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Abstract— An important topic of rough set theory is the
approximation of undefinable sets or concepts through definable
sets. It involves the construction of a system of definable sets
and the definition of approximation operators. In this paper, the
notion of rough set approximations is introduced into formal
concept analysis. Approximation operators are defined based
on both lattice-theoretic and set-theoretic operators. The results
provide a better understanding of data analysis using roughset
theory and formal concept analysis.

I. I NTRODUCTION

An underlying notion of rough set theory is the indiscerni-
bility of objects [8], [9]. By modelling indiscernibility as an
equivalence relation, one can partition a finite universe of
objects into pair-wise disjoint subsets. The partition provides
a granulated view of the universe. An equivalence class
is considered as a whole, instead of many individuals. In
other words, one can only observe, measure, or characterize
equivalence classes. The empty set, equivalence classes and
unions of equivalence classes form a system of definable
subsets under indiscernibility. All subsets not in the system
are consequently approximated through definable sets.

Formal concept analysis is developed based on a formal
context, which is a binary relation between a set of objects
and a set of attributes or properties. From a formal context,
one can construct (objects, properties) pairs known as the
formal concepts [4], [11]. The set of objects is referred to
as the extension, and the set of properties as the intension,
of a formal concept. They uniquely determine each other.
The family of all formal concepts is a complete lattice. The
extension of a formal concept can be viewed a definable set
of objects, although in a sense different from that of rough
set theory [16], [17].

A comparative examination of rough set theory and formal
concept analysis shows that each of them deals with a partic-
ular type of definability. The common notion of definability
links the two theories together. One can immediately adopt
ideas from each other [16], [17]. The notions of formal
concept and formal concept lattice can be introduced into
rough set theory by considering different types of formal
concepts [17]. Rough set approximation operators can be
introduced into formal concept analysis by considering a
different type of definability [5]. The combination of the two
theory would produce new tools for data analysis.

Two types of formulations have been suggested by some
authors for introducing concept approximations into formal

concept analysis. One is the introduction of an equivalence
relation on the set of objects and/or the set of properties [6],
the other is the use of the system of definable concepts in
the concept lattice [5], [10].

Kent argued that rough set theory and formal concept
analysis have much in common, in terms of goals and
methodologies [6]. A framework of rough formal concept
analysis was introduced as a synthesis of the two theories [6].
Kent’s formulation is based on an equivalence relation on the
set of objects. With respect to the formal context, a pair of
lower and upper contextual approximations is first defined.
The two contextual approximations are then used to define a
pair of lower and upper approximations of formal concepts.

Saquer and Deogun studied approximations of a set of
objects, a set of properties, and a pair of a set of objects and
a set of properties, based on the system of formal concepts in
the concept lattice [10]. For example, given a set of objects,
they attempted to approximate it by formal concepts whose
extensions approximate the set. An equivalence relation is
introduced on the set of objects from a formal context,
which leads to rough set approximations. However, their
formulation is slightly flawed and fails to achieve such a
goal. An equivalence class is not necessarily the extension
of a formal concept. The union of extensions of a family
of formal concepts may not be the extension of a formal
concept. Consequently, as pointed out by Huet al. [5],
the approximations defined by Saquer and Deogun may not
necessarily be formal concepts.

Hu et al. suggested an alternative formulation to ensure
that approximations are indeed formal concepts [5]. Instead
of defining an equivalence relation, they defined a partial
order on the set of objects. For an object, its principal filter,
which is the set of objects “greater than or equal to” the object
and is called the partial class by Huet al., is the extension
of a formal concept. The family of all principal filters is
the set of join-irreducible elements of the concept lattice.
Similarly, a partial order relation can be defined on the set
of properties. The family of meet-irreducible elements of the
concept lattice can be constructed. However, their definition
of lower approximation based on the union of extensions
of formal concept has the same shortcoming of Saquer and
Deogun’s definition [10].

