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Abstract. This paper proposes a generalized definition of rough set
approximations, based on a subsystem of subsets of a universe. The sub-
system is not assumed to be closed under set complement, union and
intersection. The lower or upper approximation is no longer one set but
composed of several sets. As special cases, approximations in formal con-
cept analysis and knowledge spaces are examined. The results provide a
better understanding of rough set approximations.

1 Introduction

Rough set theory [6, 7] is an extension of the set theory with two additional
unary set-theoretic operators known as approximation operators. One way to
define approximation operators is called the subsystem-based formulation [14,
17]. With respect to an equivalence relation on a finite and nonempty universe,
one can construct a subsystem of the power set of the universe, which is the
σ-algebra with the family of equivalence classes as a basis. The elements of the
subsystem may be understood as definable or observable sets. Every subset of
the universe is approximated from below and above by two sets in the subsystem.

There are two basic restrictions of the standard Pawlak model. First, a sin-
gle subsystem of the power set is used. Second, the σ-algebra is closed under
set complement, intersection and union. Many studies on generalized rough set
approximations try to remove those restrictions. For example, in the abstract
approximation space [1], topological rough set models [9, 10, 12, 19, 20], and clo-
sure rough set models [14], two subsystems are used; one for lower approximation
and another for upper approximation. In the context of formal concept analy-
sis, one considers a subsystem that is only closed under set intersection [18]. In
this paper, we further generalize the rough set model by considering subsystems
without these restrictions. The generalized approximations are applied to both
formal concept analysis [5, 18] and knowledge spaces [2–4].

Formal concept analysis [5, 18] is developed based on a formal context, which
is a binary relation between a set of objects and a set of attributes or properties.



From a formal context, one can construct (objects, properties) pairs known as
the formal concepts [5, 11]. The set of objects is referred to as the extension,
and the set of properties as the intension, of a formal concept. They uniquely
determine each other. The family of all formal concepts is a complete lattice.
The extension of a formal concept can be viewed as a definable set of objects,
although in a sense different from that of rough set theory [15, 16]. The family of
extensions of all formal concepts forms a subsystem of the power set of objects.
This subsystem is closed under set intersection. Thus, one can immediately study
approximation operators based on the subsystem introduced in formal concept
analysis [18].

The theory of knowledge spaces [2–4] represents a new paradigm in mathe-
matical psychology. It provides a systematic approach for knowledge assessment
by considering a finite set of questions and a collection of subsets of questions
called knowledge states. The family of knowledge states may be determined by
the dependency of questions or the mastery of different sets of questions by a
group of students. The knowledge states can be viewed as definable or observ-
able sets. The family of knowledge states forms a subsystem of the power set of
questions that is only closed under set union. Similarly, approximations can be
defined based on the system of knowledge states.

The generalized subsystem-based formulation of approximation operators en-
ables us to study approximations in two related areas of formal concept analysis
and knowledge spaces. The results not only lead to more insights into rough set
approximations, but also bring us closer to a common framework for studying
the two related theories.

2 Subsystem-based Formulation of Pawlak Rough Set

Approximations

Suppose U is a finite and nonempty universe of objects. Let E ⊆ U × U be
an equivalence relation on U . The equivalence relation divides the universe into
a family of pair-wise disjoint subsets, called the partition of the universe and
denoted by U/E. The pair apr = (U, E) is referred to as an approximation
space.

An approximation space induces a granulated view of the universe. For an
object x ∈ U , the equivalence class containing x is given by:

[x]E = {y | xEy}. (1)

Intuitively speaking, objects in [x]E are indistinguishable from x. Under an
equivalence relation, equivalence classes are the smallest non-empty observable,
measurable, or definable subsets of U . By extending the definability of equiv-
alence classes, we assume that the union of some equivalence classes is also
definable. The family of definable subsets contains the empty set ∅ and is closed
under set complement, intersection, and union. It is an σ-algebra whose basis is
U/E and is denoted by σ(U/E) ⊆ 2U , where 2U is the power set of U .



