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ABSTRACT—The theory of rough sets is an extension of set theory with two additional unary set-theoretic
operators defined based on a binary relation on the universe. These two operators are related to the modal
operators in modal logics. By exploring the relationship between rough sets and modal logics, this paper
proposes and examines anumber of extended rough setmodels. By the properties satisfied by a binary relation,
such as serial, reflexive, symmetric, transitive, and Euclidean, various classes of algebraic rough set models
can be derived. They correspond to different modal logic systems. With respect to graded and probabilistic
modal logics, graded and probabilistic rough set models are also discussed.
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1. INTRODUCTION

The theory of rough sets is an extension of set theory, in which a subset of a universe is described by
a pair of ordinary sets called the lower and upper approximations.?* These approximations can be formally
defined by two operators on subsets of the universe.'® This framework provides a systematic method for
the study of intelligent systems characterized by insufficient or incomplete information.”” The successful
applications of the rough set theory in a variety of problems have amply demonstrated its usefulness and
versatility.”’

A key notion in Pawlak rough set model is an equivalence relation, i.e., a reflexive, symmetric and
transitive relation.? The equivalence classes are the building blocks for the construction of the lower and
upper approximations. The lower approximation of a given set is the union of all the equivalent classes
which are subsets of the set, and the upper approximation is the union of all the equivalent classes which
have a non-empty intersection with the set. The requirement of an equivalent relation seems to be a
stringent condition that may limit the application domain of the Pawlak rough set model. '*** To resolve
this problem, many proposals have been made. Zakowski suggested that one may use a compatibility
relation (i.e., areflexive and symmetric relation) instead of an equivalence relation.* More general binary
relations were used in the neighborhood systems introduced by Lin."* The notion of weak discernibility
relation adopted by Vakarelov is a compatibility relation.’* Since an equivalence relation is a compat-
ibility relation, the adoption of a compatibility relation generalizes the Pawlak rough set model.
Wybraniec-Skardowska introduced different rough set models based on various types of binary rela-
tions.* Pawlak pointed out that any type of relations may be assumed on the universe for the development
of a rough set theory.”® Wong, Wang and Yao extended further the notion of rough sets through a binary
relation between elements of two universes.* The rough set model can be obtained in the case where the
two universes become the same.
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104 Intelligent Automation and Soft Computing

There have been extensive studies on the logical foundation of the theory of rough sets and its
relationships to non-standard logics.***” For example, Orlowska proposed a logic for reasoning about
concepts using the notion of rough sets, which is essentially the modal logic system S5 with the modal
operators interpreted using the lower and upper approximations.” A similar approach was also adopted
by Chakraborty and Banerjee.’ Vakarelov considered the lower and upper approximations formed from
different types of relations as additional and distinct modal operators.* The semantics of these logic
systems have been investigated by many authors.'®*

Using the relationship between rough sets and modal logics, we extended conventional rough set
models by considering various types of relations.*' By generalizing our preliminary results to a wider
context, this paper provides a systematic study on the generalization of rough sets using modal logics. A
rough set theory is established as a non-standard set theory with two additional set-theoretic operators,'®
in the same manner that modal logic is proposed as an extension of propositional logic with two modal
operators.** These approximation operators are defined with respect to a binary relation on the universe.
The properties of the binary relation determine the properties of the approximation operators. Conse-
quently, different rough set models can be classified according to the properties of the binary relation.
Withrespect to normal modal logics, anumber of classes of algebraic rough models are analyzed and their
relationships are examined. Similarly, graded and probabilistic rough set models are defined and
examined based on graded and probabilistic modal logics.

The discussion of this article is essentially parallel to that in the exposition of modal logic and draws
heavily from the literatures of the latter. To emphasize their similarities, the same labels are used to name
the corresponding properties of the approximation operators and that of the modal operators.

2. ALGEBRAIC ROUGH SETS

In this section, we establish alink between Pawlak rough sets and modal logic S5. By applying the same
relation in a wider context, we identify and classify other types of rough set models.

2.1 Pawlak Rough Sets and Modal Logic S5

Let U denote a finite and non-empty set called the universe, and let®R U x U denote an equivalence
relation on U . The pair apr = (U, R) is called an approximation space. The equivalence relation R
partitions the set U into disjoint subsets. Such a partition of the universe is denoted by U/ R. If two
elements x, y in U belong to the same equivalence class, we say that x and y are indistinguishable. The
equivalence classes ofR and the empty set@ are called the elementary or atomic sets in the approximation
space apr = (U, R).

