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Abstract

In this paper, we introduce the notion of interval structures in an
attempt to establish a unified framework for representing uncertain in-
formation. Two views are suggested for the interpretation of an interval
structure. A typical example using the compatibility view is the rough-
set model in which the lower and upper approximations form an interval
structure. Incidence calculus adopts the allocation view in which an inter-
val structure is defined by the tightest lower and upper incidence bounds.
The relationship between interval structures and interval-based numeric
belief and plausibility functions is also examined. As an application of
the proposed model, an algorithm is developed for computing the tightest
incidence bounds.

Keywords belief functions, incidence calculus, interval structure, knowledge
representation, rough sets, uncertainty management.

1 Introduction

In many situations, we often find ourselves in a state of uncertainty. This might
stem from a lack of knowledge, or from the incompleteness or unreliability of the
information at our disposal. It is therefore important to choose an appropriate
structure to represent such information.

One may use numeric functions or non-numeric structures to represent un-
certainty (Bhatnagar and Kanal 1986). The best known numeric method for
modeling uncertainty is perhaps the Bayesian approach using probability func-
tions (Neapolitan 1990; Pearl 1988). More recently, interval-based approaches
have been adopted for uncertainty management. For example, one may use a
pair of belief and plausibility functions to describe uncertainty by specifying an



interval within which lies the true probability (Dubois and Prade 1986; Halpern
and Fagin 1992; Shafer 1976; Smets 1988). This approach allows the assignment
of one’s belief to a proposition without necessarily committing the remaining
belief to its negation. Another approach is possibility theory in which the un-
certainty of a proposition is bounded by its necessity and possibility values
(Dubois and Prade 1988; Klir and Folger 1988). These interval-based numeric
approaches have been used successfully in the design of approximate reasoning
systems.

On the other hand, non-numeric or qualitative methods are particularly use-
ful for modeling uncertainty when numeric information is not readily available
(Bhatnagar and Kanal 1986; Fine 1973; Luzeaux 1991; Satoh 1989). Typical
examples of interval-based non-numeric methods include the rough-set theory
(Iwinski 1987; Pawlak 1982, 1984; Pomykala and Pomykala, 1987), incidence
calculus (Bundy 1985, 1986), and interval-set algebra (Yao 1993). In the rough-
set model, a concept is characterized by a pair of ordinary (crisp) sets called
the lower and upper approximations. The lower approximation contains the
elements definitely belonging to the concept, whereas the upper approximation
contains the elements possibly belonging to the concept. In incidence calculus,
one assigns a lower bound and an upper bound to the incidence of a proposi-
tion. A lower bound represents the set of situations in which the proposition
is definitely true, and an upper bound represents the set of situations in which
the proposition could be true. In interval-set algebra, an interval set is used to
define the bounds within which lies the true but unknown set. In the theory of
fuzzy sets, the core of a fuzzy set is defined by collecting all elements with total
membership, while the support is defined by collecting all elements with non-
zero membership (Klir and Folger 1988). That is, a fuzzy set is qualitatively
defined in terms of two crisp sets. More recently, Yao and Wong (1992) stud-
ied the rough-set and fuzzy-set models within the Bayesian decision-theoretic
framework. In this method, a set can be approximated by different levels of
lower and upper bounds depending on the particular application. The notion of
two-fold fuzzy sets is another example of interval-based methods (Dubois and
Prade 1990; Farinas del Cerro and Prade 1986).

All the above methods use the notion of interval in spite of their appar-
ent differences. This suggests that there may exist a common framework for
these methods. The present study extends our preliminary investigation on this
topic (Wong, Wang and Yao 1992a, 1992b). We introduce the notion of interval
structures to represent vague or imprecise information. An interval structure
is defined as a pair of mappings between two Boolean algebras. Both the nu-
meric and non-numeric interval-based methods will be analyzed using this new
representation of uncertainty. It will be shown that the lower and upper ap-
proximations in the rough-set model, and the tightest lower and upper bounds
in incidence calculus are a special kind of interval structure. We will present
two interpretations of an interval structure, the compatibility view and the allo-
cation view. To demonstrate the usefulness of this unified approach, we suggest



an algorithm for computing the tightest incidence bounds.