In order to explicitly expression the role of σ(U/E), we also denote the ap-
proximation space apr = (U, E) as apr = (U, σ(U/E)). A subset of objects not
in σ(U/E) is said to be undefinable. An undefinable set must be approximated
from below and above by a pair of definable sets.

Definition 1 In an approximation space apr = (U, σ(U/E)), a pair of ap-
proximation operators, apr, apr : 2U −→ 2U , are defined by:

apr(A) = ∪{X ∈ σ(U/E) | X ⊆ A},

apr(A) = ∩{X ∈ σ(U/E) | A ⊆ X}. (2)

The lower approximation apr(A) ∈ σ(U/E) is the greatest definable set con-
tained in A, and the upper approximation apr(A) ∈ σ(U/E) is the least definable
set containing A. The approximation operators have the following properties: for
A, B ⊆ U ,

(i). apr(A) = (apr(Ac))c,

apr(A) = (apr(Ac))c;

(ii). apr(U) = U,

apr(∅) = ∅;

(iii). apr(∅) = ∅,

apr(U) = U ;

(iv). apr(A ∩ B) = apr(A) ∩ apr(B),

apr(A ∪ B) = apr(A) ∪ apr(B);

(v). apr(A) ⊆ A;

A ⊆ apr(A);

(vi). apr(apr(A)) = apr(A),

apr(apr(A)) = apr(A);

(vii). apr(apr(A)) = apr(A),

apr(apr(A)) = apr(A).

Property (i) states that the approximation operators are dual operators with
respect to set complement c. Properties (ii) and (iii) indicate that rough set
approximations of ∅ or U equal to itself. Property (iv) states that the lower
approximation operator is distributive over set intersection ∩, and the upper
approximation operator is distributive over set union ∪. By property (v), a set
lies within its lower and upper approximations. Properties (vi) and (vii) deal
with the compositions of lower and upper approximation operators. The result
of the composition of a sequence of lower and upper approximation operators is
the same as the application of the approximation operator closest to A.

3 Generalized Rough Set Approximations

An approximation space apr = (U, E) defines uniquely a topological space
(U, σ(U/E)), in which σ(U/E) is the family of all open and closed sets [10].



Moreover, the family of open sets is the same as the family of closed sets. The
lower approximation operator defined by equation (2) is well-defined as long as
the subsystem is closed under union. Similarly, the upper approximation oper-
ator is well-defined as long as the subsystem is closed under intersection. One
may use two subsystems [1, 13]. The subsystem for lower approximation oper-
ator must be closed under union, and the subsystem for upper approximation
operator must be closed under intersection. In order to keep the duality of ap-
proximation operators, elements of two subsystems must be related to each other
through set complement [13]. For further generalizations of the subsystem-based
definition, we remove those restrictions.

3.1 Generalized Rough Set Approximations

The definition of generalized rough set approximations is related to the formu-
lation of abstract approximation spaces introduced by Cattaneo [1]. We focus
on set-theoretic setting and remove some axioms of an abstract approximation
space.

Let Sl,Su ⊆ 2U be two subsystems of 2U . The triplet apr = (U,Sl,Su) is
called an approximation space. We impose two conditions on Sl and Su:

(a). ∅ ∈ Sl, ∅ ∈ Su;

(b). U ∈ Sl, U ∈ Su.

The elements of Sl may be understood as one family of definable or observable
sets. The elements of Su may be understood as another family of definable or
observable sets. Our objective is to approximate an undefinable set in 2U − Sl

from below by definable sets in Sl and in 2U − Su from above by definable sets
in Su.

