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Abstract—An important topic of rough set theory is the concept analysis. One is the introduction of an equivalence
approximation of undefinable sets or concepts through defirtzle relation on the set of objects and/or the set of propertigs [6

sets. It involves the construction of a system of definable & the other is the use of the system of definable concepts in
and the definition of approximation operators. In this paper, the the concept lattice [5], [10]

notion of rough set approximations is introduced into formd
concept analysis. Approximation operators are defined base Kent argued that rough set theory and formal concept
on both lattice-theoretic and set-theoretic operators. Tl results analysis have much in common, in terms of goals and

provide a better understanding of data analysis using rougset methodologies [6]. A framework of rough formal concept

theory and formal concept analysis. analysis was introduced as a synthesis of the two theorjes [6
Kent’s formulation is based on an equivalence relation en th
|. INTRODUCTION set of objects. With respect to the formal context, a pair of

An underlying notion of rough set theory is the indiscerni- lower and upper contextual approximations is first defined.
bility of objects [8], [9]. By modelling indiscernibility & an The two contextual approximations are then used to define a
equivalence relation, one can partition a finite universe of pair of lower and upper approximations of formal concepts.
objects into pair-wise disjoint subsets. The partitionviles Saquer and Deogun studied approximations of a set of
a granulated view of the universe. An equivalence classobjects, a set of properties, and a pair of a set of objects and
is considered as a whole, instead of many individuals. Ina set of properties, based on the system of formal concepts in
other words, one can only observe, measure, or characterizthe concept lattice [10]. For example, given a set of objects
equivalence classes. The empty set, equivalence clasdes atthey attempted to approximate it by formal concepts whose
unions of equivalence classes form a system of definableextensions approximate the set. An equivalence relation is
subsets under indiscernibility. All subsets not in the eyst  introduced on the set of objects from a formal context,
are consequently approximated through definable sets. which leads to rough set approximations. However, their

Formal concept analysis is developed based on a formaformulation is slightly flawed and fails to achieve such a

context, which is a binary relation between a set of objectsgoal. An equivalence class is not necessarily the extension
and a set of attributes or properties. From a formal context,of a formal concept. The union of extensions of a family
one can construct (objects, properties) pairs known as theof formal concepts may not be the extension of a formal
formal concepts [4], [11]. The set of objects is referred to concept. Consequently, as pointed out by Eual. [5],
as the extension, and the set of properties as the intensiorihe approximations defined by Saquer and Deogun may not
of a formal concept. They uniquely determine each other.necessarily be formal concepts.
The family of all formal concepts is a complete lattice. The Hu et al. suggested an alternative formulation to ensure
extension of a formal concept can be viewed a definable sethat approximations are indeed formal concepts [5]. Irtbtea
of objects, although in a sense different from that of rough of defining an equivalence relation, they defined a partial
set theory [16], [17]. order on the set of objects. For an object, its principalrfilte

A comparative examination of rough set theory and formal which is the set of objects “greater than or equal to” the cthje
concept analysis shows that each of them deals with a particand is called the partial class by Hu al, is the extension
ular type of definability. The common notion of definability of a formal concept. The family of all principal filters is
links the two theories together. One can immediately adoptthe set of join-irreducible elements of the concept lattice
ideas from each other [16], [17]. The notions of formal Similarly, a partial order relation can be defined on the set
concept and formal concept lattice can be introduced intoof properties. The family of meet-irreducible elementshaf t
rough set theory by considering different types of formal concept lattice can be constructed. However, their dedimiti
concepts [17]. Rough set approximation operators can beof lower approximation based on the union of extensions
introduced into formal concept analysis by considering aof formal concept has the same shortcoming of Saquer and
different type of definability [5]. The combination of thedaw Deogun’s definition [10].
theory would produce new tools for data analysis. Based on the common notion of definability and the