This paper is organized as follows. In Section 2, we first define the concepts
of a Boolean algebra before introducing the notion of interval structures. In
Section 3, we discuss two views for interpreting an interval structure, which
provide a plausible unified framework for modeling uncertainty. In Section 4,
we examine the relationship between an interval structure and a pair of belief
and plausibility functions.

For clarity, all the proofs of the lemmas and theorems developed in this
paper are given in the Appendix.

2 Interval Structures

This section first reviews the basic concepts of a Boolean algebra pertinent to
our discussion and then introduces the notion of interval structures.

2.1 Boolean algebra

A partially ordered set (poset) is a pair (A, =), where A is a non-empty set and
< is a reflexive, transitive, and antisymmetric binary relation on A. If a < b
and a # b, we write a < b. An element 0 of a poset (A, <) is called a universal
lower bound (zero) if 0 < @ for all @ € A. Similarly, an element 1 of (A, <) is
called a universal upper bound (unit) if @ < 1 for all a € A. In the following
discussion, only finite A is considered.

Let a, b, and ¢ be elements of a poset (A, <X). We say that ¢ is a least upper
bound or a join of @ and b if @ < ¢ and b < ¢, and there exists no other element
d in A such that a = d < cand b < d < ¢. Least upper bounds are unique if
they exist. Greatest lower bounds or meets are defined similarly, and they are
also unique if they exist. The least upper bound of a and b is denoted by a V b,
and the greatest lower bound of a and b is denoted by a A b, where V and A are
referred to as the join and meet operations, respectively.

A poset (A, <), in which any two elements have a join and a meet, is called
a lattice, written as (A, V, A). If a and b are elements in a lattice (A, V, A), and

aANb=0 and aVb=1, (1)

we say b is a complement of a. In general, an element in a lattice may have more
than one complement. A complement of a is denoted by —a. A lattice is said
to be complemented if every element has at least one complement. A lattice is
distributive if for all elements a, b, and ¢ in (A, V, A),

anN(®Ve)=(aAb)V(aAec), (2)
or equivalently,

aV({Ac)=(aVDd)A(aVec). (3)



A Boolean algebra (A, V,A,—,0,1) is a complemented distributive lattice with
a zero 0 and a unit 1. In a Boolean algebra, complements are uniquely defined.

2.2 An interval structure over two Boolean algebras

For notational convenience, the same symbols will be used to denote the binary
operations and the universal bounds in different Boolean algebras.

Given a Boolean algebra (A, V,A,—,0,1), we call £ C A a multiplicative
subset of A if a A b is in £ whenever a and b are in £, and an additive subset of
A if a Vb isin £ whenever a and b are in £. Let £ be a multiplicative subset
of A containing both 0 and 1. Let & be a multiplicative subset of B in another
Boolean algebra (B,V,A,—,0,1), containing both 0 and 1. We call a mapping
g: &€ — X a A-homomorphism if g(0) =0, g(1) =1, and g(a Ab) = g(a) Ag(b)
for all a, b € £. Let £ be an additive subset of A containing both 0 and 1,
and X be an additive subset of B containing both 0 and 1. We call a mapping
h: &€ — X aV-homomorphism if h(0) =0, h(1) = 1, and h(aVb) = h(a)V h(b)
for all a,b € £. Obviously, the sets A and B are both multiplicative and additive.

