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Abstract: Granular computing (GrC) may be regarded as a label of theories, methodologies, techniques,
and tools that make use of granules, i.e., groups, classes, or clusters of a universe, in the process of
problem solving. The main objective of this paper is to discuss basic issues of GrC, with emphasis on
the construction of granules and computation with granules. After a brief review of existing studies, a
set-theoretic model of GrC is proposed based on the notion of power algebras.

1 Introduction

Basic ideas of crisp information granulation have ap-
peared in related fields, such as interval analysis,
quantization, rough set theory, Dempster-Shafer the-
ory of belief functions, divide and conquer, cluster
analysis, machine learning, databases, and many oth-
ers [16]. The topic of fuzzy information granulation
was first proposed and discussed by Zadeh [14] in
1979. There is a fast growing and renewed interest
in this topic [13]. Granular computing is likely to
play an important role in the evolution of fuzzy logic
and its applications.

1.1 What is GrC?

The following quotations from Zadeh may help us in
understanding the scope of, and reasons for, granular
computing (GrC):

“Granulation of an object A leads to a collec-
tions of granules of A, with a granule being
a clump of points (objects) drawn together
by indistinguishability, similarity, proximity
or functionality.” (Zadeh [16], 1997)

“The theory of fuzzy information granula-
tion (TFIQG) is inspired by the ways in which
humans granulate information and reason
with it.” (Zadeh [16], 1997)

“TFIG builds on the existing machinery of
fuzzy information granulation in fuzzy logic
but takes it to a significantly higher level of
generality, consolidates its foundations and
suggests new directions.” (Zadeh [16], 1997)

“GrC is a superset of the theory of fuzzy
information granulation, rough set theory
and interval computations, and is a subset
of granular mathematics.” (Zadeh [17], 1997)

It is clear that an underlying idea of granular comput-
ing is the use of groups, classes, or clusters of elements
called granules [14, 16]. Although extensive work has
been done on granular computing, it still might be dif-
ficult to give a precise definition. In this paper, we will
not attempt to provide such a definition. Instead, we
consider granular computing to be a label of theories,
methodologies, techniques, and tools that make use of
granules in the process of problem solving. Based on
this intuitive understanding, we will investigate some
basic issues and their possible solutions.

1.2 Why do we study GrC?

There are many reasons for the study of granular
computing. From a philosophical and theoretical
point of view, many authors argued that informa-
tion granulation is very essential to human problem
solving, and hence has a very significant impact on
the design and implementation of intelligent systems.
Zadeh [16] identified three basic concepts that under-
lie human cognition, namely, granulation, organiza-
tion, and causation. “Granulation involves decompo-
sition of whole into parts, organization involves in-
tegration of parts into whole, and causation involves
association of causes and effects.” Yager and Filev [7]
pointed out that “human beings have been developed
a granular view of the world”, and “...objects with
which mankind perceives, measures, conceptualizes
and reasons are granular”. From a more practical
point of view, the necessity of information granula-
tion and simplicity derived from information granula-
tion in problem solving are perhaps some of the main
reasons. In many situations, when a problem involves
incomplete, uncertain, or vague information, it may
be difficult to differentiate distinct elements and one
is forced to consider granules. A typical example is the
theory of rough sets [5]. The lack of information may
only allow us to define granules rather than individu-
als. In some situations, although detailed information



may be available, it may be sufficient to use granules
in order to have an efficient and practical solution.
In fact, very precise solutions may not be required
at all for many practical problems. It may also hap-
pen that the acquisition of precise information is too
costly, and coarse-grained information reduces cost.
In summary, the rationales of granular computing
suggests the basic guiding principle of fuzzy logic:

“FExploit the tolerance for imprecision, un-
certainty and partial truth to achieve
tractability, robustness, low solution cost and
better rapport with reality.”

This principle offers a more practical philosophy for
real world problem solving. Instead of searching for
the optimal solution, one may search for good ap-
proximate solutions. One only needs to examine the
problem at a finer granulation level with more de-
tailed information when there is a need or benefit for
doing so. However, it should be pointed out that stud-
ies of granular computing are only complementary to
vigorous investigations on precise and non-granular
computational approaches. The latter may provide
justifications and guidelines for the former.