Based on the common notion of definability and the
results from the above studies, we propose a framework to
examine the issues of rough set approximations within formal



concept analysis. We concentrate on the interpretations and
formulations of various notions, instead of efficient algo-
rithms for constructing approximations. It is shown that the
problem with existing studies can be easily solved by a clear
separation of two systems, the formal concept lattice and the
system of extensions of formal concepts. The two systems
give rise to two different types of approximations.

II. SUBSYSTEM BASEDFORMULATION OF

ROUGH SET THEORY

The rough set theory is an extension of classical set
theory with two additional approximation operators [12].
Various formulations of the theory have been proposed and
studied [13], [14], [15]. In the subsystem based formulation,
a subsystem of the power set of a universe is first constructed
and the approximation operators are then defined using the
subsystem.

SupposeU is a finite and nonempty universe of objects.
Let E ⊆ U × U be an equivalence relation onU . The
equivalence relation divides the universe into a family of pair-
wise disjoint subsets, called the partition of the universeand
denoted byU/E. The pairapr = (U, E) is referred to as an
approximation space.

An approximation space induces a granulated view of
the universe. For an objectx ∈ U , the equivalence class
containingx is given by:

[x]E = {y | xEy}. (1)

Intuitively speaking, objects in[x]E are indistinguishable
from x. One is therefore forced to consider[x]E as a whole.
In other words, under an equivalence relation,[x]Es are the
smallest non-empty observable, measurable, or definable sub-
sets of2U , the power set ofU . By extending the definability
of equivalence classes, we assume that a union of some
equivalence classes is also definable. The family of definable
subsets contains the empty set∅ and is closed under set
complement, intersection, and union. It is anσ-algebra whose
basis isU/E. Let σ(U/E) ⊆ 2U denote the subsystem of
definable sets of objects.

A subset of objects not inσ(U/E) is said to be undefin-
able. An undefinable set must be approximated from below
and above by a pair of definable sets.

Definition 1: In an approximation spaceapr = (U, E), a
pair of approximation operators,apr, apr : 2U −→ 2U , are
defined by:

apr(A) =
⋃

{X | X ∈ σ(U/E), X ⊆ A},

apr(A) =
⋂

{X | X ∈ σ(U/E), A ⊆ X}. (2)

The lower approximationapr(A) ∈ σ(U/E) is the greatest
definable set contained inA, and the upper approximation
apr(A) ∈ σ(U/E) is the least definable set containingA.

The lower and upper approximation operators have the

following properties: for two sets of objectsA andB,

(i). apr(A) = (apr(Ac))c,

apr(A) = (apr(Ac))c;

(ii). apr(A ∩ B) = apr(A) ∩ apr(B),

apr(A ∪ B) = apr(A) ∪ apr(B);

(iii). apr(A) ⊆ A ⊆ apr(A);

(iv). apr(apr(A)) = apr(A),

apr(apr(A)) = apr(A);

(v). apr(apr(A)) = apr(A),

apr(apr(A)) = apr(A).

Property (i) states that the approximation operators are dual
operators with respect to set complementc. Property (ii)
states that the lower approximation operator is distributive
over set intersection∩, and the upper approximation operator
is distributive over set union∪. By property (iii), a set lies
within its lower and upper approximations. Properties (iv)
and (v) deal with the compositions of lower and upper
approximation operators. The result of the composition of
a sequence of lower and upper approximation operators is
the same as the application of the approximation operator
closest toA.

The approximation operators can also be defined by using
equivalence classes.

Definition 2: In an approximation spaceapr = (U, E), a
pair of approximation operators,apr, apr : 2U −→ 2U , are
defined by:

apr(A) =
⋃

{[x]E | [x]E ∈ U/E, [x]E ⊆ A},

apr(A) =
⋃

{[x]E | [x]E ∈ U/E, A ∩ [x]E 6= ∅}.(3)

That is, the lower approximation is the union of equiva-
lence classes that are subsets ofA, and the upper approxima-
tion is the union of equivalence classes that have a non-empty
intersection withA.