Given any two arbitrary elements a and b of A, a < b holds if and only if
a =aAlb. Let g: A — B be a A-homomorphism. Suppose a = b. By definition,
g(a) = gla Ab) = g(a) A g(b). This implies that g(a) =< ¢(b). Therefore,
a=<b= g(a) 2 g(b). Froma <aVband b=<aVb, weobtain g(a) < glaVb)
and ¢g(b) <X g(a Vv b). This means that g(a) V g(b) < g(a VvV b). Similarly, for
a V-homomorphism h: A — B, we can show a < b = h(a) = h(b) and
h(aAb) < h(a) Ah(b). These two properties are stated in the following lemmas.

Lemma 1 Suppose g: A — B is a A-homomorphism, and h: A — B is a
V-homomorphism. Then a <b=> g(a) < g(b) and a < b= h(a) < h(b).

Lemma 2 Ifg: A — B is a A-homomorphism, then g(a) V g(b) < g(a V b).
If h: A — B is a V-homomorphism, then h(a Ab) < h(a) A h(b).

In this study, we are primarily interested in dual homomorphisms.

Definition 1 Suppose f: A — B and f: A — B are two mappings from
a Boolean algebra (./_4, V,A,—,0,1) to another Boolean algebra (B,V,A,—,0,1).
We say that f and f are dual mappings if f(a) = —f(—a) for every a € A.

The next two lemmas summarize some of the important properties of dual
A- and V-homomorphisms.

Lemma 3 Given a A-homomorphism [, its dual mapping f obtained from

f(a) = =f(=a) is a V-homomorphism, and vice versa.

Lemma 4 Suppose f and f are a pair of dual A- and V-homomorphisms. Then
for any a € A,

f(a) = f(a). (4)

W~



Based on Lemma 4, a pair of dual A- and V-homomorphisms characterizes
an element a € A in terms of two elements f(a), f(a) € B with f(a) < f(a).
This pair of elements can be interpreted as the two extreme points of an interval
in the Boolean algebra (B,V, A, —,0,1):

[f(a), f(a)] ={z |z € Band f(a) =2 < f(a)}. (5)

We may call f(a) the lower bound of a, f(a) the upper bound of a, and

[f(a), f(a)] the interval representation of a. The intervals associated with dif-
ferent elements of A satisfy the following properties:

(L1) fla) Vv f(b) = f(aVb),
(L2) fla) A f(b) = flanb),
(L3) £(0) =0,
(L4) f(1) =1,
and
(U1) f(avb) = F(a)V f(b),
(U2) flanb) = fla) A f(b),
(U3) f(0) =0,
(U4) f1)=1

These properties suggest that the structure induced by a pair of dual A- and
V-homomorphisms needs more attention. It should be noted that the above

properties are not necessarily independent. For example, Lemma 2 implies that
(L2) = (L1) and (Ul) = (U2).

Definition 2 Let (A, V,A,~,0,1) and (B, V, A, =,0,1) be two Boolean algebras.
Given two mappings f: A — B and f: A — B, we call the pair (f, f) an
interval structure if f is a A-homomorphism, f is a V-homomorphism, and
fla) = —f(—a) for all a € A, ie., f and f are a pair of dual A- and V-
homomorphisms.

An alternate way of defining an interval structure is through another map-
ping j: A — B satisfying the axioms:

(A1) j(0) =0,
(A2) Vi@ =1,
acA
(A3) a#b= j(a) Ajb)=0.

This mapping is called a basic assignment, and an element a € A with j(a) # 0
is called a focal element. From a given j, one can define a mapping f: for all



a€ A,
fa) =\ i), (6)

and another mapping f by the relationship f(a) = = f(—a). The mapping f can
be equivalently defined by:

Fla)y =\ ). (7)

anb#0

It can be easily verified that the pair (f, f) is an interval structure. Conversely,

given an interval structure (f, f), we can construct the basic assignment j by
the formula: for all a € A,

jla) = f@) A=\ £0)). (8)

b<a

These observations are summarized in the following theorem and its corollary.

