so that
elements of the granule are instances of the named
category or concept [5]. The hierarchical granulation
of universe represents the hierarchical organization
of concepts. Larger granules represents more general
concepts. Such a granulation process is relatively an
easy task. In many situations, we are often faced with
the more difficult reverse problems. Given a granule
(i.e., subset) of the universe representing certain con-
cept, it is necessary to find a proper description of
the granule using the DL-language. This is, in fact,
one of the typical problems for machine learning and
knowledge discovery. In general, given a granulation
of the university consisting of a family of granules,
one is required to find descriptions of these granules,
and their relationships.

From the viewpoint of granular computing, con-
cept formation, knowledge discovery, and data min-
ing can be regarded as characterizing individual gran-
ules and finding relationships between these gran-
ules. Several types of relationships can be identi-
fied, such as one-way and two-way implications, and
their strength can be quantified [17]. These relation-
ships are normally represented as if-then type rules.



With granulated views of the universe, we can formu-
late different levels of rules, depending on the various
granulations of the universe.

Let A ⊆ U be a subset of the universe represent-
ing a certain concept φA, and G a family of granules
whose descriptions are known. An essential part of
concept formation involves the description of A in
terms of granules in G. For a granule g ∈ G with
description φg, i.e., m(φg) = g, we may have some of
following situations:

(I) g ∩A = ∅,

(II) g ∩A 6= ∅,

(II1) g ⊆ A,

(II2) g ⊇ A,

(II3) g = A.

Case (I) shows that g and A are not related. However,
we have:

g ⊆ −A. (9)

By property (iii), we have:

|=S φg → ¬φA. (10)

Hence, we can establish an if-then type rule:

IF φg THEN not φA. (11)

This rule enables us to decide if an instance of φg

is not an instance of A. It gives the properties that
make an element of U not to be an instance of A.
Cases (II1)-(II3) are special subcases of (II). For these
cases, respectively, we have:

|=S φg → φA,

|=S φA → φg,

|=S φg ≡ φA. (12)

By properties (iii) and (iv), we can form the following
set of rules:

IF φg THEN φA,

OIF φg THEN φA,

IIF φg THEN φA, (13)

where OIF stands for “only if” and IIF stands for
“if and only if”. We expressed the rules slightly dif-
ferent from the conventional way, in order to see the
difference between them. The first rule enables us to
decide if an element of the universe is an instance of
A. It shows the properties that make an element of
U to be an instance of A. The second rule, which is
normally expression as:

IF φA THEN φg , (14)

tells us the properties that an instance of A must
have. The third rule is the combination of the first
two rules. It summarizes the properties that instances
of A, and only instances of A, must have. The first
two rules may be interpreted as one-way implication,
and the third rule as two-way implication. In knowl-
edge discovery and data mining, one may be inter-
ested in different rules depending on the situation.
Typically, the first rule is referred to as a decision

rule, while the second rule as a characteristic rule.

Example 4 Suppose we are interested in the concept
(Class,+) in Table 1, which corresponds to the subset
{o1, o3, o6}. If one uses only granules produced based
on attributes Height, Hair, and Eyes, as examples,
one can obtain the following of rules:

(1) IF (Hair, red) THEN (Class, +),

(2) IF (Hair, blond) ∧ ((Eyes, blue) THEN

(Class, +),

(3) IF (Hair, dark) THEN ¬(Class, +),

(4) OIF (Eyes, blue) THEN (Class, +),

(5) OIF (Hair, red) ∨ (Hair, blond) THEN

(Class, +),

(6) IIF (Hair, red) ∨ (Hair, blond) ∧ (Eyes, blue)

THEN (Class, +).

It is interesting to note that these rules are not inde-
pendent with each other. For example, (6) is related
to (1) and (2). 2

5. UNCERTAIN RULES

The rules discussed in the last section are cer-
tain rules, which reflect the logical relationships be-
tween concepts or granules. In some situations, even
though a strict logical connection does not exist, there
may still exist some connection between two granules.
This corresponds to the case where g∩A 6= ∅ and nei-
ther g ⊆ A nor g ⊇ A is true. In order to characterize
such associations between two concepts φ and ψ, one
may generalize logical rules to association rules of the
following form:

IF φ THEN ψ with α1, . . . , αm, (15)

where α1, . . . , αm denote the degree or strength of re-
lationships [22]. Although keywords such as IF and
THEN are used, one should not interpret the rules as
expressing logical implications. Instead, these key-
words are used to simply link concepts together [20].
For clarity, we also simply write φ → ψ. The values



ψ ¬ψ Totals

φ |m(φ) ∩m(ψ)| |m(φ) ∩m(¬ψ)| |m(φ)|

¬φ |m(¬φ) ∩m(ψ)| |m(¬φ) ∩m(¬ψ)| |m(¬φ)|

Totals |m(ψ)| |m(¬ψ)| |U |

ψ ¬ψ Totals
φ a b a+ b
¬φ c d c+ d

Totals a+ c b+ d a+ b+ c+ d = n

Table 2: Contingency table for rule φ→ ψ

α1, . . . , αm quantifies different types of uncertainty
and properties associated with the rule. Examples
of quantitative measures include confidence, uncer-
tainty, applicability, quality, accuracy, and interest-
ingness of rules. A recent systematic study on uncer-
tain rules was given by Yao and Zhong [17].

Using the cardinalities of sets, we obtain the con-
tingency Table 2, representing the quantitative infor-
mation about the rule φ → ψ, where | · | denotes the
cardinality of a set. The values in the four cells are
not independent. They are linked by the constraint
a+b+c+d = n. The 2×2 contingency table has been
used by many authors for representing information of
rules [1, 4, 11, 12, 21].