Definition 2 In an abstract approximation space apr = (U,Sl,Su), the lower
approximation and the upper approximation are defined by:

apr(A) = {X ∈ Sl | X ⊆ A, ∀X ′ ∈ Sl(X ⊂ X ′ =⇒ X ′ * A)},

apr(A) = {X ∈ Su | A ⊆ X, ∀X ′ ∈ Su(X ′ ⊂ X =⇒ A * X ′)}. (3)

For simplicity, the same symbols are used for generalized approximations.
The lower approximation apr(A) is the set of maximal elements of the set {X ∈
Sl|X ⊆ A} and the upper approximation apr(A) is the set of minimal elements
of the set {X ∈ Su|A ⊆ X}. The definition is a generalization of Definition 1.
The generalized lower and upper approximation operators have the following
properties:

(1). apr(∅) = {∅},

apr(∅) = {∅};

(2). apr(U) = {U},

apr(U) = {U};



(3). A ⊆ B =⇒ (∃X ∈ apr(A), ∃Y ∈ apr(B), X ⊆ Y ),

A ⊆ B =⇒ (∃X ∈ apr(A), ∃Y ∈ apr(B), X ⊆ Y );

(4). X ∈ apr(A) =⇒ X ⊆ A,

X ∈ apr(A) =⇒ A ⊆ X ;

(5). X ∈ apr(A) =⇒ apr(X) = {X},

X ∈ apr(A) =⇒ apr(X) = {X};

(6). X ∈ apr(A) =⇒ apr(X) = {X},

X ∈ apr(A) =⇒ apr(X) = {X}.

They easily follow from the definition of generalized approximation operators.

3.2 Special Cases

We discuss several types of generalized rough set approximations under different
conditions.

Case 1: Sl is closed under set union and Su is closed under set intersection. If
Sl is closed under union, the lower approximation is composed of one set defined
by Definition 1. That is,

apr(A) = {∪{X ∈ Sl | X ⊆ A}} . (4)

Similarly, if Su is closed under intersection, the upper approximation is composed
of one set defined by Definition 1. That is,

apr(A) = {∩{X ∈ Su | A ⊆ X}} . (5)

Case 2: Sl and Su are dual subsystems, that is, Su = {Xc|X ∈ Sl} and
Sl = {Xc|X ∈ Su}. The approximations satisfy the property:

X ∈ apr(A) =⇒ Xc ∈ apr(Ac). (6)

Case 3: Sl = Su. When Sl = Su = S, we have an approximation space
apr = (U,S). We can define the approximations as follows:

apr(A) = {X ∈ S | X ⊆ A, ∀X ′ ∈ S(X ⊂ X ′ =⇒ X ′ * A)},

apr(A) = {X ∈ S | A ⊆ X, ∀X ′ ∈ S(X ′ ⊂ X =⇒ A * X ′)}. (7)

Case 4: Sl = Su = S and is closed under set complement. The approxima-
tions are the same as defined by equation (7). It also satisfies the property of
equation (6).

Case 5: Su = S is closed under set intersection and Sl = Sc is closed under
set union. We define:

apr(A) = {∪{X ∈ Sc | X ⊆ A}} ,

apr(A) = {∩{X ∈ S | A ⊆ X}} . (8)



They correspond to rough set approximations in closure systems [14]. Since a
closure system is only closed under set intersection, the lower and upper approx-
imation operators satisfy less properties, as characterized by properties (iii), (v),
(vi).

Case 6: Sl = S is closed under set union and intersection and Su = Sc is
closed under set union and intersection. We define:

apr(A) = {∪{X ∈ S | X ⊆ A}} ,

apr(A) = {∩{X ∈ Sc | A ⊆ X}} . (9)

They correspond to rough set approximations in topological spaces [10]. They
are in fact the topological interior and closure operators satisfy properties (i) -
(vi).

Case 7: Sl = Su = S and is closed under set complement, intersection and
union. This is the standard Pawlak rough set model.

4 Approximations in Formal Concept Analysis

Let U and V be any two finite sets. Elements of U are called objects, and elements
of V are called properties. The relationships between objects and properties are
described by a binary relation R between U and V , which is a subset of the
Cartesian product U ×V . For a pair of elements x ∈ U and y ∈ V , if (x, y) ∈ R,
written as xRy, x has the property y, or the property y is possessed by object
x. The triplet (U, V, R) is called a formal context.

