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Abstract. Many classification techniques used for identifying spam emails,
treat spam filtering as a binary classification problem. That is, the in-
coming email is either spam or non-spam. This treatment is more for
mathematical simplicity other than reflecting the true state of nature. In
this paper, we introduce a three-way decision approach to spam filtering
based on Bayesian decision theory, which provides a more sensible feed-
back to users for precautionary handling their incoming emails, thereby
reduces the chances of misclassification. The main advantage of our ap-
proach is that it allows the possibility of rejection, i.e., of refusing to
make a decision. The undecided cases must be re-examined by collect-
ing additional information. A loss function is defined to state how costly
each action is, a pair of threshold values on the posterior odds ratio is
systematically calculated based on the loss function, and the final deci-
sion is to select the action for which the overall cost is minimum. Our
experimental results show that the new approach reduces the error rate
of classifying a legitimate email to spam, and provides better spam pre-
cision and weighted accuracy.

Key words: spam filter, three-way decision, naive Bayesian classifica-
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1 Introduction

Email spam filtering is a growing concern on the Internet. A popular approach
is to treat spam filtering as a classification problem. Many classification algo-
rithms from machine learning were employed to automatically classify incoming
emails into different categories based on the contents of emails [2, 6, 9, 11, 14, 15].
Among these algorithms, Bayesian classifier achieved better results by reducing
the classification error rates. The naive Bayesian classifier [6, 11, 14], along with
many other classification algorithms, treat spam filtering as a binary classifica-
tion problem, that is, the incoming email is either spam or non-spam. In reality,
this simple treatment is too restrict and could result in losing vital information
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for users by misclassifying a legitimate email to spam. For example, a user could
miss an important job offer just because the email contains “congratul” (i.e., a
common word in email spam filter word list) in its header. On the other hand,
misclassifying a spam email to non-spam also brings unnecessary costs and waste
of resources.

In this paper, we introduce a three-way decision approach to spam filtering
based on Bayesian decision theory, that is, to accept, reject, or further-exam an
incoming email. The emails waiting for further-exam must be clarified by collect-
ing additional information. The idea of three-way decision making can be found
in some early literatures and has been applied to many real world problems [5,
7]. For example, the three-way decisions are often used in clinical decision mak-
ing for a certain disease, with options of treating the conditional directly, not
treating the condition, or performing a diagnose test to decide whether or not
to treat the condition [12]. Yao et al. [16, 17] introduced decision theoretic rough
set model (DTRS) based on three-way decisions. The ideas of DTRS have been
applied to information retrieval by dividing the dynamic document stream into
three states instead of the traditional relevant and irrelevant states [8]. More re-
cently, Zhao et al. [18] introduced an email classification schema based on DTRS
by classifying the incoming email into three categories instead of two. The main
differences between their work and our approach are the interpretations of the
conditional probabilities and the values of the loss functions. In their approach,
the conditional probability was estimated by the rough membership function [13],
which is only one of the possible ways and is impractical for real applications.
They have simply defined the loss function that all errors are treated equally,
which is not the case in many real applications. For instance, misclassifying a
legitimate email to spam is usually considered more costly than misclassifying a
spam email to legitimate. In our approach, the conditional probability is inter-
preted based on the naive Bayesian classification. The posterior odds is used a
monotonic increasing transformation of the conditional probability to compare
with the threshold values. A threshold value on the probability can indeed be
interpreted as another threshold value on the odds. The naive independence as-
sumptions are added to calculate the likelihood by assuming that each feature
of an email is unrelated to any other features. After the transformations, all the
related factors used to interpret the conditional probability are easily derivable
from data. We consider the different cost associated for taking each action, which
is more general than the zero-one loss function.

The main advantage of three-way decision making is that it allows the pos-
sibility of rejection, i.e., of refusing to make a decision. The undecided cases
must be forwarded for re-examination. A loss function is defined to state how
costly each action is, and the final decision is to select the action for which the
overall cost is minimum. A pair of threshold values are estimated based on the
loss function. The first threshold value determines the value of the probability
necessary for a re-examination, and the second value determines the value of the
probability necessary to reject an email. These settings provide users a fairly
high degree of control over their incoming emails, thereby reduce the chances of
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misclassification. Our experimental results show that the new approach reduces
the error rate of classifying a legitimate email to spam, and provides a better
spam precision and weighted accuracy.

