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Abstract

Granulation of a universe involves grouping of simi-

lar elements into granules. With granulated views, we

deal with approximations of concepts, represented by

subsets of the universe, in terms of granules. This

paper examines the problem of approximations with

respect to various granulations of the universe. The

granulation structures used by both rough set theory

and neighborhood systems, and the corresponding ap-

proximation structures, are studied.

1 Introduction

An underlying idea of granular computing is the use
of groups, classes, or clusters of elements called gran-
ules [18, 19]. There are many reasons for the study
of granular computing. The practical necessity and
simplicity in problem solving are perhaps some of the
main reasons. When a problem involves incomplete,
uncertain, or vague information, it may be difficult
to differentiate distinct elements and one is forced to
consider granules. Although detailed information may
be available, it may be sufficient to use granules in or-
der to have an efficient and practical solution. Very
precise solutions may not be required for many prac-
tical problems. The use of granules generally leads to
simplification of practical problems. It may also hap-
pen that the acquisition of precise information is too
costly, and coarse-grained information reduces cost.
Granular computing will play an important role in the
design and implementation of intelligent information
systems.

The construction, representation, and interpreta-
tion of granules, as well as the utilization of granules
for problem solving, are some of the fundamental is-
sues of granular computing. A general framework of
granular computing was presented in a recent paper
by Zadeh [18] in the context of fuzzy set theory. On

the other hand, many researchers investigated spe-
cific and more concrete models of granular comput-
ing. Lin [2] and Yao [14] studied granular computing
using neighborhood systems for the interpretation of
granules. Pawlak [5], Polkowski and Skowron [6], and
Skowron and Stepaniuk [8] examined granular com-
puting in connection with the theory of rough sets. A
salient feature of these studies is that a particular se-
mantics interpretation of granules is defined, and an
algorithm for constructing granules is given.

Information granulation depends on the available
knowledge. Elements in a granule are drawn together
by indistinguishability, similarity, proximity, or func-
tionality [18]. The theories of rough sets and neighbor-
hood systems provide convenient and effective tools for
granulation, and deal with some fundamental granu-
lation structures. In the rough set theory, one starts
with an equivalence relation. A universe is divided
into a family of disjoint subsets. The granulation
structure adopted is a partition of the universe. By
weakening the requirement of equivalence relations, we
can have more general granulation structures such as
coverings of the universe. Neighborhood systems pro-
vide an even more general granulation structure. For
each element of a universe, one associates it with a
nonempty family of neighborhood granules, which is
called a neighborhood system. It offers a multi-layered
granulation of the universe, which is a natural general-
ization of the single-layered granulation structure used
by rough set theory.

With the granulation of universe, one considers ele-
ments within a granule as a whole rather than individ-
ually [19]. The loss of information through granula-
tion implies that some subsets of the universe can only
be approximately described. In theory of rough sets,
a pair of lower and upper approximation is typically
used. The approximations are expressed in terms of
granules according to their overlaps with the set to be
approximated. Based on this idea, the main objective
of the paper is to study the two related issues of granu-



lation and approximation. The granulation structures
used by theories of rough sets and neighborhood sys-
tems are analyzed and compared, and the correspond-
ing approximation structures are investigated.

2 Granulations and Approximations

From view of points of rough sets and neighborhood
systems, this section examines connections between
granulations and approximations.

2.1 Rough sets: granulation by partitions

Let U be a finite and non-empty set called the uni-
verse, and let E ⊆ U × U denote an equivalence rela-
tion on U . The pair apr = (U, E) is called an approx-
imation space. The equivalence relation E partitions
the set U into disjoint subsets. This partition of the
universe is denoted by U/E. The equivalence relation
is the available information or knowledge about the
objects under consideration. If two elements x, y in
U belong to the same equivalence class, we say that
x and y are indistinguishable. Each equivalence class
may be viewed as a granule consisting of indistinguish-
able elements, and it is also referred to as an equiva-
lence granule. The granulation structure induced by
an equivalence relation is a partition of the universe.

An arbitrary set X ⊆ U may not necessarily be a
union of some equivalence classes. This implies that
one may not be able to describe X precisely using the
equivalence classes of E. In this case, one may charac-
terize X by a pair of lower and upper approximations:

apr(X) =
⋃

[x]E⊆X

[x]E ,

apr(X) =
⋃

[x]E∩X 6=∅

[x]E , (1)

where

[x]E = {y | xEy}, (2)

is the equivalence class containing x. The lower ap-
proximation apr(X) is the union of all the equivalence
granules which are subsets of X . The upper approxi-
mation apr(X) is the union of all the equivalence gran-
ules which have a non-empty intersection with X .