As shown by the following theorem, the approximation
operators truthfully reflect our intuitive understanding of the
notion of definability.

Theorem 1:In an approximation spaceapr = (U, E), for
a set of objectsA, apr(A) = apr(A) if and only if A ∈
σ(U/E).

An important implication of the theorem is that for an
undefinable setA ⊆ U we haveapr(A) 6= apr(A). In fact,
apr(A) is a proper subset ofapr(A), namely,apr(A) ⊂
apr(A).

The basic ideas of subsystem based formulation can be
generalized by considering different subsystems that repre-
sent different types of definability [13]. In the next section,
we demonstrate that formal concept analysis can be used to
construct subsystem of definable sets. One can immediately
apply the subsystem based formulation into formal concept
analysis and introduce approximation operators.



III. F ORMAL CONCEPTANALYSIS

Formal concept analysis deals with visual presentation and
analysis of data [4], [11]. It focuses on the definability of a
set of objects based on a set of properties, and vice versa.

Let U and V be any two finite sets. Elements ofU are
called objects, and elements ofV are called properties. The
relationships between objects and properties are described by
a binary relationR betweenU andV , which is a subset of
the Cartesian productU × V . For a pair of elementsx ∈ U
andy ∈ V , if (x, y) ∈ R, written asxRy, x has the property
y, or the propertyy is possessed by objectx. The triplet
(U, V, R) is called a formal context.

Based on the binary relation, we associate a set of proper-
ties to an object. An objectx ∈ U has the set of properties:

xR = {y ∈ V | xRy} ⊆ V. (4)

Similarly, a propertyy is possessed by the set of objects:

Ry = {x ∈ U | xRy} ⊆ U. (5)

By extending these notations, we can establish relationships
between subsets of objects and subsets of properties. This
leads to two operators, one from2U to 2V and the other
from 2V to 2U .

Definition 3: Suppose(U, V, R) is a formal context. For a
subset of objects, we associate it with a set of properties:

X∗ = {y ∈ V | ∀x ∈ U(x ∈ X =⇒ xRy)}

= {y ∈ V | X ⊆ Ry}

=
⋂

x∈X

xR. (6)

For a subset of properties, we associate it with a set of
objects:

Y ∗ = {x ∈ U | ∀y ∈ V (y ∈ Y =⇒ xRy)}

= {x ∈ U | Y ⊆ xR}

=
⋂

y∈Y

Ry. (7)

For simplicity, the same symbol is used for both operators.
The actual role of the operators can be easily seen from the
context.

By definition,{x}∗ = xR is the set of property possessed
by x, and{y}∗ = Ry is the set of objects having propertyy.
For a set of objectsX , X∗ is themaximalset of properties
shared byall objects inX . For a set of propertiesY , Y ∗ is
the maximalset of objects that haveall properties inY .

The operators∗ have the following properties: for
X, X1, X2 ⊆ U andY, Y1, Y2 ⊆ V ,

(1) X1 ⊆ X2 =⇒ X∗

1
⊇ X∗

2
,

Y1 ⊆ Y2 =⇒ Y ∗

1
⊇ Y ∗

2
,

(2) X ⊆ X∗∗,

Y ⊆ Y ∗∗,

(3) X∗∗∗ = X∗,

Y ∗∗∗ = Y ∗,

(4) (X1 ∪ X2)
∗ = X∗

1
∩ X∗

2
,

(Y1 ∪ Y2)
∗ = Y ∗

1
∩ Y ∗

2
.

In formal concept analysis, one is interested in a pair of
a set of objects and a set of properties that uniquely define
each other. More specifically, for(X, Y ) = (Y ∗, X∗), we
have:

x ∈ X ⇐⇒ x ∈ Y ∗

⇐⇒ Y ⊆ xR

⇐⇒
∧

y∈Y

xRy; (8)

∧

x∈X

xRy ⇐⇒ X ⊆ Ry

⇐⇒ y ∈ X∗

⇐⇒ y ∈ Y. (9)

That is, the set of objectsX is defined based on the set of
propertiesY , and vice versa. This type of definability leads
to the introduction of the notion of formal concepts.