Two types of formulations have been suggested by someesults from the above studies, we propose a framework to
authors for introducing concept approximations into forma examine the issues of rough set approximations within fbrma



concept analysis. We concentrate on the interpretatiods anfollowing properties: for two sets of object$ and B,
formulations of various notions, instead of efficient algo-

rithms for constructing approximations. It is shown that th (i). apr(A) = (apr(A°©))°,
problem with existing studies can be easily solved_ by a clear apr(A) = (apr(A©));
separation of two systems, the formal concept lattice aad th (i) (AN B) = (AN B)
system of extensions of formal concepts. The two systems - g o % % ’
give rise to two different types of approximations. apr(AU B) = apr(A) Uapr(B);
iii). apr(A) C A Capr(A);
(). apr(4)
(iv).  apr(apr(4)) = apr(A),
Il. SUBSYSTEM BASEDFORMULATION OF (@A) — Tor( A):
ROUGH SET THEORY apr(apr(A)) = apr(A);
(V) apr(@pr(4)) = apr(A),
The rough set theory is an extension of classical set apr(apr(A)) = apr(A).

theory with two additional approximation operators [12].
Various formulations of the theory have been proposed andProperty (i) states that the approximation operators ag¢ du
studied [13], [14], [15]. In the subsystem based formulatio operators with respect to set compleméntProperty (ii)
a subsystem of the power set of a universe is first constructedtates that the lower approximation operator is distritauti
and the approximation operators are then defined using thever set intersection, and the upper approximation operator
subsystem. is distributive over set union). By property (iii), a set lies
Supposel is a finite and nonempty universe of objects. Within its lower and upper approximations. Properties (iv)
Let E C U x U be an equivalence relation ofi. The and (v) deal with the compositions of lower and upper
equivalence relation divides the universe into a familyaifp ~ approximation operators. The result of the composition of
wise disjoint subsets, called the partition of the univered @ sequence of lower and upper approximation operators is
denoted byl//E. The pairapr = (U, E) is referred to as an the same as the application of the approximation operator
approximation space. closest toA.
An approximation space induces a granulated view of The approximation operators can also be defined by using
the universe. For an objeat € U, the equivalence class equivalence classes.

containingz is given by: Definition 2: In an approximation spacepr = (U, E), a

pair of approximation operatorspr, apr : 2V — 2V, are

Intuitively speaking, objects irfz]z are indistinguishable A) — cU/E cA

from z. One is therefore forced to considefz as a whole. apr(4) U{[w]E | [e)e /B lels € A},

In other words, under an equivalence relatigrjzs are the apr(A) = U{[z]E | [z]lg € U/E, AN [z]g # 0}.(3)
smallest non-empty observable, measurable, or definable su _ S . _
sets of2¥, the power set of/. By extending the definability That is, the lower approximation is the union of equiva-

of equivalence classes, we assume that a union of soméence classes that are subsetsipfind the upper approxima-
equivalence classes is also definable. The family of definabl tion is the union of equivalence classes that have a nonyempt
subsets contains the empty dktand is closed under set intersection withA.

complement, intersection, and union. It isealgebra whose As shown by the following theorem, the approximation
basis isU/E. Let o(U/E) C 2V denote the subsystem of operators truthfully reflect our intuitive understandirfctioe
definable sets of objects. notion of definability.

A subset of objects not ia(U/E) is said to be undefin-
able. An undefinable set must be approximated from below
and above by a pair of definable sets.

Theorem 1:In an approximation spacepr = (U, E), for
a set of objectsA, apr(A) = apr(A) if and only if A €
o(U/E). o
Definition 1: In an approximation spacepr = (U, E), a

pair of approximation operatorapr, apr : 2U — 2U, are An important implication of the theorem is that for an

defined by: undefinable sel C U we haveapr(A) # apr(A). In fact,
apr(A) is a proper subset ofipr(A), namely,apr(A) C

_ apr(A).
apr(4) U{X | X €olU/E), X C A}, The basic ideas of subsystem based formulation can be
apr(A) = ﬂ{X | X eo(U/E),AC X} (2 generalized by considering different subsystems thaterepr
sent different types of definability [13]. In the next seatio
The lower approximationpr(A) € o(U/E) is the greatest  we demonstrate that formal concept analysis can be used to
definable set contained id, and the upper approximation construct subsystem of definable sets. One can immediately
apr(A) € o(U/E) is the least definable set containirg apply the subsystem based formulation into formal concept
The lower and upper approximation operators have theanalysis and introduce approximation operators.