Given an arbitrary set A ¢ U, it may be impossible to describe A precisely using the equivalence
classes of R. In this case, one may characterize A by a pair of lower and upper approximations:

apr(A)= U [x],
ot [.vh;f«[ b

apr(A) = , (1)
apr(4) [.Y]ﬁyﬂz[r]m
where
[x]y = {_\'Ix‘ﬁy} (2)

is the equivalence class containing x. The pair (apr(A), apr(A)) is called the rough set with respect to

A. The lower approximation apr(A) is the union of all the elementary sets which are subsets of A, and
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the upper approximation gpr(A) is the union of all the elementary sets which have a non-empty
intersection withA. An element in the lower approximation necessarily belongs to A, while an element
in the upper approximation possibly belongs to A. Equivalently, we can reexpress lower and upper
approximations as follows:

apr ()= {[x],, = A}
= {x € UI for all ye U, xRy implies y € A }
apr (4)={x[x],, "4 =2}
= {x S Ul there exists a y e U such that xRy and y € A }

3)

That s, an element of U necessarily belongs toA if all its equivalent elements belong toA; it possibly
belongs to A if at least one of its equivalent elements belongs to A. Such an interpretation is closely
related to the necessity and possibility operators in modal logic.

For any subscts A, B < U , the lower approximation apr satisfies properties:

(AL1)  apr(A)=~apr (~ A)

(AL2) a‘L;(U) =U

(AL3) apr(AnB)=apr(A)Napr(B)
(AL4)  apr(AUB) 2 apr(A)Uapr(B)
(ALS) Ac B=apr(A)capr(B)
(AL6) apr(Q)=C

(ALT) apr(A)c A

(AL8) A capr(apr(A))

(AL9)  apr(A) < apr{apr(4))

(AL10) apr(A)  apr{apr(A))
and the upper approximation apr satisfies properties:

(AU1) apr(A)=~apr(~ A)

(AU2) apr(@)=0

(AU3) apr(AU B)=apr(A)Uapr(B)
(AU4) apr(An B) c apr(A) N apr(B)
(AUS) Ac B= apr(A)c apr(B)
(AU6) apr(U)=U
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(AU7) A C apr(A)

(auU8) apr(apr(A))c A
(AU9) apr(apr(A)) < apr(A)
(AU10) apr(apr(A)) < apr(A)

where ~ A = U — A denotes the set complement of A. Moreover, lower and upper approximations obey
properties:

(K) apr(~ AUB)c~apr(A)vapr(B)

(ALU) apr(A) capr(A)

Properties (AL1) and (AU 1 )state that two approximation operators are dual operators. Hence, properties
with the same number may be regarded as dual properties. These properties are not independent. For
example, property (AL3) implies property (AL4). Properties (AL9), (AL10), (AU9) and (AU10) are
expressed in terms of set inclusion. The standard version using set equality can be derived from (AL1)-
(AL10) and (AU1)—(AU10). For example, it follows from (AL7) and (AL9) that apr(A) = Lﬂ(fﬂ(A))-

In this study, rough sets described above are called Pawlak rough sets. They are constructed from
an equivalence relation. The pair of lower and upper approximations may be interpreted as two
operators dpr and apr on subsets of U .'® Under this view, the rough set theory may be regarded an
extension of set theory with two additional unary set-theoretic operators. Together with the standard
set-theoretic operators, they define a mathematical system (2U,ﬂ,u, ~.apr, c;r) It is an extension
of the Boolean a]gebra(ZU ,M,U, ~) and is referred to as Pawlak rough set model. From the properties
satisfied by lower and upper approximation operators, Pawlak rough set model may be interpreted
in terms of the notions of topological space and topological Boolean algebra.?® ?>:37 In this system,
the proposed operators apr and apr can be used together with the usual set-theoretic operators ~,
N, and U to form valiazxpressions regarding sets. For example, ~ cl)wr(;pTr(A)uB) is a valid
expression.

12: 32

The modal logic S5 may be understood algebraically by topological Boolean algebra. It is natural

to expect that there is connection between Pawlak rough set model and modal logic S5. Such alink

can be formally established below.?:12-23.24.26.27.34

Let @ be a non-empty set of propositions, which is generated by a finite set of logical connectives,
A, V, ...,etc., propositional constants T and L, and infinitely enumerable set P = {¢, v, . ..} of
propositional variables. Thatis,® is the smallest set containing all proposition variables in P, constants
T and L, and is closed under negation (), conjunction (A), disjunction (), and implication (—). Let W
be a non-empty set of possible worlds and R a binary relation called an accessibility relation on W. For
two possible worldsw, w”e W, if wliw’, we say that world w” is accessible from world w. The pair (W,
R) is referred to as a frame. An interpretation in (W, R) is a function v: Wx P — {true, false}, which
assigns a truth value for each proposition variable with respect to each particular world w. If v (w, a) =
true, we say that the propositiona is true in the interpretation vin the worldw, writtenw |= a. We extend
vto the set of all propositions ® in a standard way, i.e., we define v* : W x ® — {true, false} onadegree
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of proposition ¢ € ® as follows:

(m0) forae P,wl= aiff wi= a

(m1) not wi=, L, wil=, T

m2)  wl=, (@Apiff wi= gandw|= v

(m3)  wl=, (ovyiff wi= dorwl= v, orboth

(m4)  wlk (0> yiff not wi= ¢orwl= _y,orboth

(mS) wl=, ~¢iffnot wil= ¢
For simplicity, we will write w |= ¢, and when v is clear from context, we drop it by simply writing
w = ¢.

In addition to the standard logic connectives, modal logic introduces a necessity operator [ and a

possibility operator ¢. That is, a modal logic system is an extended system (®, A, v, =, (3, 9) of the

propositional logic system (@, A, v, ). The semantics of modal logic is defined in terms of possible
worlds as follows: forw € W and ¢, y e D,

(m6) w |=0¢ iff for allw” e W, wRw” implies w”|= ¢

(m7) w |= Q¢ iff there exists aw” e W such that wRw” and w’|= ¢
The standard logic connectives have the same interpretation in both propositional logic and modal logic.
A proposition ¢ is necessarily true in a possible world w, i.e., w |= 0¢, if ¢ is true in every world

accessible from w; ¢ is possibly true, i.e., w |= 09, if ¢ is true in at least one world accessible from w.
The necessity and possibility operators are dual operators. Each can be defined in terms of the otherby:

p=-0-9
0p=-0-0 )

If the relation R is an equivalence relation, the corresponding modal logic system is commonly known
as S5.

With a valuation function v, we can characterize a proposition by the set of possible worlds in which
the proposition is true. In other words, we can define a mapping ¢ : ® — 2% as follows:

Ho)={weW | wl= ¢} 5)

The set 1(¢) is referred to as the truth set of the proposition.* It is also called the incidence of ¢ and
the mapping ¢ is called an incidence mapping.! Using the truth set representation, the logical
connectives can be interpreted using the set-theoretic operations. The following equations explicitly
express the relationships between logic connectives and set-theoretic operators:

(s1) (LH=9, (T)=W
(s2) P A W) =1d) NHY)
(s3) 1oV y)=1o)Hy)
(s4) 1P — W) =~1(d) W Hy)
(s5) (= @) = ~1(9)
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(s6)  1(09)=apr(1(9))
7)  1(09) = apr{i(9))
The first five properties are straightforward. For example, (s2) follows from that fact that proposition

¢ A v is true in a world w if and only if both ¢ and y are true in w.
The last two properties can be derived from equation (3):

w0p) = {weWlwk=og}
= {we W forallwe W, wRw impliesw ' |= ¢ }
= {we W | forallwe W, wRw “implies w” e 1(¢) }
= apr(i(0))

09) = {weWlwi=00}

= {weW | there exists aw”e W such that wRw and w'|= ¢ }
= {weW | there exists aw” e W such that wRw “and w” e t(¢) }

= apr(1(9))

Such an interpretation was also used by many authors (e.g., Chakraborty and Banerjee,® Orlowska,? and
Pawlak?®).

By the above interpretation, the properties of approximation operators in Pawlak rough set model are
related to the properties of modal operators in molal logic S5. Each of the properties of Pawlak rough sets
becomes a property of modal logic, if apr is replaced by O, apr by 0, "by A, U by Vv, ~by -, =by e,
and subsets of U by propositions of ®. For example, property (AL3) corresponds to C(¢ A Y) > 09 A
Ow. By adopting the labeling system used by Chellas,* axioms of modal logic corresponding to (AK),
(ALU), (AL7)—(AL10) are given by:

(K) 0(¢ — y)— (C9 -09)
(D) ¢ — 00

(T) tp— ¢

B) 9009

“4) 0o - 0oe

(5) 0p 000

The established link shows that Pawlak rough set model is a counterpart of modal logic S5. The standard
logic operators are interpreted by usual set-theoretic operators, and the modal operators by rough set
operators.

In modal logic, different systems can be constructed by using various types of binary relations. A
number of important questions immediately arise. Is it possible to construct different rough set models
with respect to various modal logic systems? If the answer is positive, how to construct these rough set
model? The rest of this section will address these issues.