Definition 4: A pair (X, Y ), X ⊆ U , Y ⊆ V , is called
a formal concept of the context(U, V, R), if X = Y ∗ and
Y = X∗. Furthermore,X = ex(X, Y ) is called the extension
of the concept, andY = in(X, Y ) is the intension of the
concept.

The set of all formal concepts forms a complete lattice
called a concept lattice, denoted byL(U, V, R) or simply
L. The meet and join of the lattice is characterized by the
following basic theorem of concept lattices [4], [11].

Theorem 2:The formal concept latticeL is a complete
lattice in which the meet and join are given by:

∧

t∈T

(Xt, Yt) = (
⋂

t∈T

Xt, (
⋃

t∈T

Yt)
∗∗),

∨

t∈T

(Xt, Yt) = ((
⋃

t∈T

Xt)
∗∗,

⋂

t∈T

Yt). (10)

whereT is an index set and for everyt ∈ T , (Xt, Yt) is a
formal concept.

The order relation of the lattice can be defined based on
the set inclusion relation.

Definition 5: For two formal concepts(X1, Y1) and
(X2, Y2), (X1, Y1) is a sub-concept of(X2, Y2), written
(X1, Y1) � (X2, Y2), and (X2, Y2) is a super-concept of
(X1, Y1), if and only if X1 ⊆ X2, or equivalently, if and
only if Y2 ⊆ Y1.

A more general (specific) concept is characterized by a
larger (smaller) subset of objects that share a smaller (larger)
subset of properties.

The lattice-theoretic operators of meet (∧) and join (∨)
of the concept lattice are defined based on the set-theoretic
operators of intersection (∩) and union (∪). However, they
are not the same. An intersection of extensions (intensions)
of a family of formal concepts is the extension (intension)
of a formal concept. A union of extensions (intensions) of
a family of formal concepts is not necessarily the extension
(intension) of a formal concept. Given two formal concepts,



TABLE I

A FORMAL CONTEXT TAKEN FROM [4]

a b c d e f g h i

1. Leech × × ×

2. Bream × × × ×

3. Frog × × × × ×

4. Dog × × × × ×

5. Spike-weed × × × ×

6. Reed × × × × ×

7. Bean × × × ×

8. Maize × × × ×

a: needs water to live; b: lives in water; c: lives on land; d: needs chlorophyll
to produce food; e: two seed leaves; f: one seed leaf; g: can move around;
h: has limbs; i: suckles its offspring.

one can find the extension of their meet by the set intersection
of their extensions, and the intension of their join by the set
intersection of their intensions. One cannot find directly the
intension of their meet and the extension of their join by
simply applying set-theoretic operators.

Example 1:The ideas of formal concept analysis can
be illustrated by an example. Table I gives a formal con-
text and Figure 1 gives the corresponding concept lat-
tice. Consider two formal concepts({3, 6}, {a, b, c}) and
({5, 6, 7, 8}, {a, d}). Their meet is the formal concept:

({3, 6} ∩ {5, 6, 7, 8}, ({a, b, c}∪ {a, d})∗∗) =

({6}, {a, b, c, d, f}),

and their join is the formal concept:

(({3, 6} ∪ {5, 6, 7, 8})∗∗, {a, b, c} ∩ {a, d}) =

({1, 2, 3, 4, 5, 6, 7, 8}, {a}).

The intersection of extensions of two concepts is the ex-
tension of their meet, and the intersection of the intensions
is the intension of their join. On the other hand, the union
of extensions of the two concepts is{3, 5, 6, 7, 8}, which is
not the extension of any formal concept. The union of the
intensions is{a, b, c, d}, which is not the intension of any
formal concept.