Theorem 1 Let f and f be two mappings from a Boolean algebra A to another
Boolean algebra B with f(a) = =f(=a) for every a € A. The pair (f, f) is an
interval structure, if and only if there exists a basic assignment j: A — B
such that for all a € A,

fla)="\/j).

b=<a

Corollary 1 Suppose (f, f) is an interval structure defined by a basic assign-
ment j: A — B. Then for all a € A,

jla) = fla) A=(\/ £(B)).

b<a

So far, we have only introduced the abstract notion of interval structures
and discussed some of their properties. In subsequent sections, we will present
two plausible interpretations of an interval structure, and study the relationship
between interval structures and other schemes for representing uncertainty.

3 Interpretations of an Interval Structure

This section presents two interpretations of an interval structure, the compat-
ibility view and the allocation views. These views were used by Shafer (1987)
to interpret belief functions (Lingras and Wong 1990). The compatibility view
is related to the notion of rough sets, whereas the allocation view is connected
with incidence calculus. The following discussion shows that interval structures
indeed provide a unified framework for representing a variety of uncertain in-
formation.



3.1 The compatibility view

The notion of rough sets was introduced by Pawlak (1982) for approximating a
concept by using two ordinary sets referred to as the lower and upper approxi-
mations. This model has been used successfully for automatic classification and
rule generation in machine learning (Pawlak 1984; Pawlak, Wong and Ziarko
1988). We will show that the compatibility view of an interval structure leads
to the notion of generalized rough sets.

Suppose a set of descriptions W = {w1,ws,...,w,} is used to characterize
a given set of objects © = {61,02,...,0,}. This relationship can be formally
defined in terms of a compatibility relation C between the elements of ©® and
W

0 C w <= object 0 is characterized by description w. (9)

Such a relation defines a knowledge representation system. Clearly, in this
system it may not be possible to precisely characterize an arbitrary concept
(represented by a subset A C ©) using the descriptions in W. However, one
can approximately describe any concept A by constructing the following two
mappings C: 29 — 2W and C: 2° — 2W:

C(A) ={weW|Tew) CA}= |J {w} (10)
Te(w)CA
and
C(A)={weW |Tc(w)NA#0} = {w}, (11)
Te (w)NA#D
where
Fe(w)={0€©|0Cw}. (12)

The set C(A), a subset of W, is the union of all the singleton subsets of W whose
elements are compatible with only the elements of A, whereas C(A) is the union
of all the singleton subsets of W whose elements are compatible with at least
one element of A. Obviously, C(A) C C(A). These two sets can be interpreted
as the lower and upper descriptions of concept A using the description of the
objects in A. The interval [C(A),C(A)] can thus be considered as a generalized
rough set of A, which provides an approximate characterization of A by the
description of its members. Furthermore, we obtain the deterministic decision
rule, written C(A) — A, which means that an object in © with a description
in C(A) definitely belongs to A. On the other hand, the non-deterministic rule,
written C(A) ~ A, says that an object in © with a description in C(A) possibly
belongs to A (Wong, Yao and Wang 1993). It is important to note that the pair
of mappings (C,C) forms an interval structure over the two Boolean algebras
(29,U,n,-,0,0) and (2V,U,N,~, 0, W).



Now if one assumes that each object has a unique description, then C induces
the following equivalence relation R on O:

0; R 0; < there exists a w € W such that 6; C w and 6; C w. (13)

That is, if two elements 6; and 6; are characterized by the same description
w, they are considered to be equivalent. The relation R partitions the set ©
into a family of disjoint subsets, {[wi]c, [w2]c, .- ., [wm]c}, where [w]c denotes
an equivalence class of R. For this special case, from equations (10) and (11),
we immediately obtain:

R(4) = | [, (14)

[w]eCA

R4) = | vl (15)

[w]eNA#D

which are in fact the original lower and upper approximations of A introduced
by Pawlak (1982). The interval [R(A), R(A)] is the so called rough set of A,
which provides an approximate characterization of A by the objects that share
the same description of its members. The pair of mappings (R, R) defined by
equations (14) and (15) is an interval structure over the same Boolean algebra
(2°,U,n,-,0,0).