Generalization of Rough Sets Using Modal Logics 109

2.2 Generalized Rough Set Operators

The Pawlak rough set model may be extended by using an arbitrary binary relation in the same way
modal operators are defined. In this framework, the generalized rough set operators are still related to
modal operators as shown by properties (s6) and (s7). An advantage of such a formulation is that results
from modal logic can be immediately applied.

Given a binary relation R and two elementsx, ye U, if xRy, we say that y is R-related to x. A binary
relation may be more conveniently represented by a mapping r: U — 2Y:

r(x) ={y e UxRy} 6

That s, r (x) consists of all R-related elements of x. By extending Equation (3), we define two unary set-
theoretic operators apr and apr:

apr(A) = {x]r(x) c A}
= {x € Ulfor all y e U, xRy implies y € A}
apr(A) = {xr(x)nA =2} )

{x € Ulthere exists ay € U such that xRy and y e A}

The set apr(A) consists of those elements whose R-related elements are all inA, and apr(A) consists
of those elements such that at least one of whose R-related elements is inA. The pair (apr(A), E(A))
is referred to as the generalized rough set of A induced by R. Its physical meaning ?dzpends on the
interpretations of the universe and the relation R in particular applications. Operators apr, apr: 2V —2V
are referred to as the generalized rough set operators. The induced system (2Y,,n, U, ~, ap—r, a) iscalled
an algebraic rough set model. o

The set r (x) may be interpreted as a neighborhood of x .'*16 Hence, apr and apr are indeed the interior
and closure of A. This formulation is only a special case of neighborhood systems. In neighborhood
systems, one may consider several (finite or infinite) binary relations at the same time. For example, if

U is a non-finite topological spaces (a special type of neighborhood systems), each element has a
neighborhood systems which often consists of infinitely many neighborhoods.

Example1l Let U= {q, b, c}. Consider a binary relation R defined by:
aRa, bRb, aRb, bRa, Rb.
From Equation (6), R-related elements for each member of U are given by:
r(a)={a, b}, rb)={a b}, r(c)={b}.

According to Equation (7), the two extended operators are defined as:

apr (@) =2, apr () =2,
apr ({a}) =@, apr({a}) = {a,b},
apr ({b}) = {c}, apr({b}) = {a,b,c},

apr ({c})) =2, apr({c}) =@,
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apr ({a,b}) = {ab,c), apr({a,b}) = {ab,c},
apr ({a,c}) =D, apr({a,c}) = {ab},
apr ({b.c}) = {c}, apr({b.c}) = {ab.c},
apr (U)=U. apr(U) = U.

The definition of generalized rough set operators is obviously consistent with the interpretation of
necessity and possibility operators in modal logic. More specifically, (s6) and (s7) hold for generalized
rough set operators:

(s6) 1) = apr(1(9)).

(s7)  1(0¢) = apr(t(¢9)).

In the case where 0 is an equivalence relation, generalized rough set operators reduce to the operators
in Pawlak rough set model. If R is a compatibility relation, generalized rough set operators are different
from the ones proposed by Pomykala® and Zakowski.** They used a covering of the universe to define
rough sets instead of using a relation explicitly. In general, the generalized rough set operators are
consistent with proposals by Kortelainen,'* Lin and Liu,' Wong, Wang and Yao,* and Wybraniec-
Skardowska.*

2.3 Classification of Algebraic Rough Set Models

For an arbitrary relation, generalized rough set operators do not necessarily satisfy all the properties
in Pawlak rough set models. Nevertheless, properties (AL1)—(ALS5) and (AU1)—(AUS) hold inany rough
set model, i.e., independent of the properties of the binary relation. This can be easily seen from the
definition. For instance, property (AL3) can be shown as follows:

X € gi)f(AﬂB)@ r(x) cAnNB
& r(x) cAand r(x)cA
& xe fllj{'(A) and x € cgr(B)
& xe apr(A) Napr(B) (8)

Thatis, apr(A N B) = apr(A) N apr(B). Property (AK) also holds in any rough set model. Suppose x
€ Lpr( ~A U B). This means thatwax) < ~A U B. Thus. only one the following two conditions can be
true: (i) r(x) < Band (ii) r (x)z Band r (x) N ~A # Q. For the case (i), it is obvious thatxe ~ {{P_r(A)
] (L)r(B). For the case (ii), from 7 (x) N ~A # @, one can conclude that r (x) ¢ A. It implies that x &

@(A)and inturnxe ~apr(A). Therefore,xe ~ apr(A) v (Kr(B). By summarizing the results of both

cases (i) and (ii), one can say that property (AK) holds. This property is a basic property in our formulation
of rough set models.