IIl. FORMAL CONCEPTANALYSIS

In formal concept analysis, one is interested in a pair of

Formal concept analysis deals with visual presentation anc® Set of objects and a set of properties that uniquely define
analysis of data [4], [11]. It focuses on the definability of a €ach other. More specifically, foX,Y) = (Y, X*), we
set of objects based on a set of properties, and vice versa. have:

Let U and V' be any two finite sets. Elements 6f are
called objects, and elements Bf are called properties. The
relationships between objects and properties are desidoipe
a binary relationk betweenU and V', which is a subset of
the Cartesian produdf x V. For a pair of elements € U
andy € V, if (z,y) € R, written asz Ry, = has the property
y, or the propertyy is possessed by objeat The triplet
(U,V,R) is called a formal context.

Based on the binary relation, we associate a set of proper-

ties to an object. An object € U has the set of properties:
TR {yeV]azRy} CV. (4)

Similarly, a propertyy is possessed by the set of objects:
Ry {r eU | zRy} CU. (5)

By extending these notations, we can establish relatipsshi

between subsets of objects and subsets of properties. Thi

leads to two operators, one froe¥ to 2V and the other
from 2V to 2.

Definition 3: Suppos€U, V, R) is a formal context. For a
subset of objects, we associate it with a set of properties:

X" ={yeV|VreU(xe X = zRy)}
={yeV|XCRy}

ﬂ zR.

rzeX

(6)

reX reY”®

Y CzR

/\ zRy;

yey

—
—
—

(8)

/\ xRy

reX

<— X CRy

—
<~

ye X*

yey. (9)

That is, the set of objectX is defined based on the set of
propertiesY’, and vice versa. This type of definability leads
to the introduction of the notion of formal concepts.

Definition 4: A pair (X,Y), X CU,Y C V, is called
a formal concept of the context,V, R), if X = Y* and
Y = X*. FurthermoreX = ex(X,Y) is called the extension
of the concept, and@ = in(X,Y) is the intension of the
concept.

The set of all formal concepts forms a complete lattice
called a concept lattice, denoted WU, V, R) or simply
L. The meet and join of the lattice is characterized by the
following basic theorem of concept lattices [4], [11].

Theorem 2:The formal concept latticd. is a complete
lattice in which the meet and join are given by:

For a subset of properties, we associate it with a set of

objects:
Y*={2xeU|VyeV(yeY = zRy)}
={zeU|Y CzR}

= ﬂRy.

yey

()

For simplicity, the same symbol is used for both operators.

N\ XY = () X (1 ¥0)™),

teT teT teT
V (X, v2) = (| X0, () Yo) (10)
teT teT teT

whereT is an index set and for evetye T, (X;,Y;) is a
formal concept.

The actual role of the operators can be easily seen from the The order relation of the lattice can be defined based on

context.

By definition, {z}* = xR is the set of property possessed
by z, and{y}* = Ry is the set of objects having propeny
For a set of objects(, X* is the maximalset of properties
shared byall objects inX. For a set of propertie¥, Y* is
the maximalset of objects that havall properties inY.

The operators* have the following properties: for
X,Xl,XQ cU andY, Yl,}/g cv,

(1) X, C Xy = XF D X3,
Y1 C Yo =Y D Y7,
(2) X C X*,
Y CY*,
3) X = X,
Yy =y,

(X1 U Xo)* = X7 N X3,
(Y1 UYa)* =Y NY;5.

the set inclusion relation.

Definition 5: For two formal concepts(X;,Y;) and
(X2,Y2), (X31,Y7) is a sub-concept of X»,Y3), written
(X1,Y1) <X (X9,Y32), and (X,,Y3) is a super-concept of
(X1,Y1), if and only if X; C Xs, or equivalently, if and
only if Y5 C 7.

A more general (specific) concept is characterized by a
larger (smaller) subset of objects that share a smallayeiar
subset of properties.