IV. A PPROXIMATIONS IN FORMAL CONCEPTANALYSIS

A formal concept consists of a definable set of objects
and a definable set of properties. The concept lattice is the
family of all such definable concepts. Given an arbitrary set
of objects, it may not be the extension of a formal concept.
The set can therefore be viewed as an undefinable set of
objects. Following the theory of rough sets, such a set of
objects can be approximated by definable sets of objects,
namely, the extensions of formal concepts. In this section,
two methods of approximations are discussed by using the
subsystem based formulation of rough set theory.

A. Approximations based on lattice-theoretic operators

Hu et al. suggested a method for approximation using
ideas similar to the subsystem based formulation of rough
set theory [5]. The concept lattice is used as the system of

(1,2,3,4,5,6,7,8;a)

(1,2,3,5,6;a,b) (3,4,6,7,8;a,c)

(3,6;a,b,c)

(5,6,7,8;a,d)

(5,6;a,b,d,f)

(6,7,8;a,c,d)

(6;a,b,c,d,f) (7;a,c,d,e)

(;a,b,c,d,e,f,g,h,i)

(5,6,8;a,d,f)

(6,8;a,c,d,f)

(1,2,3,4;a,g)

(1,2,3;a,b,g)

(3,4;a,c,g,h)

(3;a,b,c,g,h)

(2,3,4;a,g,h)

(2,3;a,b,g,h)

(4;a,c,g,h,i)

Fig. 1. Concept lattice for the context of Table 1, produced by “Formal Con-
cept Calculator” (developed by Sören Auer, http://www.advis.de/soeren/fca/).

definable concepts, and lattice-theoretic operators are used
to define approximation operators. We present a modified
formulation of their method by fixing its minor flaw.

For a subset of objectsA ⊆ U , suppose we want to
approximate it by the extensions of a pair of formal concepts
in the concept lattice. We can extend Definition 1 to achieve
this goal. In equation (2), set-theoretic operators∩ and∪ are
replaced by lattice-theoretic operators∧ and∨, the subsystem
σ(U/E) by latticeL, and definable set of objects by formal
concepts. The extensions of the resulting two concepts are
the approximations ofA.

Definition 6: For a subset of objectsA ⊆ U , its lower and
upper approximations are defined by:

lapr(A) = ex(
∨

{(X, Y ) ∈ L | X ⊆ A}),

lapr(A) = ex(
∧

{(X, Y ) ∈ L | A ⊆ X}). (11)

The lower approximation of a set of objectsA is the ex-
tension of the formal concept(lapr(A), (lapr(A))∗), and the
upper approximation is the extension of the formal concept
(lapr(A), (lapr(A))∗). The concept(lapr(A), (lapr(A))∗)
is the supremum of those concepts whose extensions are
subsets ofA, and the concept(lapr(A), (lapr(A))∗) is the
infimum of those concepts whose extensions are supersets of
A.

For a formal concept(X, Y ), Xc may not necessarily be
the extension of a formal concept. The concept lattice in
general is not a complemented lattice. The approximation
operatorslapr and lapr are not dual operators.

Recall that an intersection of extensions is an extension ofa
concept, but the union of extensions may not be the extension
of a concept. It follows that(lapr(A), (lapr(A))∗) is the
smallest concept whose extension is a superset ofA. How-
ever,(lapr(A), (lapr(A))∗) may not be the largest concept
whose extension is a subset ofA. The new approximation
operators do not satisfy property (ii). They only satisfy a



week version known as monotonicity with respect to set
inclusion:

(vi) A ⊆ A′ =⇒ lapr(A) ⊆ lapr(A′),

A ⊆ A′ =⇒ lapr(A) ⊆ lapr(A′).

By property (2), for a family of concepts(Xt, Yt), we have⋃
t∈T Xt ⊆ (

⋃
t∈T Xt)

∗∗. Thus, althoughXt ⊆ A for all
t ∈ T , it may happen thatA ⊆ lapr(A). That is, the lower
approximation ofA may not be a subset ofA. With respect
to property (iii), we have a weaker version:

(vii) lapr(A) ⊆ lapr(A),

(viii) A ⊆ lapr(A).