2 The Naive Bayesian Spam Filtering

The naive Bayesian spam filtering is a probabilistic classification technique of
email filtering [14]. It is based on Bayes’ theorem with naive (strong) indepen-
dence assumptions [6, 11, 14].

Suppose each email can be described by a feature vector x = (x1, x2, ..., xn),
where x1, x2, ..., xn are the values of attributes of emails. Let C denote the le-
gitimate class, and Cc denote the spam class. Based on Bayes’ theorem and
the theorem of total probability, given the vector of an email, the conditional
probability that this email is in the legitimate class is:

Pr(C|x) =
Pr(C)Pr(x|C)

Pr(x)
, (1)

where Pr(x) = Pr(x|C)Pr(C) + Pr(x|Cc)Pr(Cc). Here Pr(C) is the prior
probability of an email being in the legitimate class. Pr(x|C) is commonly known
as the likelihood of an email being in the legitimate class with respect to x.

The likelihood Pr(x|C) is a joint probability of Pr(x1, x2, ..., xn|C). In prac-
tice, it is difficult to analyze the interactions between the components of x,
especially when the number n is large. In order to solve this problem, an inde-
pendence assumption is embodied in the naive Bayesian classifier [6, 11] which
assumes that each feature xi is conditionally independent of every other features,
given the class C, this yields,

Pr(x|C) = Pr(x1, x2, ..., xn|C)

=
n∏
i=1

Pr(xi|C), (2)

where Pr(xi|C) can be easily estimated as relative frequencies from the training
data set. Thus equation (1) can be rewritten as:

Pr(C|x) =
Pr(C)

∏n
i=1 Pr(xi|C)
Pr(x)

. (3)

Similarly, the corresponding probabilities Pr(Cc|x) of an email being in the spam
class given vector x can be reformulated as:

Pr(Cc|x) =
Pr(Cc)

∏n
i=1 Pr(xi|Cc)
Pr(x)

. (4)

Note that Pr(x) in equation (3) and (4) is unimportant with regard to making a
decision. It is basically a scale factor that assures Pr(C|x)+Pr(Cc|x) = 1. This
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scale factor can be eliminated by taking the ratio of Pr(C|x) and Pr(Cc|x):

Pr(C|x)
Pr(Cc|x)

=
n∏
i=1

Pr(xi|C)
Pr(xi|Cc)

Pr(C)
Pr(Cc)

. (5)

Pr(C|x)/Pr(Cc|x) is called the posterior odds of an email being in the legiti-
mate class against being in the spam class given x. It is a monotonic increas-
ing transformation of Pr(C|x). Pr(xi|C)/Pr(xi|Cc) is called the likelihood ra-
tio. Thus, the conditional probability Pr(C|x) can be easily calculated from
Pr(C|x)/Pr(Cc|x) based on the observation that Pr(C|x) + Pr(Cc|x) = 1.
Finally, an incoming email can be classified as legitimate if Pr(C|x)

Pr(Cc|x) (i.e., the
posterior odds) exceeds a threshold value, otherwise it is spam.

3 Bayesian Decision Theory

Bayesian decision theory is a fundamental statistical approach that makes de-
cisions under uncertainty based on probabilities and costs associated with de-
cisions. Following the discussions given in the book by Duda and Hart [3], the
basic ideas of the theory are reviewed.

Let Ω = {w1, . . . , ws} be a finite set of s states and let A = {a1, . . . , am} be
a finite set of m possible actions. Let λ(ai|wj) denote the loss, or cost, for taking
action ai when the state is wj . Let Pr(wj |x) be the conditional probability of
an email being in state wj given that the email is described by x. For an email
with description x, suppose action ai is taken. Since Pr(wj |x) is the probability
that the true state is wj given x, the expected loss associated with taking action
ai is given by:

R(ai|x) =
s∑
j=1

λ(ai|wj)Pr(wj |x). (6)