In modal logic, properties corresponding to (AK) and (AL6)—(AL10) are used to define different logic
systems. By adopting this technique, we use these properties to classify various rough set models. To
be consistent with notation used in modal logic. we relabel some of these propertics as follows:
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(K)  apr(~AUB)c~ apr(A) U apr(B)
(D) apr(A)c apr(A)

(D apr(A) C A

(B)  Ac apr(apr(A))

“4) apr(A) c apr(apr(A))

(5)  apr(A)c apr(apr(A))

In order to construct a rough set model so that the above properties hold, itis necessary to impose certain
conditions on the binary relation®. In fact, each of these properties corresponds to a property of the binary
relation.

A relation R is a serial relation if for all x e U there exists ay € U such that xRy. A relation is
areflexive relation if for allx € U the relationship xXx holds. A relation is symmetric relation if for
all x,y € U, xRy implies yRx holds. A relation is a transitive relation if for three elements x, y, z
e U,xRy and yRz imply xRz. A relation is Euclidean when for allx, y, z € U, xRy and xRz imply
yRz. Since the approximation operators are defined through the mapping r, it is more convenient to
express equivalently the conditions on a binary relation as follows:*

serial: forallxe U, r(x)#Q

reflexive: forallxe U, x e r(x)

symmetric: forallx,ye U, ifxe r(y), thenye r(x)
transitive: forallx,ye U, ifye r(x), thenr (y) Cr(x)
Euclidean: forall x,y € U, ifye r(x), thenr(x)cr(y)

We name the rough set model according to the properties of the binary relation. For example, a rough set
model constructed from a symmetric relation is referred to as a symmetric rough set model.

In a serial rough set model, for any x € apr(A), we haver (x) C A andr (x) # @, which imply r (x) N
A#J, namely,x e apr(A). Thus, property(T)) holds in a serial rough set model. Based on this property,
we may call apr(A) a lower representation and apr(A)an upper representation. By combining (D) with
(AL2) and (AF2), it follows that apr(J) = & and c;r(U ) = U. Therefore, a serial rough set model is
indeed related to the notion of interval structures introduced by Wong, Wang and Yao,*in which asingle
universe is used. In a reflexive rough set model, for anyx € U, xRx implies thatx € r (x). Suppose
x € apr(A), which is equivalent r (x) 2 A. Combining x € r (x) and r (x) c A, we have x € A. Thus,
prop;y (T) holds. In this case, a set A lies between its lower and upper representations. Consider a
symmetric rough set model. Suppose x € A. By the symmetry of R, forally € r (x) we have x € r (y),
i.e.,xe r(y) MA. Thisimplies that forallye r(x),y € ;W(A). Hence, r (x) a—pr(A). It means that
X € apr (a_p;(A)). Therefore, property (B) holds. That is, a set A is a subset of the lower representation
of ilsTpper representation. In a transitive rough set model, suppose x € apr(A),i.e.,r (x) < A. Then for
allye r(x),r(y) < r(x) cA. Thisis equivalent to say that forallye r (x)je apr(A). One can therefor
conclude thatr (x) € apr(A) and in turnx € apr(apr(A)). Thatis, the property (4%1(15, namely, the lower
representation of a set is a subset of the m—werTepresentation of the lower representation of that set.
Consider now an Euclidean rough set model. Suppose x € apr(A),ie.r(x) NA #@. By the Euclidean
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property of R, forally € r(x), r(x) < r(y). Combining this result with the assumption r (x) N A #
@, we can conclude that forally e r(x),ye apr(A). Thisis equivalenttosayr (x) < apr(A). Therefore,
property (5) holds in an Euclidean rough set model. In this model, the upper representation of a set is a

subset of the lower representation of the upper representation of that set.
The five properties of a binary relation, namely, the serial, reflexive, symmetric, transitive, and
Euclidean properties, induce five properties of the approximation operators, namely,

serial: property (D) holds,
reflexive: property (T) holds,
symmetric: property (B) holds,
transitive: property (4) holds,
Euclidean: property (5) holds.