Based on the binary relation, we associate a set of properties to an object.
An object x ∈ U has the set of properties:

xR = {y ∈ V | xRy} ⊆ V. (10)

Similarly, a property y is possessed by the set of objects:

Ry = {x ∈ U | xRy} ⊆ U. (11)

By extending these notations, we can establish relationships between subsets of
objects and subsets of properties. This leads to two operators, one from 2U to
2V and the other from 2V to 2U .

Definition 3 Suppose (U, V, R) is a formal context. For a subset of objects,
we associate it with a set of properties:

X∗ = {y ∈ V | ∀x ∈ U(x ∈ X =⇒ xRy)}

= {y ∈ V | X ⊆ Ry}

=
⋂

x∈X

xR. (12)

For a subset of properties, we associate it with a set of objects:

Y ∗ = {x ∈ U | ∀y ∈ V (y ∈ Y =⇒ xRy)}

= {x ∈ U | Y ⊆ xR}

=
⋂

y∈Y

Ry. (13)



A pair (X, Y ), with X ⊆ U and Y ⊆ V , is called a formal concept of the
context (U, V, R), if X = Y ∗ and Y = X∗. Furthermore, X = ex(X, Y ) is called
the extension of the concept, and Y = in(X, Y ) is the intension of the concept.
The set of all formal concepts forms a complete lattice called a concept lattice,
denoted by L(U, V, R) or simply L.

A formal concept consists of a definable set of objects and a definable set of
properties. The concept lattice is the family of all such definable concepts. Given
an arbitrary set of objects, it may not be the extension of a formal concept.
The set can therefore be viewed as an undefinable set of objects. Such a set of
objects can be approximated by definable sets of objects, namely, the extensions
of formal concepts. Approximation operators can be introduced by using the
subsystem-based formulation of rough set theory, based on the combination of
case 1 and case 3.

Definition 4 For a formal concept lattice L, the family of all extensions is
given by:

EX(L) = {ex(X, Y ) | (X, Y ) ∈ L}. (14)

The system EX(L) contains the empty set ∅, the entire set U , and is closed
under intersection. It defines an approximation space apr = (U, EX(L)). One
can keep the intuitive interpretations of lower and upper approximations. That
is, the lower approximation is a largest set in EX(L) that is contained in A,
and the upper approximation is a smallest set in EX(L) that contains A. In this
case, since the system is not closed under union, the smallest set containing A
is unique, while the largest set contained in A is no longer unique.

Definition 5 In the approximation space apr = (U, EX(L)), for a subset of
objects A ⊆ U , its upper approximation is defined by:

apr(A) = {∩{X ∈ EX(L) | A ⊆ X}} , (15)

and its lower approximation is a family of sets:

apr(A) = {X ∈ EX(L) | X ⊆ A, ∀X ′ ∈ EX(L)(X ⊂ X ′ =⇒ X 6⊆ A)}. (16)

Thus, in formal concept analysis, a set can be approximated from below by
several definable sets of objects.

5 Approximations in Knowledge Spaces

In knowledge spaces, one uses a finite set of universe (i.e., questions denoted
by Q) and a collection of subsets of the universe (i.e., a knowledge structure
denoted by K), where K contains at least the empty set ∅ and the whole set Q.
The members of K are called the knowledge states which are the subsets of ques-
tions given by experts or correctly answered by students. In knowledge spaces,
there are two types of knowledge structures. One is the knowledge structure as-
sociated to a surmise relation, closed under set union and intersection. Another
is the knowledge structure associated to a surmise system called a knowledge
space, closed under set union. The knowledge states can be viewed as a family of



definable sets of objects. An arbitrary subset of questions can be approximated
by knowledge states in each of the two structures. Approximation operators are
introduced by using the subsystem-based formulation of rough set theory.

In knowledge spaces, a surmise relation on the set Q of questions is a transi-
tive and reflexive relation S on Q. By aSb, we can surmise that the mastery of a
if a student can answer correctly question b. This relation imposes conditions on
the corresponding knowledge structure. For example, mastery question a from
mastery of question b means that if a knowledge state contains b, it must also
contain a.