From the contingency table, we can define some
basic quantities. The generality of concept φ is de-
fined by:

G(φ) =
|m(φ)|

|U |
=
a+ b

n
, (16)

which indicates the relative size of the concept φ. A
concept is more general if it covers more instances of
the universe. If G(φ) = α, then (100α)% of objects
in U satisfy φ. The quantity may be viewed as the
probability of a randomly selected element satisfying
φ. Obviously, we have 0 ≤ G(φ) ≤ 1.

The absolute support of ψ provided by φ is the
quantity:

AS(ψ|φ) =
|m(ψ) ∩m(φ)|

|m(φ)|

=
a

a+ b
. (17)

The quantity, 0 ≤ AS(ψ|φ) ≤ 1, shows the degree to
which φ implies ψ. If AS(ψ|φ) = α, then (100α)% of
objects satisfying φ also satisfy ψ. It may be viewed
as the conditional probability of a randomly selected

element satisfying ψ given that the element satisfies
φ. In set-theoretic terms, it is the degree to which
m(φ) is included in m(ψ). Clearly, AS(ψ|φ) = 1, if
and only if m(φ) ⊆ m(ψ). The change of support of
ψ provided by φ is defined by:

CS(ψ|φ) = AS(ψ|φ) −G(ψ)

=
an− (a+ b)(a+ c)

(a+ b)n
. (18)

Unlike the absolute support, the change of support
varies from −1 to 1. One may consider G(ψ) to be
the prior probability of ψ and AS(ψ|φ) the poste-
rior probability of ψ after knowing φ. The differ-
ence of posterior and prior probabilities represents
the change of our confidence regarding whether φ ac-
tually causes ψ. For a positive value, one may say
that φ causes ψ; for a negative value, one may say
that φ does not cause ψ. The mutual support of ψ
and φ is defined by:

MS(φ, ψ) =
|m(φ) ∩m(ψ)|

|m(φ) ∪m(ψ)|

=
a

a+ b+ c
. (19)

One may interpret the mutual support, 0 ≤
MS(φ, ψ) ≤ 1, as a measure of the strength of the
double implication φ↔ ψ. It measures the degree to
which φ causes, and only causes, ψ.

The degree of independence of φ and ψ is measured
by:

IND(φ, ψ) =
G(φ ∧ ψ)

G(φ)G(ψ)

=
an

(a+ b)(a+ c)
. (20)



It is the ratio of the joint probability of φ ∧ ψ and
the probability obtained if φ and ψ are assumed to
be independent. One may rewrite the measure of in-
dependence as [2]:

IND(φ, ψ) =
AS(ψ|φ)

G(ψ)
. (21)

It shows the degree of the deviation of the probabil-
ity of ψ in the subpopulation constrained by φ from
the probability of ψ in the entire data set [6, 13].
With this expression, the relationship to the change
of support becomes clear. Instead of using the ratio,
the latter is defined by the difference of AS(ψ|φ) and
G(ψ). When φ and ψ are probabilistic independent,
we have CS(ψ|φ) = 0 and IND(φ, ψ) = 1. More-
over, CS(ψ|φ) ≥ 0 if and only if IND(φ, ψ) ≥ 1, and
CS(ψ|φ) ≤ 0 if and only if IND(φ, ψ) ≤ 1. This
provides further support for use of CS as a measure
of confidence that φ causes ψ.

All measures introduced so far have a probabilis-
tic interpretation. They can be roughly divided into
three classes:

generality: G,
one-way association: AS, CS,
two-way association: MS, IND.

Each type of association measures can be further di-
vided into absolute support and change of support.
The measure of absolute one-way support is AS, and
the measure of absolute two-way support is MS. The
measures of change of support are CS for one-way,
and IND for two-way. It is interesting to note that
all measures of change of support are related to the
deviation of joint probability of φ∧ ψ from the prob-
ability obtained if φ and ψ are assumed to be inde-
pendent. In other words, a stronger association is
presented if the joint probability is further away from
the probability under independence. The association
can be either positive or negative.

Example 5 Suppose we are interested in associa-
tion between two concepts φ = (Hair, blond) and
ψ = (Class, +) in the information table 1. With
respect to the proposed measures, we have:

G(φ) = 1/2, G(ψ) = 3/8,
AS(ψ | φ) = 1/2, AS(φ | ψ) = 2/3,
CS(ψ | φ) = 1/8, CS(φ | ψ) = 1/6,
MS(φ, ψ) = 2/5, IND(φ, ψ) = 4/3.

From the values of these measures, one can con-
clude that there exists a positive association between
the two concepts. Consider now another concept

φ′ = (Height, tall). In this case, we have:

G(φ′) = 5/8, G(ψ) = 3/8,
AS(ψ | φ′) = 2/5, AS(φ′ | ψ) = 2/3,
CS(ψ | φ′) = 1/40, CS(φ′ | ψ) = 1/24,
MS(φ′, ψ) = 1/3, IND(φ′, ψ) = 16/15.

The obtained values indicate that the association of
φ′ and ψ is not as strong as that of φ and ψ. 2

6. CONCLUSION

In this paper, we examine some basic issues of con-
cept formation, knowledge discovery, and data min-
ing from the view point of granular computing. The
emphasis is on a simple framework for interpreting
many fundamental issues of the former. Our prelimi-
nary studies show that granular computing may have
many potential applications in knowledge discovery
and data mining. We also emphasize the processes of
granulation and concept formation. They have not
received sufficient attention in knowledge discovery
and data mining, where the main concern is to find
rules for representing relationships between concepts.
With the framework of granular computing, we are
able to consider these inter-related issues.
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