The quantity R(ai|x) is also called the conditional risk.
Given a description x, a decision rule is a function τ(x) that specifies which

action to take. That is, for every x, τ(x) takes one of the actions, a1, . . . , am.
The overall risk R is the expected loss associated with a given decision rule.
Since R(τ(x)|x) is the conditional risk associated with action τ(x), the overall
risk is defined by:

R =
∑
x

R(τ(x)|x)Pr(x), (7)

where the summation is over the set of all possible descriptions of emails. If τ(x)
is chosen so that R(τ(x)|x) is as small as possible for every x, the overall risk R is
minimized. Thus, the optimal Bayesian decision procedure can be formally stated
as follows. For every x, compute the conditional risk R(ai|x) for i = 1, . . . ,m
defined by equation (6) and select the action for which the conditional risk is
minimum. If more than one action minimizes R(ai|x), a tie-breaking criterion
can be used.
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4 A Three-Way Decision Approach to Email Spam
Filtering

In the naive Bayesian spam filter, an incoming email is classified as legitimate
if the posterior odds ratio exceeds a certain threshold value. In our approach,
a pair of threshold values is used to make a three-way decision of an incoming
email. The first threshold value determines the probability necessary for a re-
examination, and the second value determines the probability necessary to reject
an email. There are different ways to acquire the required threshold values. One
may directly supply the threshold values based on an intuitive understanding
of the levels of tolerance for errors [19]. A more rational way is to infer these
threshold values from a theoretical and practical basis. One such solution was
given in DTRS [16, 17] based on the well known Bayesian decision theory [3].
A pair of threshold values on the conditional probability is systematically cal-
culated based on the loss function. In our approach, the posterior odds is used
a monotonic increasing transformation of the conditional probability to com-
pare with the threshold values. A new pair of threshold values is defined and
calculated based on the prior odds ratio and the loss functions with the naive
independence assumptions. This transformation ensures the easy estimation of
all the related factors.

With respect to a set of emails to be approximated, we have a set of two
states Ω = {C,Cc} indicating that an email is in C (i.e., legitimate) or not
in C (i.e., spam), respectively. The incoming emails can be divided into three
regions, namely, the positive region POS(C) includes emails being legitimate,
the boundary region BND(C) includes emails that need further-exam, and the
negative region NEG(C) includes emails that are spam. With respect to these
three regions, the set of actions is given by A = {aP , aB , aN}, where aP , aB ,
and aN represent the three actions in classifying an email x, namely, deciding
x ∈ POS(C), deciding x ∈ BND(C), and deciding x ∈ NEG(C), respectively.
The loss function is given by the 3× 2 matrix:

C (P ) Cc (N)
aP λPP = λ(aP |C) λPN = λ(aP |Cc)
aB λBP = λ(aB |C) λBN = λ(aB |Cc)
aN λNP = λ(aN |C) λNN = λ(aN |Cc)

In the matrix, λPP , λBP and λNP denote the losses incurred for taking actions
aP , aB and aN , respectively, when an email belongs to C, and λPN , λBN and
λNN denote the losses incurred for taking these actions when the email does not
belong to C.

The expected losses associated with taking different actions for emails with
description x can be expressed as:

R(aP |x) = λPPPr(C|x) + λPNPr(Cc|x),
R(aB |x) = λBPPr(C|x) + λBNPr(Cc|x),
R(aN |x) = λNPPr(C|x) + λNNPr(Cc|x). (8)
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The Bayesian decision procedure suggests the following minimum-risk decision
rules:

(P) If R(aP |x) ≤ R(aB |x) and R(aP |x) ≤ R(aN |x),decide x ∈ POS(C);
(B) If R(aB |x) ≤ R(aP |x) and R(aB |x) ≤ R(aN |x),decide x ∈ BND(C);
(N) If R(aN |x) ≤ R(aP |x) and R(aN |x) ≤ R(aB |x),decide x ∈ NEG(C).

Tie-breaking criteria should be added so that each email is put into only one
region.