The lattice-theoretic operators of meet)(and join (/)
of the concept lattice are defined based on the set-theoretic
operators of intersectiomj and union (J). However, they
are not the same. An intersection of extensions (intensions
of a family of formal concepts is the extension (intension)
of a formal concept. A union of extensions (intensions) of
a family of formal concepts is not necessarily the extension
(intension) of a formal concept. Given two formal concepts,



TABLE |

A FORMAL CONTEXT TAKEN FROM [4]
| I blc[dfe]f]
. Leech X
Bream X
Frog X
Dog
. Spike-weed
Reed
Bean
. Maize

a |
X

X
X

X
X

XX X| X|X|X

| ~| | 01l & ol o[ =

X[ X[ X][X

X X

a: needs water to live; b: lives in water; c: lives on land; €eds chlorophyll
to produce food; e: two seed leaves; f: one seed leaf; g: care m@und,;
h: has limbs; i: suckles its offspring.

one can find the extension of their meet by the set intersectio
of their extensions, and the intension of their join by the se
intersection of their intensions. One cannot find diredtly t
intension of their meet and the extension of their join by
simply applying set-theoretic operators.

Example 1:The ideas of formal concept analysis can
be illustrated by an example. Table | gives a formal con-
text and Figure 1 gives the corresponding concept lat-
tice. Consider two formal conceptq3,6},{a,b,c}) and
({5,6,7,8},{a,d}). Their meet is the formal concept:

({3,6} N {5,6,7,8}, ({a,b,c} U {a,d})**) =
({6}, {a,b,¢,d, [}),

and their join is the formal concept:

(({3,6}U{5,6,7,8})"" {a,b,c} N{a,d}) =
({1,2,3,4,5,6,7,8}, {a}).

The intersection of extensions of two concepts is the ex-
tension of their meet, and the intersection of the intersion
is the intension of their join. On the other hand, the union
of extensions of the two concepts {8, 5,6, 7,8}, which is

not the extension of any formal concept. The union of the
intensions is{a, b, ¢, d}, which is not the intension of any
formal concept.

IV. APPROXIMATIONS INFORMAL CONCEPTANALYSIS

A formal concept consists of a definable set of objects
and a definable set of properties. The concept lattice is th
family of all such definable concepts. Given an arbitrary set
of objects, it may not be the extension of a formal concept.

(1,2,3,4,5,6,7,8;a)

(1,2,34;% (3487828587 8)

(1,2.3%% (5,68:/a.d,x><8;a,c,d)
Xs;\a?g/ﬂ (3,4;\a,c/,g,h) (5,6:a,b,d,f). (3.65ab.c)

\ N
(AQ‘c.g/m,i) X»,{J,c.gh) (\;Qb,!d,fl)
\\bc.

L

(7;a,c,d/,e‘)
tabic,d.e,
Nl

N

Fig. 1. Concept lattice for the context of Table 1, producedHormal Con-
cept Calculator” (developed by Soren Auer, http://wwwiadle/soeren/fca/).

definable concepts, and lattice-theoretic operators aed us
to define approximation operators. We present a modified
formulation of their method by fixing its minor flaw.

For a subset of objectst C U, suppose we want to
approximate it by the extensions of a pair of formal concepts
in the concept lattice. We can extend Definition 1 to achieve
this goal. In equation (2), set-theoretic operatorandU are
replaced by lattice-theoretic operatarsindyv, the subsystem
o(U/E) by lattice L, and definable set of objects by formal
concepts. The extensions of the resulting two concepts are
the approximations ofl.

Definition 6: For a subset of objectd C U, its lower and
upper approximations are defined by:

lapr(A)
Tapr(A)

= ex(\/{(X,Y)eL| X C A},

= ee(\(X,Y)eL|ACX}). (11)
The lower approximation of a set of objectsis the ex-
tension of the formal conceptapr(A), (lapr(A))*), and the
upper approximation is the extension of the formal concept
(lapr(A), (lapr(A))*). The concept(lapr(A), (lapr(A))*)

ds the supremum of those concepts whose extensions are

subsets ofA, and the concepflapr(A), (lapr(A))*) is the
infimum of those concepts whose extensions are supersets of

The set can therefore be viewed as an undefinable set of™

objects. Following the theory of rough sets, such a set of

objects can be approximated by definable sets of objects

namely, the extensions of formal concepts. In this section,

two methods of approximations are discussed by using the®Pera

subsystem based formulation of rough set theory.

A. Approximations based on lattice-theoretic operators
Hu et al. suggested a method for approximation using

For a formal conceptX,Y’), X¢ may not necessarily be
the extension of a formal concept. The concept lattice in
general is not a complemented lattice. The approximation
tordapr andlapr are not dual operators.