1.3 What are the basic issues of GrC?

Basic issues of granular computing may be studied
from two related aspects, the construction of gran-
ules and computation with granules. The former deals
with the formation, representation, and interpretation
of granules, while the latter deals with the the utiliza-
tion of granules in problem solving.

The interpretation of granules focuses on the se-
mantics side of granule constructions. It addresses
the question of why two objects are put into the same
granule. Typically, elements in a granule are drawn
together by indistinguishability, similarity, proximity,
or functionality [16]. Furthermore, information gran-
ulation depends on the available knowledge. In the
construction of granules, it is necessary to study cri-
teria for deciding if two elements should be put into
the same granule, based on available information. In
other words, one must provide necessary semantics
interpretations for notions such as indistinguishabil-
ity, similarity, and proximity. It is also necessary to
study granulation structures derivable from various
granulations of the universe [13]. The formation and
representation of granules deal with algorithmic issues
of granule construction. They address the problem of
how to put two objects into the same granule. Algo-
rithms need to be developed for constructing granules
efficiently.

Computation with granules can be similarly stud-
ied from both the semantic and algorithmic perspec-
tives. On the one hand, one needs to interpret and

interpret various relationships between granules, such
as closeness, dependency, and association, and to de-
fine and interpret operations on granules. On the
other hand, one needs to design methodologies and
tools for computing granules, such as approximation,
reasoning, and inference.

Both semantics and algorithmic aspects of granu-
lar computing are important. However, many existing
methods of granular computing do not pay enough at-
tention to the semantics aspect. It is equally, if not
more, important to investigate semantics issues in-
volved in granular computing. The results may pro-
vide not only interpretations and justifications for a
particular GrC model, but also guidelines that pre-
vent possible misuses of the model.

2 Overview of Two GrC Models

A clearer picture of granular computing may be ob-
tained by examining some particular models.

2.1 Zadeh’s formulation

A general framework of granular computing was given
in a recent paper by Zadeh [16] based on fuzzy set the-
ory. Granules are constructed and defined based on
the concept of generalized constraints. Relationships
between granules are represented in terms of fuzzy
graphs or fuzzy if-then rules. The associated com-
putation method is known as computing with words
(CW) [7, 15].
Let X be a variable taking values in a universe
U. A generalized constraint on the values of X can
be expressed as X isr R, where R is a constraining
relation, isr is a variable copula and r is a discrete
variable whose value defines the way in which R con-
strains X. Examples of constraints are equality, pos-
sibilistic, probabilistic, fuzzy, and veristic constraints.
For example, an equality constraint, r = e, is given
by X ise a, which means X = a. A possibilistic con-
straint, r = blank, is given by X ¢s R, where R is a
possibility distribution of X. With the introduction
of generalized constraints, a granule is defined by a
fuzzy set:
G={X| X isr R}. (1)

Depending on the types of constraints, various classes
of granules can be obtained. From simple granules,
one may obtain Cartesian granules by considering
combinations of constraints [16].

One may label granules by natural language
words. This establishes a basis for computing with
words. As one of the core components of fuzzy logic,
CW deals with fuzzy if-then rules of the form:

if X isry AthenY isry B, (2)



where 71 and 72 may represent different types of con-
straints although the same type is commonly used. A
set of fuzzy if-then rules can be interpreted in terms
of a fuzzy graph. Inference can be carried out using
fuzzy if-then rules, or fuzzy graphs [15, 16].

2.2 Pawlak’s rough sets

With the granulation of universe, one considers ele-
ments within a granule as a whole rather than indi-
vidually [14]. The loss of information through gran-
ulation implies that some subsets of the universe can
only be approximately described. The theory of rough
sets deals mainly with the approximation aspect of in-
formation granulation [5].

Let £ C U x U denote an equivalence relation on
the universe U. The pair apr = (U, E) is called an ap-
proximation space. The equivalence relation E parti-
tions the set U into disjoint subsets known as the quo-
tient set U/E. Each equivalence class may be viewed
as a granule consisting of indistinguishable elements,
and it is also referred to as an equivalence granule. A
particular semantic interpretation of equivalence rela-
tions is provided based on the notion of information
tables. Two objects are equivalent if they have exactly
the same value with respect to a set of attributes.
Thus, an equivalence granule is characterized by an
equality constraint [13].