Since Pr(C|x) + Pr(Cc|x) = 1, we can simplify the rules based only on the
probabilities Pr(C|x) and the loss function λ. Consider a special kind of loss
functions with:

(c0). λPP ≤ λBP < λNP ,

λNN ≤ λBN < λPN . (9)

That is, the loss of classifying an email x being in C into the positive region
POS(C) is less than or equal to the loss of classifying x into the boundary re-
gion BND(C), and both of these losses are strictly less than the loss of classifying
x into the negative region NEG(C). The reverse order of losses is used for clas-
sifying an email not in C. Under condition (c0), we can simplify decision rules
(P)-(N) as follows. For the rule (P), the first condition can be expressed as:

R(aP |x) ≤ R(aB |x)
⇐⇒ λPPPr(C|x) + λPNPr(Cc|x) ≤ λBPPr(C|x) + λBNPr(Cc|x)
⇐⇒ λPPPr(C|x) + λPN (1− Pr(C|x)) ≤ λBPPr(C|x) + λBN (1− Pr(C|x))

⇐⇒ Pr(C|x) ≥ (λPN − λBN )
(λPN − λBN ) + (λBP − λPP )

. (10)

Similarly, the second condition of rule (P) can be expressed as:

R(aP |x) ≤ R(aN |x)⇐⇒ Pr(C|x) ≥ (λPN − λNN )
(λPN − λNN ) + (λNP − λPP )

. (11)

The first condition of rule (B) is the converse of the first condition of rule (P).
It follows,

R(aB |x) ≤ R(aP |x)⇐⇒ Pr(C|x) ≤ (λPN − λBN )
(λPN − λBN ) + (λBP − λPP )

. (12)

For the second condition of rule (B), we have:

R(aB |x) ≤ R(aN |x)⇐⇒ Pr(C|x) ≥ (λBN − λNN )
(λBN − λNN ) + (λNP − λBP )

. (13)

The first condition of rule (N) is the converse of the second condition of rule (P)
and the second condition of rule (N) is the converse of the second condition of
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rule (B). It follows,

R(aN |x) ≤ R(aP |x)⇐⇒ Pr(C|x) ≤ (λPN − λNN )
(λPN − λNN ) + (λNP − λPP )

,

R(aN |x) ≤ R(aB |x)⇐⇒ Pr(C|x) ≤ (λBN − λNN )
(λBN − λNN ) + (λNP − λBP )

. (14)

To obtain a compact form of the decision rules, we denote the three expressions
in these conditions by the following three parameters:

α =
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
,

β =
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
,

γ =
(λPN − λNN )

(λPN − λNN ) + (λNP − λPP )
. (15)

The decision rules (P)-(N) can be expressed concisely as:

(P) If Pr(C|x) ≥ α and Pr(C|x) ≥ γ, decide x ∈ POS(C);
(B) If Pr(C|x) ≤ α and Pr(C|x) ≥ β, decide x ∈ BND(C);
(N) If Pr(C|x) ≤ β and Pr(C|x) ≤ γ, decide x ∈ NEG(C).

Each rule is defined by two out of the three parameters.
The conditions of rule (B) suggest that α > β may be a reasonable constraint;

it will ensure a well-defined boundary region. By setting α > β, namely,

(λPN − λBN )
(λPN − λBN ) + (λBP − λPP )

>
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
, (16)

we obtain the following condition on the loss function [17]:

(c1).
λNP − λBP
λBN − λNN

>
λBP − λPP
λPN − λBN

. (17)

The condition (c1) implies that 1 ≥ α > γ > β ≥ 0. In this case, after tie-
breaking, the following simplified rules are obtained [17]:

(P1) If Pr(C|x) ≥ α, decide x ∈ POS(C);
(B1) If β < Pr(C|x) < α, decide x ∈ BND(C);
(N1) If Pr(C|x) ≤ β, decide x ∈ NEG(C).

The parameter γ is no longer needed.
¿From the rules (P1), (B1), and (N1), the (α, β)-probabilistic positive, neg-

ative and boundary regions are given, respectively, by:

POS(α,β)(C) = {x ∈ U | Pr(C|x) ≥ α},
BND(α,β)(C) = {x ∈ U | β < Pr(C|x) < α},
NEG(α,β)(C) = {x ∈ U | Pr(C|x) ≤ β}. (18)
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The threshold parameters can be systematically calculated from a loss function
based on the Bayesian decision theory.