Definition 6 For a surmise relation S on the (finite) set Q of questions, the
associated knowledge structure K is defined by:

K = {K | (∀q, q′ ∈ Q, qSq′, q′ ∈ K) =⇒ q ∈ K}. (17)

The knowledge structure associated to a surmise relation contains the empty set
∅, the entire set Q, and is closed under set intersection and union. It defines an
approximation space apr = (Q,K).

Definition 7 In the approximation space apr = (Q,K), for a subset of ob-
jects A ⊆ Q, we define:

apr(A) = {∪{K ∈ K | K ⊆ A}} ,

apr(A) = {∩{K ∈ K | A ⊆ K}} . (18)

The definition is based on the case 1. The knowledge structure associated to
a surmise relation is not closed under complement, namely, it does not satisfy
the duality property.

With surmise relations, a question can only have one prerequisite. This is
sometimes not appropriate. In practice, we may assume that a knowledge struc-
ture is closed only under union, called a knowledge space. A knowledge space is a
weakened knowledge structure associated to a surmise relation. It is a knowledge
structure associated to a surmise system.

A surmise system on a (finite) set Q is a mapping σ that associates to any
element q in Q a nonempty collection σ(q) of subsets of Q satisfying the following
three conditions: 1) C ∈ σ(q) =⇒ q ∈ C; 2) (C ∈ σ(q), q′ ∈ C) =⇒ (∃C′ ∈
σ(q′), C′ ⊆ C); 3) C ∈ σ(q) =⇒ (∀C′ ∈ σ(q), C′ * C). The subsets in σ(q) are
the clauses for question q.

Definition 8 For a surmise system (Q, σ), the knowledge states of the asso-
ciated knowledge structure are all the subsets K of Q that satisfy:

K = {K | (∀q ∈ Q, q ∈ K) =⇒ (∃C ∈ σ(q), C ⊆ K)} (19)

They constitute the knowledge structure associated to (Q, σ). It defines an ap-
proximation space apr = (Q,K). Any knowledge structure which is closed under
union is called a knowledge space. In fact, there is a one-to-one correspondence
between surmise systems on Q and knowledge spaces on Q.

Compared with the system in formal concept analysis that is closed under
set intersection, knowledge spaces are opposite. Being closed under set union,



the lower approximation in knowledge spaces is unique while the upper approx-
imation is a family of sets.

Definition 9 Suppose (Q, σ) is a surmise system and K ⊆ 2Q is the as-
sociated knowledge structure, closed under union. In the approximation space
apr = (Q,K), for a subset of objects A ⊆ Q, its lower approximation is defined
by:

apr(A) = {∪{K ∈ K | K ⊆ A}} , (20)

and its upper approximation is a family of sets:

apr(A) = {K ∈ K | A ⊆ K, ∀K ′ ∈ K(K ′ ⊂ K =⇒ A * K ′}. (21)

The definition is based on a combination of case 1 and case 3. The lower
approximation is the largest set in K that contained in A, and the upper ap-
proximation is the smallest sets in K that contains A. While the largest set
contained in A is unique, the smallest set containing A is not unique.

6 Conclusion

We propose a subsystem-based generalization of rough set approximations by
using subsystems that are not closed under set complement, intersection and
union. The generalized rough set approximations are not necessarily unique, but
consist of a family of sets. We investigate special cases under different conditions,
including subsystems that are closed under set complement, intersection and
union, as well as their combinations. To show that usefulness of the proposed
generalizations, approximations in formal concept analysis and knowledge spaces
are examined.

The subsystem of definable sets of objects in formal concept analysis is only
closed under set intersection. There are two types of subsystems in knowledge
spaces. The knowledge states of a surmise relation produce a subsystem that
is closed under both intersection and union. The knowledge states of a surmise
system produce a subsystem that is only closed under union. The introduction
of rough set approximations to the two theories demonstrates the potential value
of generalized rough set approximation operators.
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