An arbitrary set X C U may not necessarily be a
union of some equivalence classes. This implies that
one may not be able to describe X precisely using the
equivalence classes of E. In this case, one may charac-
terize X by a pair of lower and upper approximations:

apr(X)= |J [le, ar(x)= |J

€] sCX [e] 5N X #0

2]z, (3)

where [z]g = {y | Ey} is the equivalence class con-
taining . The lower approximation apr(X) is the
union of all the equivalence granules which are sub-
sets of X. The upper approximation apr(X) is the
union of all the equivalence granules which have a
non-empty intersection with X.

Based on approximations of sets, one may per-
form data analysis and mining tasks in information
tables, such as attribute reduction, dependency anal-
ysis, and learning of decision rules [5].

3 A Set-theoretic Model of GrC

In this section, we present a set-theoretic formulation
of granular computing. Each granule represents cer-
tain concept such that each element of the granule
is an instance of the concept. Granules can be con-
structed through the use of information tables, as be-
ing done in rough set approach [5, 13]. We therefore

concentrate mainly on operations on granules. The
use of crisp sets (granules) is not as restrictive as it
may appear. A fuzzy set (granule) can be equivalently
expressed a family of crisp sets (granules) using its a-
cuts. Operations on fuzzy granules can therefore be
defined by operations on a-cuts.

3.1 Power algebras

Let o be a binary operation on a universe U. One
can define a binary operation o™ on subsets of U as
follows [1]:

XotY={roylzeXyeY}), (1)

for any X,Y C U. In general, one may lift any op-
eration f on elements of U to an operation f* on
subsets of U, called the power operation of f. Sup-
pose f: U™ — U (n > 1) is an n-ary operation on
U. The power operation f* : (2V)" — 2U is defined
by [1]:

fF(Xos o, Xpm1) = {f(@o,.osanm1) [2i € X,
fori=0,...,n—1}, (5)
for any Xp,...,X,-1 C U. This provides a

universal-algebraic construction approach. For any
algebra (U, f1,..., fr) with base set U and op-
erations fi,..., fr, its power algebra is given by
QU AL FD.

The power operation f* may carry some prop-
erties of f. For example, for a binary operation
f:U? — U, if f is commutative and associative,
fT is commutative and associative, respectively. If e
is an identity for some operation f, the set {e} is an
identity for f*. If an unary operation f : U — U is
an involution, i.e., f(f(z)) = f(z), fT is also an invo-
lution. On the other hand, many properties of f are
not carried over by f*. For instance, if a binary op-
eration f is idempotent, i.e., f(x,z) = z, fT may not
be idempotent. If a binary operation g is distributive
over f, g7 may not be distributive over fT.

3.2 Interval number algebra

An interval number [a,a] with a <@ is the set of real
numbers defined by:

la,;a] = {z[a <z <a}. (6)

Degenerate intervals of the form [a, a] are equivalent
to real numbers.

One can perform arithmetic operations on inter-
val numbers by lifting arithmetic operations on real
numbers [4]. Let A = [a,@] and B = [b,b] be two
interval numbers, we have:

A+ B {zr+y|lxeAyeB}

= [a+ba+b,



A-B = {xz—yl|lxzeAye B}
= [a—ba-b,

A-B = {z-y|lzeAye B}

= [min(ab,ab,ab,ab),

max(a b,a b,ab,a b)),

A/B {z/y|x € Aye B}

The results of interval number operations are again
closed and bounded intervals. When 0 € B, A/B
is undefined. One may lift any operations on real
numbers, such as min and max, to power operations
on intervals of real numbers [11].

Interval number algebra may serve as a basis for
interval reasoning with numeric truth values, such
as interval fuzzy reasoning [11], interval probabilistic
reasoning [6, 9], and reasoning with granular proba-
bilities [2]. It can be easily extended to study fuzzy
arithmetic with fuzzy numbers [3].

3.3 Interval set algebra

Given two subsets A1, Ao € 2V with A1 C A,, the
subset of 2V,

A=[A, Al ={Xec2V |4, CXCA}, (8

is called a closed interval set [8]. The set A; is called
the lower bound of the interval set and Ay the upper
bound. Degenerate interval sets of the form [A, A] are
equivalent to ordinary sets.