Recall that an intersection of extensions is an extensian of
concept, but the union of extensions may not be the extension
of a concept. It follows thatlapr(A), (lapr(A))*) is the
smallest concept whose extension is a superset.dflow-

ever, (lapr(A), (lapr(A))*) may not be the largest concept

ideas similar to the subsystem based formulation of roughwhose extension is a subset df The new approximation
set theory [5]. The concept lattice is used as the system ofoperators do not satisfy property (ii). They only satisfy a



week version known as monotonicity with respect to set

inclusion:
(vi)

ACA = lapr(A) C lapr(A'),
A C A = lapr(A) Clapr(A").

By property (2), for a family of conceptsX;, Y;), we have
Uier Xt € (Uier Xi)™. Thus, althoughX; C A for all
t € T, it may happen thatl C lapr(A). That is, the lower
approximation ofA may not be a subset of. With respect
to property (iii), we have a weaker version:

(vi))  lapr(A) C lapr(A),
(viii) A C lapr(A).

Bothlapr(A) andlapr(A) are extensions of formal concepts.
It follows that the operatorgapr and lapr satisfy proper-
ties (iv) and (v).

Example 2:Given the concept lattice in Figure 1, consider
a set of objectsA = {3,5,6}. The family of subsets oA
that are extensions of concepts is:

{ 0,{3},{6},{3,6},{5,6} }.

The corresponding family of concepts is:

{ ((Z)’ {a’7 ba c, da €, fa g, hv Z})a
({3}7 {aa b,c,g, h}), ({G}a {a7 b,c,d, f})7
({3,6},{a,b,c}), ({5,6},{a,b,d, f}) }.
Their supremum is({1,2,3,5,6},{a,b}). The lower ap-
proximation islapr(A) = {1,2,3,5,6}, which is indeed
a superset ofA. The family of supersets ofd that are
extensions of concepts is:

{{1,2,3,5,6},{1,2,3,4,5,6,7,8}}.
The corresponding family of concepts is:

{({1,2,3,5,6},{a,b}),({1,2,3,4,5,6,7,8},{a}) }.

Their infimum is({1,2,3,5,6}, {a,b}). The upper approx-
imation is lapr(A) = {1,2,3,5,6}, which is the smallest
concept whose extension contaiAs Although A is not an

The upper approximation operatbrpr is related to the
operator*. For any set of objectsi C U, we can derive
a set of propertiesA*. For the set of propertiesl*, we
can derive another set of objects**. By property (3),
(A** A*) is a formal concept. By property (2), we have
A C A**. If fact, (A**, A*) is the smallest formal concept
whose extension containé This offers another definition of
upper approximation operator.

Definition 7: For a subset of objectd C U, its upper
approximation is defined by:

lapr(4) = A*™. (12)
The idea of approximating a set of objects can be used to

define operators that approximate a set of properties.

Definition 8: For a subset of propertieB C V, its lower
and upper approximations are defined by:

lapr(B)
Tapr(B)

in(/\{(X,Y)e L|BCY}),
in(\/{(X,Y) e L|Y C B}).

(13)

The lower approximation of a set of propertids is
the intension of the formal conceptiapr(B))*, lapr(B)),
and the upper approximation is the intension of the formal
concept((lapr(B))*, lapr(B)).

B. Approximations based on set-theoretic operators

By comparing with the standard rough set approximations,
one can observe two problems of the approximation opera-
tors defined based on lattice-theoretic operators. Therlowe
approximation of a set of object$ is not necessary a subset
of A. Although a set of objects! is undefinable, i.e.A is
not the extension of a formal concept, its lower and upper
approximations may be the same. In order to avoid these
shortcomings, we present another formulation by using set-
theoretic operators.

The extension of a formal concept is a definable set of
objects. A system of definable sets can be derived from a
concept lattice.

extension of a concept, it has the same lower and upper

approximations.

In contrast to Theorem 1, we can only obtain a weak

version.

Theorem 3:In a concept latticeL(U,V, R), if A is an
extension of a concept, i.e(A, A*) is a concept, then
lapr(A) = lapr(A).