By combining these properties, one can construct more rough set models. Forinstance, if R is reflexive
and symmetric, i.e., %R is acompatiblity relation, we obtain the rough set model built using a compatibility
relation. A compatibility relation is a serial relation but not necessarily a transitive or an Euclidean
relation. In such a model, properties (D), (T) and (B) hold and properties (4) and (5) do not hold.
Following the convention of modal logic,* this type of rough set model is labeled by KTB, which is the
set of properties satisfied by operators apr and apr. The property (D) does not explicitly appear in the
label because it can be obtained from (T). If N is reflexive. symmetric, and transitive, i.e., N is an
equivalence relations, we obtain the Pawlak rough set model. An equivalence relation is both a
compatibility relationand an Euclidean relation. Thus, the approximation operators satisfies all properties (D)—
(5). This type of rough set model is denoted by KT5, the corresponding modal logic system is also called S5.
In general, any subset of the five properties may provide a class of rough set model. Since these
properties are not an independent set, there are less number of rough set models than the number of subsets
of properties. Forexample, the standard rough set model proposed by Pawlak can be characterized either
by the subset {reflexive, symmetric, transitive} or the subset {rcflexive, Euclidean}. By the results in
modal logic, itis possible to construct fifteen distinct classes of rough set models .*'* Figure 1, adopted
from Chellas* and Marchal," summarizes the relationships between these models. A line connecting two
models indicates the model in the upper level is a model in the lower level. For example, a KT5 model
is a KT4 model. These lines that can be derived
from the transitivity are not explicitly shown. The
model K may be considered as the basic model
because itdoes notrequire any special property on
the binary relation. All other models are built on
top of the model K, and hence it can be regarded as
the weakest model. The model KTS, i.e.. the
Pawlak rough set model, is the strongest model.
Both the interval structure model KD and the
rough set model KTB lie between K and KTS5.

3. GRADED AND PROBABILISTIC
ROUGH SETS

In algebraic models, rough set operators are
Figure 1. Rough set models. defined by using only qualitative relationships
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between the R-related elements of x and a subset A of U . That is, x belongs to apr(A) if all elements of
r(x)are in A, and x belongs to ;W(A) if one element of r (x) is inA. The quanti—tﬁve information about
the degree of overlap of r(x) andA is not taken into consideration. The same can be said about modal logics
using only the pair of necessity and possibility operators. The number of worlds accessible from a
world w, and in which a proposition is true, is not taken into consideration. It is therefore not
surprising that similar efforts have been attempted in both rough sets and modal logics to incorporate
such information.>67:89.104244 The results of these studies lead to graded and probabilistic interpreta-
tions of modal logics and rough sets.

3.1 Graded Rough Sets

Graded modal logics extend modal logic by introducing a family of graded modal operators ] and? ,
wheren € N and N is the set of natural numbers .>7-83%3¢ These operators can be interpreted, in the usual
Kripkean semantics, as follows:

(gm6) wl=0, ¢ iff[r(w)|-|(@)Nrw)<n
(egm7) wl=0 ¢ iff|(@)Nr(w)>n

where | - | denotes the cardinality of a set. Recall thatz(¢) is the set of possible worlds in which ¢ s true,
and r (w) is the set of possible worlds accessible fromw. It follows that ¢ is true in|t(¢) N r (w)| possible
worlds accessible from w, and ¢ is false in |r (w)| — [t(¢) N r (w)| possible worlds accessible from w.
Therefore, the interpretation of (] ¢ is that ¢ is false in at most n possible worlds accessible from w. The
interpretation of O ¢ is that ¢ is true in more than n possible worlds accessible fromw. Obviously, graded
necessity and possibility operators are dual operators:

D”¢ = = O" 1 ¢

00 = —~0,—9¢ )

If n = 0, they reduce to normal modal operators, namely,

0 = Ly
09 = 0,0 (10)

Using graded modal operators, a new operator 0! is defined by 0! ¢ =) — ¢ and 01o=0 01
=0 ¢ forn> 0. The interpretation of 0! ¢ is that ¢ is true in exactly n possible worlds accessible
fromw. With graded modal operators, one may study graded modal systems corresponding to K, KT,
KT5 (SS)’ etc. 2,5.7,8.35.36

The graded modal logic Gr(K) is the basic model. In this system, axiom (K) is replaced by the following
three axioms:?-37-833.36

(GK1) O(¢0—=>w)—>Ce—>0y
(GK2) Dn(p —2 DNH ¢
(GK3) g,— @Ay — ((()!"¢A<>!m|//) — O!M(qbvy/))

(GK1) is a kind of generalized (K) axiom, (GK2) is a way to decrease grade in the possibility operator,
asitisequivalentto®  ¢— 0 ¢.and (GK3)isaway to go to higher grades. The graded modal logic Gr(S5)
is obtained by adding the following graded version of axioms (T) and (5):
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(GT) 9 —0¢
(G5 00 000