Lower and upper approximations are dual to each
other in the sense:

(Ia) apr(X) = (apr(Xc))c,

(Ib) apr(X) = (apr(Xc))c,

where Xc = U − X is the complement of X . The set
X lies within its lower and upper approximations:

(II) apr(X) ⊆ X ⊆ apr(X).

Intuitively, lower approximation may be understood
as the pessimistic view and the upper approximation
the optimistic view in approximating a set by using
equivalence granules. One can also verify the following
properties:

(IIIa) apr(X ∩ Y ) = apr(X) ∩ apr(Y ),

(IIIb) apr(X ∪ Y ) = apr(X) ∪ apr(Y ).

The lower (upper) approximation of the intersection
(union) of a finite number of sets can be obtained from
their lower (upper) approximations. However, we only
have:

(IVa) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ),

(IVb) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ).

It is impossible to obtain the lower (upper) approxi-
mation of the union (intersection) of some sets from
their lower (upper) approximations. Additional prop-
erties of rough set approximations can be found in
Pawlak [4], and Yao and Lin [17].

Equivalence classes of the partition U/E are called
the elementary granules. They represent the available
information. All knowledge we have about the uni-
verse are about these elementary granules, instead of
about individual elements. With this interpretation,
we also have knowledge about the union of some el-
ementary granules. The empty set ∅ and the union
of one or more elementary sets are usually called de-
finable, observable, measurable, or composed sets. In
this study, we call them granules. The set of all gran-
ules is denoted GK(U), which is a subset of the power
set 2U . By extending equivalence class of x as given
by equation (2) to a subset X ⊆ U , we have:

[X ]E =
⋃

x∈X

[x]E . (3)

Thus, each element of GK(U) may be viewed as the
equivalence granule containing a subset of the uni-
verse, and the set GK(U) is defined by:

GK(U) = {[X ]E | X ⊆ U}. (4)

The set of granules GK(U) is closed under both set
intersection and union. It is in fact a σ-algebra of
subsets of U generated by the family of equivalence
classes U/E.



For an element G ∈ GK(U), we have:

apr(G) = G = apr(G). (5)

For an arbitrary subset X ⊆ U , we have the following
equivalent definition of rough set approximations:

apr(X) =
⋃

{G | G ⊆ X, G ∈ GK(U)},

apr(X) =
⋂

{G | X ⊆ G, G ∈ GK(U)}. (6)

This definition offers another interesting interpreta-
tion. The lower approximation is the largest granule
contained in X , where the upper approximation is the
smallest granule containing X . They therefore rep-
resent the best approximation of X from below and
above using granules.

2.2 Generalized rough sets: granulation
by coverings

Granulation of the universe by family of disjoint
subsets is a simple and easy to analysis case. One
may consider general cases by extending partitions to
coverings of the universe, or by extending equivalence
relations to arbitrary binary relations [13]. In this sec-
tion, we use the covering induced by a reflexive binary
relation.

Let R ⊆ U ×U be a binary relation on U . For two
elements x, y ∈ U , if xRy, we say that y is R-related
to x. A binary relation may be more conveniently
represented using successor neighborhoods:

(x)R = {y ∈ U | xRy}. (7)

The successor neighborhood (x)R consists of all R-
related elements of x. When R is an equivalence rela-
tion, (x)R is the equivalence class containing x. When
R is a reflexive relation, the family of successor neigh-
borhoods U/R = {(x)R | x ∈ U} is a covering of the
universe, namely,

⋃
x∈U (x)R = U . The binary rela-

tion R represents the similarity between elements of a
universe. It is reasonable to assume that similarity is
at least reflexive, but not necessarily symmetric and
transitive [9].

For the granulation induced by the covering U/R,
rough set approximations can be defined by general-
izing equation (1). The equivalence class [x]E may be
replaced by the successor neighborhood (x)R. One of
such generalizations is given by [11]:

apr(X) =
⋃

(x)R⊆X

(x)R,

apr(X) = (apr(Xc))c. (8)

In this definition, we generalize the lower approxima-
tion and define the upper approximation through du-
ality. In general, apr(X) is different from the straight-
forward generalization

⋃
(x)R∩X 6=∅(x)R. While the

lower approximation is the union of some successor
neighborhoods, the upper approximation cannot be
expressed in this way [11].