Definition 9: For a formal concept latticé, the family of
all extensions is given by:

EX(L) = {ex(X,Y) | (X,Y) € L}. (14)
The systemE X (L) contains the empty sdf, the entire
setU, and is closed under intersection. Thus, it is a closure
system [1]. Although one can define the upper approximation
by extending Definition 1, one can not define the lower

As shown by the example, the reverse implication in the approximation. Nevertheless, one can still keep the intuit
theorem is not true. This is a shortcoming of the formulation jnterpretations of lower and upper approximations. That is

based on lattice-theoretic operators.

Hu et al. proposed another equivalent definition of ap-
proximation operators by considering, in Definition 6, only
the families of meet irreducible and join irreducible folma
concepts [5]. Their definition is similar to the idea of Defi-
nition 2.

the lower approximation is a largest set X (L) that is
contained in4, and the upper approximation is a smallest set
in EX (L) that containsA. In this case, while the smallest
set containingd is unique, the largest set containedAnis

no longer unique.



Definition 10: For a subset of objectd C U, its upper
approximation is defined by:

sapr(A) = ({X | X € EX(L),A C X}, (15)
and its lower approximation is a family of sets:
sapr(A) = {X | X € EX(L),X C A,
VX' e EX(L)(X C X'= X ¢ A)}.(16)

The upper approximatioBapr(A) is in fact the same as
lapr(A), namely,sapr(A) = lapr(A). However, the lower
approximation is different. An important feature is thated s

The notion of approximations can be introduced naturally
into formal concept analysis.

Formal concepts in a formal concept lattice correspond
to definable sets. Two types of approximation operators are
examined, one is based on lattice-theoretic operatorshend t
other is based on set-theoretic operators. Their progeatie
investigated. A distinguishing feature of the lower approx
imation defined by set-theoretic operators is that a set is
approximated from below by a family of sets, instead of a
unigue set as in the standard rough set theory.

The theory of rough sets and formal concept analysis cap-
ture different aspects of data. The introduction of thearoti

can be approximated from below by several definable setsf approximations into formal concept analysis combines th

of objects. In general, fod' € sapr(A), we haveA’ C
lapr(A).

Example 3:In the concept latticé of Figure 1, the family
of all extensionsE' X (L) are:

{0,{3} {4}, {6}, {7},
{2,3}, 13,4}, {3,6}, {5,6},{6,8},
{1,2,3},{2,3,4},{6,7,8},{5,6,8},
{1,2,3,4},{5,6,7,8},
{1,2,3,5,6},{3,4,6,7,8},
{1,2,3,4,5,6,7,8} }.

EX(L)

For a set of objectsl = {3,5,6}, the lower approximation
is given by sapr(A4) = {{3,6},{5,6}}, which is a family
of sets of objects. The upper approximation is given by
sapr(A) ={1,2,3,5,6}, which is a unique set of objects.

With respect to property (iii), we have:
(ix)

That is, A lies within any of its lower approximation and
upper approximation. For the set-theoretic formulatioe, w
have a theorem corresponding to Theorem 1.

A" C A Csapr(A), for all A€ sapr(A).

Theorem 4:In a concept lattice.(U, V, R), for a set of
objectsA, sapr(A) = A andsapr(A) = {A}, if and only if
A is an extension of a concept.

In the new formulation, we resolve the difficulties with
the approximation operatoéspr andlapr. The lower ap-
proximation sapr offers more insights into the notion of
approximations. In some situations, the union of a family
of definable sets is not necessarily a definable set. It ma

not be reasonable to insist on a unique approximation. The13]
approximation of a set by a family of set may provide a better

characterization of the set.

V. CONCLUSION

One of the issues studied in rough set theory is the approx

imation of undefinable sets through definable sets. Typicall

the family of definable sets is a subsystem of the power set of
a universe. There are many ways to construct a subsystem dt

definable sets [13]. Formal concept analysis offers a differ
approach for the construction of a family of definable sets.

two theories, which improves our understanding of data and
produces new tools for data analysis.

The derivation operators is an example of modal-style
operators [2], [3], [16]. One can study the notion of rough
set approximations in a general framework in which various
modal-style operators are defined based on a formal con-
text [2], [3], [7], [16].
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