If only axioms (GK) and (GT) are used, one obtains the graded modal logic Gr(KT). All other graded
modal logic systems can be similarly constructed. In parallel to graded modal logic, we introduce the
notion of graded rough sets. Given the universe U and a binary relationk on U, a family of graded rough
set operators are defined as:

apr(A) = {x|Ir@-Anrl<n}

apr (A) = {x||Anr)|>n) (an

An element of U belongs to apr (A) if at mostn of its R-related elements are not in A, and belongs
to apr (A) if more thann of its R-related elements are inA. With this definition, we establish a link
between graded modal logics and rough sets:

(g56) 1(C,9) = apr (1(9))

(gs7) 10,¢) = apr (1(¢))

That is, graded rough set operators can be interpreted in terms of graded modal operators.
Independent of the types of binary relations, graded rough set operators obey the following properties:

(GLO) apr(A) = apr (A)

(GL1)  apr (A)=~apr,(~A)

(GL2) J,(U )=U

(GL3) ;w”(A N B) c apr (A) N apr (B)
(GL4) ;r"(A UB)D ;;r,I(A) uc;r“(B)
(GL5) Ac ; B= c_lp_r,,(f;)_ c @,,(1;
(GL6) n2m= apr (A)2 apr,(A)
(GUO) apr(A) = apr (A)

(GU1) apr (A)=~apr (~A)

(GU2) apr (@)=

(GU3) apr (AU B)2 apr (A) L apr (B)
(GU4) apr (A N B)c apr (A) N apr (B)
(GUS) AcB= apr (A)c apr (B)
(GU6) n2m= apr (A)c apr,(A)

Properties (GLO) and (GUO) show the relationship between graded rough set operators and normal rough
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set operators. Properties (GL1)—(GLS) and (GU1)~(GUS) correspond to properties (AL1)—(ALS) and
(AU1)—-(AUS) of algebraic rough sets. For properties (GL3) and (GU3), set equality is replaced by set
inclusion. Properties (GL6) and (GU6) are introduced to characterize the relationships between graded
modal operators. In fact, property (GL6) corresponds to a generalized version of (GK?2) of graded modal
logic. Properties corresponding to (GK1) and (GK3) can be easily constructed.

Depending on the properties satisfied by the binary relation, different graded rough set models can be
constructed in a similar way as discussed in the last section. If the binary relation R is indeed an
equivalence relation, we obtain the graded version of Pawlak rough sets. The operators in graded Pawlak
rough sets satisfy properties corresponding to axioms of graded modal logic:

(GD)  apr (A) < apr(A)
(GT)  apryA)cA

(GB) A c apr(apr(A))
(G4)  apr (A) < apr(apr (A))
(GS) apr (A) < apr (apr (A))

It should be noted that additional axioms may be necessary to describe other classes of graded modal
logic systems. Further information about graded modal logic systems and the canonical models for them
can be found in the literature.?- 783536

3.2 Probabilistic Rough Sets
In the definition of graded modal operators, we only use the absolute number of possible worlds
accessible from a world w and in which a proposition ¢ is true (false). The size of r (w) is not taken into
consideration. By introducing the notion of probabilistic modal logic, all such information will be used.
Suppose (W, R) is a frame. For each w € W, we define a probability function Pw: @ — [0; 1]:

B ‘t((b) N r(w)[
P.(¢)= T (12)

where #(9) is the set of possible worlds in which@is true, and r(w) is the set of possible worlds accessible
fromw. In this definition, we have implicitly assumed that the binary relation R is at least serial, i.e., for
allw € W, |r (w)| 21. Using these probabilities, we define a family of probabilistic modal logic operators
for a e [0, 1]:

(pm6) wl=0L 0 iff P (921-«
- lt((p‘)mr‘(w)' i
r(w),
(pm7) wl=00 iff P (9>«

‘t(d)) Nr (w)’ .

)
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They are related to each other by:
Da(P == Oa -0

0p==0,—¢ (13)

When a =0, they reduce to normal modal operators:
0P =00
<>¢ = Ooq) (14)

The definition of probabilistic modal operators are consistent with the proposal of Murai, Miyakoshi, and
Shimbo."” In our formulation, probability functions are defined using the ratio of the cardinalities of #(¢)
nr(w)and r (w), as suggested by Hart."" This is only a special case of the probabilistic Kripkean model
proposed by Fattorosi-Barnaba and Amati.®