Similar to the case of partition, we call the elements
of a covering elementary granules. The empty set ∅ or
the union of some elementary granules is referred to
as a granule. For a subset X ⊂ U , we define:

(X)R =
⋃

x∈X

(x)R, (9)

which is the successor neighborhood of X . The set of
all such neighborhoods is given by:

GK(U) = {(X)R | X ⊆ U}. (10)

The set GK(U) is only closed under set union. The
complemented system:

GKc(U) = {Gc | G ∈ GK(U)}, (11)

is only closed under set intersection. In fact, GKc(U)
is a closure system [12]. For an element G ∈ GK(U),
i.e., Gc ∈ GKc(U), we have:

apr(G) = G,

apr(Gc) = Gc. (12)

In general, G = apr(G) 6= apr(G) and apr(Gc) 6=
apr(Gc) = Gc for an arbitrary G ∈ GK(U). By these
properties, we refer to the elements of GK(U) as inner
definable granules, and the elements of GKc(U) as
outer definable granules [12]. Using these granules,
we have another equivalent definition:

apr(X) =
⋃

{G | G ⊆ X, G ∈ GK(U)},

apr(X) =
⋂

{G | X ⊆ G, G ∈ GKc(U)}.(13)

The lower approximation is the largest inner definable
granule contained in X , and the upper approximation
is the smallest outer definable granules containing X .
They are related to the definition for the case of par-
titions, in which GK(U) and GKc(U) are the same
set. For a covering, the set GK(U)∩GKc(U) consists
of both inner and outer definable granules. Obviously,
∅, U ∈ GK(U) ∩ GKc(U).

The new approximations satisfy properties (I), (II),
and (IV). They do not satisfy property (III). Never-
theless, they satisfy a weaker version:

(Va) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ),

(Vb) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ).



By definition, apr(X ∩ Y ) can be written as a union
of some elementary granules. Although both apr(X)
and apr(Y ) can be expressed as unions of elementary
granules, apr(X) ∩ apr(Y ) cannot be so expressed.

2.3 Neighborhood systems: multi-layered
granulations

In the theory of rough sets, single-layered granu-
lation structures of the universe are used. The gran-
ulated view of the universe is based on a binary re-
lation representing the simplest type of relationships
between elements of a universe. Two elements are ei-
ther related or unrelated. To resolve this difficulty, the
notion of neighborhood systems is used to derive more
general granulation structures on the universe. Two
granulation structures are defined from a neighbor-
hood system. One is a single covering of the universe,
and the other is a layered family of coverings of the
universe.

The concept of neighborhood systems was origi-
nally introduced by Sierpenski and Krieger [10] for the
study of Féchet (V)spaces. Lin [1, 2] adopted it for de-
scribing relationships between objects in database sys-
tems. Yao [14] used the notion for granular computing
by focusing on the granulation structures induced by
neighborhood systems.

For an element x of a finite universe U , one asso-
ciates with it a subset n(x) ⊆ U called the neighbor-
hood of x. Intuitively speaking, elements in a neigh-
borhood of an element are somewhat indiscernible or
at least not noticeably distinguishable from x. A
neighborhood of x may or may not contain x. A neigh-
borhood of x containing x is called a reflexive neigh-
borhood. We are only interested in reflexive neighbor-
hoods of x to accommodate the intuitive interpreta-
tion of neighborhoods. A neighborhood system NS(x)
of x is a nonempty family of neighborhoods of x. Dis-
tinct neighborhoods of x consist of elements having
different types of, or various degrees of, similarity to
x. A neighborhood system is reflexive, if every neigh-
borhood in it is reflexive. Let NS(U) denote the col-
lection of neighborhood systems for all elements in U .
It determines a Féchet (V)space, written (U, NS(U)).
There is no additional requirements on neighborhood
systems.

Neighborhood systems can be used to describe more
general types of relationships between elements of
a universe [2, 14]. A binary relation can be inter-
preted in terms of 1-neighborhood systems, in which
each neighborhood system contains only one neighbor-
hood [11]. More precisely, the neighborhood system of
x is given by NS(x) = {(x)R}. If R is a reflexive re-

lation, one obtains a reflexive neighborhood system
which is the covering U/R. If R is an equivalence re-
lation, the successor neighborhood (x)R is the equiva-
lence class containing x, and the neighborhood system
is the partition U/R. With the introduction of multi-
neighborhood, we consider various granulations and
the corresponding approximations.