Both lapr(A) andlapr(A) are extensions of formal concepts.
It follows that the operatorslapr and lapr satisfy proper-
ties (iv) and (v).

Example 2:Given the concept lattice in Figure 1, consider
a set of objectsA = {3, 5, 6}. The family of subsets ofA
that are extensions of concepts is:

{ ∅, {3}, {6}, {3, 6}, {5, 6} }.

The corresponding family of concepts is:

{ (∅, {a, b, c, d, e, f, g, h, i}),

({3}, {a, b, c, g, h}), ({6}, {a, b, c, d, f}),

({3, 6}, {a, b, c}), ({5, 6}, {a, b, d, f}) }.

Their supremum is({1, 2, 3, 5, 6}, {a, b}). The lower ap-
proximation is lapr(A) = {1, 2, 3, 5, 6}, which is indeed
a superset ofA. The family of supersets ofA that are
extensions of concepts is:

{{1, 2, 3, 5, 6}, {1, 2, 3, 4, 5, 6, 7, 8}}.

The corresponding family of concepts is:

{ ({1, 2, 3, 5, 6}, {a, b}), ({1, 2, 3, 4, 5, 6, 7, 8}, {a}) }.

Their infimum is({1, 2, 3, 5, 6}, {a, b}). The upper approx-
imation is lapr(A) = {1, 2, 3, 5, 6}, which is the smallest
concept whose extension containsA. Although A is not an
extension of a concept, it has the same lower and upper
approximations.

In contrast to Theorem 1, we can only obtain a weak
version.

Theorem 3:In a concept latticeL(U, V, R), if A is an
extension of a concept, i.e.,(A, A∗) is a concept, then
lapr(A) = lapr(A).

As shown by the example, the reverse implication in the
theorem is not true. This is a shortcoming of the formulation
based on lattice-theoretic operators.

Hu et al. proposed another equivalent definition of ap-
proximation operators by considering, in Definition 6, only
the families of meet irreducible and join irreducible formal
concepts [5]. Their definition is similar to the idea of Defi-
nition 2.

The upper approximation operatorlapr is related to the
operator∗. For any set of objectsA ⊆ U , we can derive
a set of propertiesA∗. For the set of propertiesA∗, we
can derive another set of objectsA∗∗. By property (3),
(A∗∗, A∗) is a formal concept. By property (2), we have
A ⊆ A∗∗. If fact, (A∗∗, A∗) is the smallest formal concept
whose extension containsA. This offers another definition of
upper approximation operator.

Definition 7: For a subset of objectsA ⊆ U , its upper
approximation is defined by:

lapr(A) = A∗∗. (12)

The idea of approximating a set of objects can be used to
define operators that approximate a set of properties.

Definition 8: For a subset of propertiesB ⊆ V , its lower
and upper approximations are defined by:

lapr(B) = in(
∧

{(X, Y ) ∈ L | B ⊆ Y }),

lapr(B) = in(
∨

{(X, Y ) ∈ L | Y ⊆ B}). (13)

The lower approximation of a set of propertiesB is
the intension of the formal concept((lapr(B))∗, lapr(B)),
and the upper approximation is the intension of the formal
concept((lapr(B))∗, lapr(B)).

B. Approximations based on set-theoretic operators

By comparing with the standard rough set approximations,
one can observe two problems of the approximation opera-
tors defined based on lattice-theoretic operators. The lower
approximation of a set of objectsA is not necessary a subset
of A. Although a set of objectsA is undefinable, i.e.,A is
not the extension of a formal concept, its lower and upper
approximations may be the same. In order to avoid these
shortcomings, we present another formulation by using set-
theoretic operators.

The extension of a formal concept is a definable set of
objects. A system of definable sets can be derived from a
concept lattice.