The conditional probability Pr(C|x) is difficult to directly derive from data.
Recall that in naive Bayesian spam filter, the ratio of Pr(C|x) and Pr(Cc|x)
(i.e., the posterior odds) can be used as a monotonic increasing transformation
of the conditional probability Pr(C|x). A threshold value on the probability can
indeed be interpreted as another threshold value on the odds. For the positive
region, we have:

P (C|x) ≥ α⇐⇒ Pr(C|x)
Pr(Cc|x)

≥ α

1− α
=
λPN − λBN
λBP − λPP

. (19)

According to equation (5), we can re-expressed the above equation as:

n∏
i=1

Pr(xi|C)
Pr(xi|Cc)

Pr(C)
Pr(Cc)

≥ λPN − λBN
λBP − λPP

. (20)

This computation can be further simplified by taking the logarithm of both side
of equation (20):

n∑
i=1

log
Pr(xi|C)
Pr(xi|Cc)

≥ log
Pr(Cc)
Pr(C)

+ log
λPN − λBN
λBP − λPP

. (21)

Here log Pr(Cc)
Pr(C) is independent of the description of emails, we treat it as a

constant. Similar expression can be obtained for the negative region as:

n∑
i=1

log
Pr(xi|C)
Pr(xi|Cc)

≤ log
Pr(Cc)
Pr(C)

+ log
λBN − λNN
λNP − λBP

. (22)

A new pair of threshold values α′ and β′ can be defined as:

α′ = log
Pr(Cc)
Pr(C)

+ log
λPN − λBN
λBP − λPP

,

β′ = log
Pr(Cc)
Pr(C)

+ log
λBN − λNN
λNP − λBP

, (23)

where Pr(C)/Pr(Cc) can be easily estimated from the frequencies of the training
data by putting:

Pr(C) =
|C|
|U |

and Pr(Cc) =
|Cc|
|U |

. (24)
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Table 1. Three-way decision results with λ = 1

Actually legitimate Actually spam Total

accept 465 28 493
further-exam 22 13 35
Reject 12 227 239

Total 499 268 767
Table 2. Naive Bayesian results with λ = 1

Actually legitimate Actually spam Total

Classified legitimate 476 32 508
Classified spam 23 236 259

Total 499 268 767

We can then get the (α′, β′)-probabilistic positive, negative and boundary
regions written as:

POS(α′,β′)(C) = {x ∈ U |
n∑
i=1

log
Pr(xi|C)
Pr(xi|Cc)

≥ α′},

BND(α′,β′)(C) = {x ∈ U | β′ <
n∑
i=1

log
Pr(xi|C)
Pr(xi|Cc)

< α′},

NEG(α′,β′)(C) = {x ∈ U |
n∑
i=1

log
Pr(xi|C)
Pr(xi|Cc)

≤ β′}. (25)

All the factors in equation (25) are easy to derive from data.

5 Experimental Results and Evaluations

Our experiments were performed on a spambase data set from UCI Machine
Learning Repository [10]. The data set consists of 4601 instances, with 1813
instances as spam, and 2788 instances as legitimate, each instance is described
by 58 attributes. Our goal is to compare our approach with the original naive
Bayesian spam filter in terms of the error rate that a legitimate email is classified
as spam, the precision and recall for both legitimate and spam emails, and the
cost-sensitive measure suggested by Androutsopoulos et al. [1].

We split the spambase data set into a training set of 3834 instances, and a
testing set of 767 instances. Since the attributes in the input data set have con-
tinuous values, entropy-MDL [4] is used as the discretization method applied to
both the training and testing data sets before the calculations of probabilities.
For the cost-sensitive evaluations, we assume that misclassifying a legitimate
email as spam is λ times more costly than misclassifying a spam email as legiti-
mate. We considered three different λ values (λ = 9, λ = 3, and λ = 1) for the
original naive Bayesian spam filter. Three sets of loss functions for the three-way
decision approach are set up accordingly with the same cost ratios. For instance,
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Table 3. Three-way decision results with λ = 3

Actually legitimate Actually spam Total

accept 476 32 508
further-exam 12 10 22
Reject 11 226 237

Total 499 268 767
Table 4. Naive Bayesian results with λ = 3

Actually legitimate Actually spam Total

Classified legitimate 483 38 521
Classified spam 16 230 246

Total 499 268 767

Table 5. Three-way decision results with λ = 9

Actually legitimate Actually spam Total

accept 465 28 493
further-exam 29 36 65
Reject 5 204 209

Total 499 268 767
Table 6. Naive Bayesian results with λ = 9

Actually legitimate Actually spam Total

Classified legitimate 491 46 537
Classified spam 8 222 230

Total 499 268 767

when we use λ = 9 for the naive Bayesian spam filter, λNP /λPN = 9 is used in
the three-way decision approach.