Conversely, given an interval structure (f, f) over the two Boolean algebras
(29,4, N,—,0,0) and (2",U,N, -, 0, W), one can construct a compatibility
relation C between © and W from the corresponding basic assignment j: 2° —
2W. That is, for any focal element F' (i.e., j(F) # () and all § € F, we can
define 6 C w for every element w € j(F).

It is perhaps worth mentioning that we can always construct an interval
structure over any two Boolean algebras (A4, V,A,—,0,1) and (B,V,A,—,0,1)
from a compatibility relation between A and B. The two extreme points of an
interval for any element a € A can be obtained from equations (10) and (11) by
replacing C by <, U by V, N by A, and the elements of subsets by the minterms
of the corresponding Boolean algebra.

The following example illustrates the main idea presented in this section.

Example 1 Consider a set of objects © = {61,02,03,04} and a set of descrip-
tions W = {w1,wa,ws}. Suppose the compatibility relation C is:

01 C wr, 0> C wo, 03 C wo, 04 C ws,
which gives:
Fe(wr) = {01}, Te(ws) ={02,03}, Tc(ws) = {04}
Consider a concept A = {61,02}. From equations (10) and (11), we obtain:
C(A) ={wi},  C(A) = {wr,wa}.



The interval [{w}, {w1, wa}] is the generalized rough set of A. The deterministic
and non-deterministic rules for A are:

{wl} —>A, {wl,wg}«»A.

The equivalence classes induced by C are: [wi]e = {01}, [wa]c = {62,053} and
ilwsle = {04}. According to equations (14) and (15), the lower and upper ap-
prozimations of A are:

R(A) = {61},  R(A) = {61,005}
By definition, the interval [{61},{61,02,03}] is the rough set of {61,02}.

The concepts of two-fold fuzzy sets, the core, the support and a-cuts of
fuzzy sets, and interval sets are closely related to rough sets (Wong, Wang and
Yao 1992a). Their relationships to interval structures can be established as
well. It should be noted that in this paper the notion of interval structures is
defined using the mathematical structure called Boolean algebra. In general,
one may introduce similar notions based on other mathematical structures, in
the same way that the rough-set theory is developed. It will be interesting and
worthwhile to extend the present study by using mathematical structures, such
as topological space, lattice, Stone algebra and Nelson algebra (Chuchro 1993;
Iwinski 1987; Lin and Liu 1993; Monteiro 1967; Pagliani 1993; Pomykala and
Pomykala 1988; Vakarelov 1977).

3.2 The allocation view

Let (A,V,A,—,0,1) and (B,V,A,—,0,1) be two Boolean algebras. Under the
allocation view of interval structure, one can assign elements of B to elements of
A through a basic assignment j satisfying axioms (A1)-(A3), and then construct
the individual intervals using equations (6) and (7). One can also directly define
the intervals for every element of A provided that they obey the axioms of an
interval structure. This latter approach was in fact adopted by Bundy (1985,
1986) in introducing incidence calculus for probabilistic reasoning.

In incidence calculus, a proposition is not assigned a numeric degree of belief.
Instead, a proposition is associated with a list of labels called incidences which
specify a set of situations in which the proposition is true. However, in many
cases, due to the lack of knowledge, it is not always possible to assign precisely
the incidences to every proposition. To resolve this problem, Bundy (1985)
suggested that one may assign lower and upper bounds of the incidences to
some individual propositions. A lower bound specifies those situations in which
the proposition is definitely true; an upper bound specifies those situations in
which the proposition could be true. There are two issues involved with such
an assignment. First, one should test the consistency of the bounds. Secondly,
if the given bounds are indeed consistent, one still has to infer the lower and



upper bounds of the remaining propositions. Bundy (1985, 1986) proposed a
set of inference axioms to perform these tasks. We will demonstrate that the
tightest bounds can in fact be inferred. More importantly, we show that the
tightest lower and upper bounds of the individual propositions form an interval
structure. Since an interval structure can be equivalently defined by a basic
assignment, an alternate method to compute the tightest bounds is proposed.