Definition 9: For a formal concept latticeL, the family of
all extensions is given by:

EX(L) = {ex(X, Y ) | (X, Y ) ∈ L}. (14)

The systemEX(L) contains the empty set∅, the entire
setU , and is closed under intersection. Thus, it is a closure
system [1]. Although one can define the upper approximation
by extending Definition 1, one can not define the lower
approximation. Nevertheless, one can still keep the intuitive
interpretations of lower and upper approximations. That is,
the lower approximation is a largest set inEX(L) that is
contained inA, and the upper approximation is a smallest set
in EX(L) that containsA. In this case, while the smallest
set containingA is unique, the largest set contained inA is
no longer unique.



Definition 10: For a subset of objectsA ⊆ U , its upper
approximation is defined by:

sapr(A) =
⋂

{X | X ∈ EX(L), A ⊆ X}, (15)

and its lower approximation is a family of sets:

sapr(A) = {X | X ∈ EX(L), X ⊆ A,

∀X ′ ∈ EX(L)(X ⊆ X ′ =⇒ X 6⊆ A)}.(16)

The upper approximationsapr(A) is in fact the same as
lapr(A), namely,sapr(A) = lapr(A). However, the lower
approximation is different. An important feature is that a set
can be approximated from below by several definable sets
of objects. In general, forA′ ∈ sapr(A), we haveA′ ⊆
lapr(A).

Example 3: In the concept latticeL of Figure 1, the family
of all extensionsEX(L) are:

EX(L) = { ∅, {3}, {4}, {6}, {7},

{2, 3}, {3, 4}, {3, 6}, {5, 6}, {6, 8},

{1, 2, 3}, {2, 3, 4}, {6, 7, 8}, {5, 6, 8},

{1, 2, 3, 4}, {5, 6, 7, 8},

{1, 2, 3, 5, 6}, {3, 4, 6, 7, 8},

{1, 2, 3, 4, 5, 6, 7, 8} }.

For a set of objectsA = {3, 5, 6}, the lower approximation
is given bysapr(A) = {{3, 6}, {5, 6}}, which is a family
of sets of objects. The upper approximation is given by
sapr(A) = {1, 2, 3, 5, 6}, which is a unique set of objects.

With respect to property (iii), we have:

(ix) A′ ⊆ A ⊆ sapr(A), for all A ∈ sapr(A).

That is, A lies within any of its lower approximation and
upper approximation. For the set-theoretic formulation, we
have a theorem corresponding to Theorem 1.

Theorem 4:In a concept latticeL(U, V, R), for a set of
objectsA, sapr(A) = A andsapr(A) = {A}, if and only if
A is an extension of a concept.

In the new formulation, we resolve the difficulties with
the approximation operatorslapr and lapr. The lower ap-
proximation sapr offers more insights into the notion of
approximations. In some situations, the union of a family
of definable sets is not necessarily a definable set. It may
not be reasonable to insist on a unique approximation. The
approximation of a set by a family of set may provide a better
characterization of the set.

V. CONCLUSION

One of the issues studied in rough set theory is the approx-
imation of undefinable sets through definable sets. Typically,
the family of definable sets is a subsystem of the power set of
a universe. There are many ways to construct a subsystem of
definable sets [13]. Formal concept analysis offers a different
approach for the construction of a family of definable sets.

The notion of approximations can be introduced naturally
into formal concept analysis.

Formal concepts in a formal concept lattice correspond
to definable sets. Two types of approximation operators are
examined, one is based on lattice-theoretic operators and the
other is based on set-theoretic operators. Their properties are
investigated. A distinguishing feature of the lower approx-
imation defined by set-theoretic operators is that a set is
approximated from below by a family of sets, instead of a
unique set as in the standard rough set theory.

The theory of rough sets and formal concept analysis cap-
ture different aspects of data. The introduction of the notion
of approximations into formal concept analysis combines the
two theories, which improves our understanding of data and
produces new tools for data analysis.

The derivation operators∗ is an example of modal-style
operators [2], [3], [16]. One can study the notion of rough
set approximations in a general framework in which various
modal-style operators are defined based on a formal con-
text [2], [3], [7], [16].
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