By lifting standard set-theoretic operations, such
as intersection N, union U and difference —, we define

interval set operations as follows: for two interval sets
.A = [Al,AQ] and B = [Bl,BQ],

ANB = {XNY |X e AY € B},
= [A; N By, 42N By,

AUB = {XUY |X €AY € B},
= [A1UB;1, 42U By,

A\B = {X-Y |XeAY eB}

= [A; — Ba, Ay — By). (9)

The results of interval set operations are also inter-
val sets. The interval set complement —[A;, As] of
[A1, Ag] is defined by [U, U] \[A1, A2]. This is equiv-
alent to [U - AQ, U — Al] = [NAQ, NAl]

The set algebra (2V, N, U, ~) is a special Boolean
algebra. By using the same argument, one can lift op-
erations in a Boolean algebra or a lattice [11]. Such
interval algebras may be used for reasoning with in-
terval extension of classical logic [10], and interval in-
cidence calculus [12].

4 Conclusion

Granular computing may have a great impact on the
design and implementation of intelligent information
systems, and on real world problem solving. The re-
sults from existing studies show the richness and flexi-
bility of GrC. They also suggest that further research,
especially on the semantics aspect of GrC, is needed.
The set-theoretic model may provide a simple frame-
work for the study of GrC.

References

[1] C. Brink, Power structures, Algebra Universalis, 30,

177-216, 1993.
[2] Klir, G.J. Basic issues of computing with granular

probabilities, Proceedings of 1998 IEEE International

Conference on Fuzzy Systems, 101-105, 1998.
[3] Klir, G.J. and Yuan, B., Fuzzy Sets and Fuzzy Logic,

Theory and Applications, Prentice Hall, New Jersey,

1995.
[4] R.E. Moore, Interval Analysis, Englewood Cliffs,

New Jersey, Prentice-Hall, 1966.
[5] Pawlak, Z. Granularity of knowledge, indiscernibility

and rough sets, Proceedings of 1998 IEEE Interna-

tional Conference on Fuzzy Systems, 106-110, 1998.
[6] J.R. Quinlan, Inferno: a cautious approach to uncer-

tain inference, The Computer Journal, 26, 255-269,

1983.
[7] Yager, R.R. and Filev, D. Operations for granular

computing: mixing words with numbers, Proceedings
of 1998 IEEE International Conference on Fuzzy Sys-

tems, 123-128, 1998.
[8] Y.Y. Yao, Interval-set algebra for qualitative knowl-

edge representation, Proceedings of the Fifth Inter-
national Conference on Computing and Information,

370-374, 1993.
[9] Y.Y. Yao, A comparison of two interval-valued proba-

bilistic reasoning methods, Journal of Computing and

Information, 1, 1090-1105 (paper number D6), 1995.
[10] Y.Y. Yao, and X. Li, Comparison of rough-set and

interval-set models for uncertain reasoning, Funda-

menta Informaticae, 27, 289-298, 1996.
[11] Y.Y. Yao, and J. Wang, Interval based uncertain

reasoning using fuzzy and rough sets, Advances in
Machine Intelligence & Soft-Computing, Volume IV,
Wang, P.P. (Ed.), Department of Electrical Engineer-
ing, Duke University, Durham, North Carolina, USA,

196-215, 1997.
[12] Y.Y. Yao, S.K.M. Wong, and L.S. Wang, A non-

numeric approach to uncertain reasoning, Interna-

tional Journal of General Systems, 23, 343-359, 1995.
[13] Yao, Y.Y. and Zhong, N. Granular computing using

information tables, manuscript.
[14] Zadeh, L.A. Fuzzy sets and information granularity,

in: Advances in Fuzzy Set Theory and Applications,
Gupta, N., Ragade, R. and Yager, R. (Eds.), North-
Holland, Amsterdam, 3-18, 1979.

[15] Zadeh, L.A. Fuzzy logic = computing with words,

IEEFE Transactions on Fuzzy Systems, 4, 103-111,

1996.
[16] Zadeh, L.A. Towards a theory of fuzzy information

granulation and its centrality in human reasoning
and fuzzy logic, Fuzzy Sets and Systems, 19, 111-127,

1997.
[17] Zadeh, L.A. Announcement of GrC, 1997,

http://www.cs.uregina.ca/~yyao/GrC/.