3.2.1 Incidence calculus

Let P be a set of propositions, which is closed under V, A, and =, and let W
be a set of situations or possible worlds. With regard to a situation w € W, a
proposition A € P is either true or false. Given a proposition A € P, one can
therefore define a subset i(A) C W to indicate that A is true for all w € i(A),
and A is false for all w & i(A); i(A) is referred to as the incidence of A. Under
this interpretation, an incidence mapping i : P — 2" should satisfy the
following axioms:

(IC1) i(~A) = W —i(A),
(1C2) i(A A B) = i(A) Ni(B).

Axiom (IC1) says that for any situation w € W, if A is true, then —A is false.
Axiom (IC2) says that for any situation w € W, if both A and B are true, then
A A B is true and vice versa. In this paper, a mapping i: P — 2" satisfying
axioms (IC1) and (IC2) is referred to as an incidence structure which satisfies
the following properties:

(IC3) i(true) = W,
(IC4) i(false) =0,
(IC5) i(AV B) =i(A)Ui(B).

An incidence structure can be equivalently defined by another set of axioms con-
sisting of (IC1) and (IC5). An incidence mapping ¢ is both a V-homomorphism
and a A-homomorphism from the Boolean algebra (P,V, A, -, false,true) to
the Boolean algebra (2, U, N, =, (), W). Thus, the pair (i,4) is a special kind of
interval structure.

3.2.2 An interval structure formed by the tightest incidence bounds

In practice, it may be difficult to specify precisely the incidence of a proposition.
Instead, one may be able to provide the lower and upper bounds of incidences
for the individual propositions. In other words, one can use two mappings
inf: P — 2" and sup: P — 2% to define the intervals within which the
true incidences lie. A pair of lower and upper mappings (inf, sup) is said to be
consistent if there exists an incidence structure i such that for all A € P,

inf(A) Ci(A) Csup(4). (16)

10



In this case, we say that ¢ is bounded by the pair (inf, sup). A pair of mappings
infg: 2© — 2" and sup,: 2° — 2% is said to be the tightest mappings of
(inf, sup) if:

(a). (info,sup,) is bounded by (inf,sup), i.e., for all A € P,

inf(A) Cinf ¢(A4) Csupo(A) C sup(A4);

(b). Any incidence structure ¢ bounded by (inf, sup) is bounded by (infy, sup),
namely,

(VA € P)(inf(A) C i(A) C sup(A)) =>
(VA € P)(inf o(A) C i(A) C supo(A));

(c). No other mappings bounded by (inf, sup) would satisfy conditions (a) and

(b).

If a pair of lower and upper mappings are consistent, all the tightest bounds are
unique.

Two different methods can be used to construct the tightest bounds of the
individual propositions. First, a modified set of Bundy’s original inference ax-
ioms can be used for testing consistency and at the same time for inferring the
tightest mappings. Initially, let INF(A) = inf(A) and SUP(A) = sup(A) for all
A € P. The values of INF and SUP are subsequently modified by using the
following set of inference axioms:

(I1)  INF(=A) = X = SUP(A) «— SUP(A) N (W — X);

(I12)  SUP(—A) = X = INF(A) « INF(4) U (W — X);

(I13) INF(A) = X and INF(B) =Y = INF(AA B) «+— INF(AAB)U (X NY);
(14)  INF(AAB) = X = INF(A) «— INF(A) U X.