The probabilistic modal operators are related to the graded modal operators. If both sides of
inequalities in (gm6) and (gm7) are divided by |r (w)|, and n / |r (w)] is replaced by ¢, the probabilistic
modal operators are obtained. That is, graded and probabilistic modal operators are consistently
defined. However, these operators are different from each other. Consider two possible worldsw, w”
e Wwith|r(w)nt(@)|=|r(w)nt@)=1and|r(w)=|r(w’). We have:

wl=0,0

w= 0,0
and

w |= -/ <>"¢

W’|= - OH(D

forn>1. Thatis, evaluations ofO"dJ are the same in both worlds w and w”. The difference in the sizes
of r (w) and r (w”) is reflected by operators (. On the other hand, since 1/|r (x)| # 1/|r ()|, evaluations
of both ¢ _¢ and 0 ¢ will be different in worlds w and w”. Similarly, examples can be found such that
evaluations of probabilistic modal operators are the same in two worlds, while evaluations of graded
modal operators are different.

We now turn attention to the definition of probabilistic rough sets. With respect to the universe U and
a binary relation R on U , we define a family of probabilistic rough set operators:

ﬂa(A):{x||—A|?(’+§lx)|21—a}

|Anr(x) } (15)

apr,(A) ={x|——-————> a

()

With this definition, the connections between probabilistic modal logic and probabilistic rough sets are
established:

(ps6)  1(T,0) = apr (1($))

(ps7)  1(0,9) = apr (t(9))
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Therefore, different probabilistic rough set models may be identified and analyzed.
By definition, for a serial binary relation and « € [0, 1], probabilistic rough set operators satisfy the
following properties:
(PLO)  apr(A) = apr(A)
(PL1) apr (A)=~apr (~A)

(PL2) apr (U)=U
(PL3)  apr (A" B)c apr (A) N apr (B)
(PL4)  apr (AU B) 2 apr (A) Uapr (B)
(PLS) AcB= apr(A)c apr (B)
(PL6) a2 B= apr (A)2 apr(A)
(PUO)  apr(A) = apr (A)
(PUL)  apr (A)=~apr (~A)
(PU2) apr (D)=D
(PU3)  apr (AU B) 2 apr (A) L apr (B)
(PU4) apr (A " B) < apr (A) N apr (B)
(PUS) A cB= apr (A)c apr (B)
(PU6) a2 f= apr (A) C apr (A)

They are counterparts of the properties of graded rough set operators. Moreover, for 0 < @< 0.5,

(PD) apr (A) < apr (A)

which may be interpreted as a probabilistic version of axiom (D).

Studies on probabilistic rough sets have been focused on equivalence relation. Wong and Ziarko first
introduced the notion of probabilistic rough set model using probability functions defined in this section.”
Ifoischosentobe 0.5, the probabilistic rough sets is related to the proposal of Pawlak, Wong and Ziarko.*
A detailed analysis of probabilistic rough set operators in the framework of Bayesian decision theory can
be found in Yao and Wong.*> Pawlak and Skowron referred to the conditional probabilities as rough
membership functions . The variable precision rough set model proposed by Ziarko adopted a similar
notion.** In fact, the lower and upper approximations defined by Ziarko are exactly the same as those
defined in this paper. Compared with modal and graded modal logics, there is a lack of systematic study
on probabilistic modal logic. It will be interest to apply the results in probabilistic rough sets to
probabilistic modal logic. Further study onvarious classes of probabilistic modal logic, as that have been
done in both normal modal logic and graded modal logic, will be fruitful. Some initial results have been
reported by Fattorosi-Barnaba and Amati.®
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4. CONCLUSION

In this article, we have proposed a framework for the generalization of rough sets using modal logics.
A rough set model may be viewed as an extension of set theory having two additional unary set-theoretic
operators. These operators are defined with respect to a binary relation on the universe. Three types of
rough sets have been examined, the algebraic rough sets, graded rough sets, and probabilistic rough sets.
Within this framework, we have examined various rough set models using properties of binary relations.
The algebraic rough set operators correspond to the modal operators. The graded and probabilistic rough
set operators correspond to graded and probabilistic modal operators. Families of rough set models
corresponds to families of modal logic systems.

The established connections between rough sets and modal logics have very important implications.
Based on such relationships, one can enrich each theory by the results from the other theory. In the present
study, we have only focused on the generalization of rough sets using the results from modal logics. As
a further research topic, one may use the results from rough sets to interpret and extend modal logics. For
example, Orlowska proposed a logic of indiscernibility by using the results from rough set theory.”
Another research topic is the generalization of present study by using fuzzy similarity relation instead of
ordinary binary relation. Some important results have been reported by Nakamura.? - %' It will be
worthwhile to carry out more study along this line.
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