A simple method for defining approximations is to
construct a covering of the universe by using all neigh-
borhoods in every reflexive neighborhood system:

C0 =
⋃

x∈U

NS(x)

= {n(x) | n(x) ∈ NS(x), x ∈ U}. (14)

Each granule in C0 is a neighborhood of an element of
the universe. The approximations are defined by:

apr
C0

(X) =
⋃

n(x)⊆X

n(x),

aprC0
(X) = (apr(Xc))c. (15)

A disadvantage of this formulation is that it uses
a single-layered granulation structure, and does not
make full use of the information provided by neigh-
borhood systems.

In a neighborhood system, different neighborhoods
represent different types or degrees of similarity. Such
information should be taken into consideration in the
approximation. From a neighborhood system of the
universe, we may construct a family of coverings of
the universe. Instead of using all neighborhoods, each
covering is obtained by selecting one particular neigh-
borhood of each element, i.e.,

C = {n(x), . . . , n(y), n(z)}, (16)

where n(x) ∈ NS(x), . . . , n(y) ∈ NS(y), n(z) ∈ NS(z)
for x, . . . , y, z ∈ U . In this way, we transform a neigh-
borhood system into a family of 1-neighborhood sys-
tems FC(U). An order relation � on FC(U) can be
defined as follows, for C1, C2 ∈ FC(U),

C1 � C2 ⇐⇒ nC1
(x) ⊆ nC2

(x), for all x ∈ U. (17)

The covering C1 is finer than C2, or C2 is coarser than
C1. For each granule in C2, one can find a granule in
C1 which is at least as small as the former. It can
be verified that � is reflexive, transitive, and anti-
symmetric. In other words, � is a partial order, and
the set FC(U) is a poset. Thus, we have obtained a
family of multi-layered coverings, which in turn pro-
duces multi-layered granulations of the universe.



For each covering C ∈ FC(U), we can define a pair
of lower and upper approximations:

apr
C

(X) =
⋃

G∈C,G⊆X

G,

aprC(X) = (apr(Xc))c. (18)

With the poset FC(U), we obtain multi-layered ap-
proximations. Approximations in various layers sat-
isfy the property:

C1 � C2 =⇒ apr
C2

(X) ⊆ apr
C1

(X),

aprC1
(X) ⊆ aprC2

(X). (19)

A finer covering C1 produces a better approximation
than a coarser covering C2.

In the above formulation, we have transformed gen-
eral reflexive neighborhood systems into a family of
reflexive 1-neighborhood systems. This enables us to
apply the results about approximations from the the-
ory of rough sets. Our formulation is indeed based on
two basic granulation structures, i.e., partitions and
coverings of the universe. They are interpreted by us-
ing equivalence and reflexive relations. Consequently,
two types of approximations are examined. In the
discussion, we focused on only one definition of rough
set approximations. There are several different defini-
tions available [11]. The argument presented here can
be easily applied to other definitions.

The use of nested sequences of binary relation has
also been discussed by many authors. Marek and Ra-
siowa [3] considered gradual approximations of sets
based on a descending sequence of equivalence rela-
tions. Pomykala [7] used a sequence of tolerance re-
lations (i.e., reflexive and symmetric relations). Some
recent results on this topic were given by Yao [15], and
Yao and Lin [16]. The results reported in this paper
are more general.

3 Conclusion

The granulation structures adopted in the rough
set theory are based on partitions and coverings of
a universe, which produce single-layered granulation
structures. A set of elementary granules are used to
build larger granules that are the set of inner and/or
definable granules. In the case of partition, we obtain
an σ-algebra representing the set of inner and outer
definable granules. In the case of covering, the set of
outer definable granules form a closure systems. Ev-
ery subset of the universe is approximated from below
by inner definable granules, and from above by outer

definable granules. By using neighborhoods, we can
have a family of coverings, which leads to a more gen-
eral multi-layered granulation structure.

Granulation structures and the corresponding ap-
proximation structures introduced in this paper pro-
vide a starting point for further study of granulation
and approximation. Investigations in this direction
may produce interesting and useful results.
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