For simplicity, here we consider a version of propositional logic containing the
primitive connectives — (negation) and A (and). It is understood that a propo-
sition expressed by the non-primitive connectives such as V (or), = (impli-
cation), <= (equivalence), and the logical constants: true and false, can be
translated into a normal form containing only — and A. The symbol «— is an
assignment operator which assigns a new value to a lower or an upper bound
based on its old value. The above inference axioms are applied repeatedly un-
til the values of the mappings INF and SUP are unchanged. Obviously, these
rules will tend to enlarge the lower bounds and shrink the upper bounds. The
correctness of inference rules has been discussed by Bundy (1985, 1986), which
is stated in the following lemma.

11



Lemma 5 Let INF denote the greatest lower mapping and SUP the smallest
upper mapping inferred by axioms (I1)-(14). An incidence structure i bounded
by (inf,sup) is also bounded by (INF, SUP).

If the initial pair of lower and upper mappings is consistent, properties (IC3)
and (IC4) imply that SUP(true) = W and INF(false) = (. By rule (I3),

INF(A) NINF(B) C INF(A A B).
On the other hand, by rule (14),
INF(A A B) C INF(A) N INF(B).

Thus,
INF(A A B) = INF(A) NINF(B).

That is, INF is a A-homomorphism from P to 2. Moreover, rules (I1) and
(I2) imply that SUP(A) = W — INF(-A) for all A € P. Thus, the pair
(INF,SUP) is an interval structure, i.e., the mapping INF : P — 2W is
a A-homomorphism from the Boolean algebra (P, A,V,—, false,true) to the
Boolean algebra (2, U,N, =, 0, W), and the mapping defined by SUP(A) =
W —INF(—A) is a V-homomorphism.

Theorem 2 Let (inf,sup) be a pair of consistent lower and upper mappings.
The pair of the largest lower and the smallest upper mappings (INF,SUP) in-
ferred from axioms (I1)-(14) is an interval structure.

Theorem 3 Let (inf,sup) be a pair of consistent lower and upper mappings.
The pair of the largest lower and the smallest upper mappings (INF,SUP) in-
ferred from axioms (I1)-(14) is the tightest mappings of (inf,sup).

Recall that an interval structure can be equivalently defined by a basic as-
signment. The results of Theorems 2 and 3 enable us to devise an algorithm,
called Focalfinder, to construct the tightest bounds by directly computing the
basic assignment j. In Step 1, if inf(—A) is not assigned a value in the input,
we may assume inf(—A) = (). To ensure that every w € W will be assigned to a
proposition in Step 2, we assume that inf(true) = W is in the input. It is also
understood that all the trivial bounds with inf(A) = @ and sup(A) = W have
been eliminated from the initial input. If the algorithm prints “inconsistent” it
indicates that the input set of bounds is not consistent. Therefore, we can also
use this algorithm to test consistency.

Algorithm 1 Focalfinder

Input:  Let S denote a subset of propositions in P. Suppose a lower bound
inf(A) and an upper bound sup(A) of every A in S are given.
1. For each A€ S do

12



inf(=A) « inf(=A) U (W —sup(A));

2. For each wr € W do
find all the A’s such that wy € inf(A), say, A1, Aa, ..., A;;
if AyNAsAN...NA; = false then
print “inconsistent”; Erit;
else
JATANAs A NA) — G(AL AN A Ao N A U{wg )
(if j(A1 N A A ... AN Ap) is not defined, assume it to be ().)

Output: the basic assignment j.

The following theorems show the correctness of the algorithm for computing
the basic assignment.

Theorem 4 If the pair of lower and upper mappings (f, f) is consistent, algo-
rithm Focalfinder outputs the basic assignment of the tightest mappings (INF, SUP).

Theorem 5 Focalfinder prints “inconsistent”, if and only if the input bounds
are inconsistent.