Table 1 and Table 2 show the prediction results of the three-way decision
and the naive Bayesian approach when λ = 1, respectively. Note that in this
case, the cost of misclassifying a legitimate email as spam is the same as the
cost of misclassifying a spam email as legitimate. Table 3 and Table 4 show the
prediction results when λ = 3. Table 5 and Table 6 show the prediction results
when λ = 9. From the above tables, we can easily find that the error rates
of misclassifying a legitimate email into spam by using the three-way decision
approach are lower than the original naive Bayesian spam filter in all three
experiments. Since reducing this error rate is the most important factor to users.
Although the accuracy of correctly classifying a legitimate email has slightly
dropped, but we consider this as a reasonable trade off.

To further evaluate these results, we compare the precision, recall and weighted
accuracy of both approaches. The legitimate precision and recall are defined as:

legitimate precision =
nL→L

nL→L + nS→L
, legitimate recall =

nL→L
nL→L + nL→S

,

where nL→L denotes the number of emails classified as legitimate which truly
are, nL→S denotes the number of legitimate emails classified as spam, and nS→L
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Table 7. Comparison between three-way decision and naive Bayesian approaches

Spam Legitimate
Cost Approaches precision recall precision recall weighted accuracy

Three-way decision 94.98% 84.70% 94.32% 93.19% 94.54%
λ = 1 Naive Bayesian 91.12% 88.06% 93.70% 95.39% 92.83%

Three-way decision 95.36% 84.33% 93.70% 90.71% 96.22%
λ = 3 Naive Bayesian 93.50% 85.82% 92.70% 96.79% 95.13%

Three-way decision 97.61% 76.12% 94.32% 93.19% 98.36%
λ = 9 Naive Bayesian 96.52% 82.84% 91.43% 98.40% 97.52%

denotes the number of spam emails classified as legitimate. Similarly, we define:

spam precision =
nS→S

nS→S + nL→S
, spam recall =

nS→S
nS→S + nS→L

.

Clearly, spam precision is the most important factor to users. The comparison
results are shown in Table 7. We can easily find that the three-way decision
approach provides a better spam precision than the naive Bayesian spam filter
in all three experiments. For the cost-sensitive evaluations, we used weighted
accuracy suggested by Androutsopoulos et al. [1], which is defined as:

weighted accuracy =
λ · nL→L + nS→S
λ ·NL +NS

,

where NL and NS are the number of legitimate and spam emails to be classified
by the spam filter. From Table 7, we can find that the weighted accuracy of the
three-way decision approach is higher than the original naive Bayesian approach
in all three experiments. We also find that when λ changed to a bigger value,
the performances of both approaches are increased, but the three-way decision
approach performs out the naive Baysian spam filter in all three settings.

6 Conclusion

In this paper, we present a three-way decision approach to email spam filtering.
In addition to the most commonly used binary classification for spam filtering,
a third action is added to allow users make further examinations for undecided
cases. The main advantage of our approach is that it provides a more sensible
feedback to users for handling their emails, thus reduces the misclassification
rate. A pair of threshold values are used. The first threshold value determines
the point necessary for a re-examination, and the second value determines the
point to reject an email. Instead of supplying the threshold values based on try
and error, or intuitive understandings of the levels of tolerance for errors. We
provide a systematically calculation of the threshold values based on Bayesian
decision theory. A loss function is defined in association with each action. The
final decision making is to select the action for which the overall cost is minimum.
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Our experimental results show that the new approach reduces the error rate of
classifying a legitimate email to spam, and provides a better spam precision and
weighted accuracy.
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