The number of computations required by Focalfinder depends very much on
the cost of testing whether A; A As A ... A A} = false. We may assume that
each proposition is expressed as a disjunction of minterms, i.e., t; Vo V... Vs,
where each t; is a conjunction of atomic propositions or their negations. The
complexity of this algorithm is O(h x |[W| x n? x m? + h x [W|?), where h is the
number of input (non-trivial) bounds, n is the number of atomic propositions,
m is the maximum number of ¢’s in the input propositions, and |W] is the
cardinality of W.

3.3 An example

In many practical situations, one is interested in the free Boolean algebra gen-
erated by a set of finite propositions, ¥ = {Py, P,..., P,}. A minterm ¢ of
the Boolean algebra P generated by ¥ has the form t = PiAPyA .. A Pn,
where P, is either P, or —P,. Any proposition A € P, except the proposition
false, can be expressed as a disjunctive normal form ¢ V3 V... t;, where t; is
a minterm such that ¢; = A. The following example illustrates the procedure
for constructing the basic assignment and its corresponding interval structure.

Example 2 Suppose we have a set of two propositions { Py, Py}. Then the set
of minterms generated by { Py, Po} is:

{tl =PANPy, to=P NPy, t3=-PAP, ty=-P A ﬁPQ}.
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The above minterms define the following set of propositions:

false,
tl; t27 t37 t47
P = t1 Vitg, t1 Vis, t1 Vig, ta Vi, taVig, t3V iy,

t1 Vta Vi, t1 ViaVig, t1 VizViy, taVisViy,
true =t1 Via Visg Viy

Let W = {wy, wa, w3, wy, ws }. Suppose the initial lower and upper bounds are:
Hf(tl \Y t2) = {’LUl,’LU4}
1nf(t1 \Y tg) = {’LUl,’LUQ}
inf (true) =

tg V t4) = {’LU3,’LU5},
t1 Vte) = {w, wa, w3}

sup

A~ =~

sup
In Step 1, the two upper bounds yield:
inf(_‘(tg vV t4)) = inf(t1 V tg)
= inf(t1 V tg) @] (W — Sup(t3 V t4>)
= {wl,w4}U(W—{w3,w5})

= {w1;w25w4}a

inf(ﬁ(tl V t4)) = inf<t2 \ t3)
= inf(ty Vt3) U (W —sup(t; V ts))
= QUW — {w, w2, ws})

= {’LU4,U)5}.

Together with the given lower bounds, we obtain:

In Step 2, since
w1 € inf(t1 \Y tg), w1 € inf(t1 vV tg),

it follows:
wy € j((tl \Y t2) A\ (tl \Y t3>) = j(t1>.

Similarly, we obtain:

wy € j(t1), w3 € j(true), wg € j(t2), ws € j(t2 Vt3).
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Therefore, the resulting basic assignment j is:

jt) = {wi,wa},  j(t2) ={wa}, J(t2Vis) ={ws}, j(true) = {ws}.

By using the formulas:
INF(4) = | J jr(B)

B=A

and

suP(4) = |J ir(B),

AN B#false

one can construct the following tightest lower and upper bounds for every A € P:

INF (false) = 0,
INF(t1) = {wy,ws},
INF(t5) = {w4}

INF(t3) = 0,

INF(t4) = 0,

INF(t; V to) = {wy,ws, w4},
INF(t; V t3) = {wy, ws},
INF(t1 V t4) = {wy, wa},

INF(ts V ty) = {w4}
INF(t5 V t4
INF(t; V to V t3) = {wy, ws, ws, ws},
INF(t; Vta Vty) = {wy, ws,ws},
)=
)=

’

—

(

(

(

(

(

( ) =

( ) =

( ) =

INF(t2 V t3) = {w4, w5},

( ) =

( ) =

(

(

NF(t1 Vits Vtg) = {wr, ws},
INF(ty V t3 V t4 = {ws, w5},
INF (true) =

and

SUP (false) = 0,
SUP(t1) = {w1, w2, w3},
UP(t2) = {ws, ws, ws},
UP(t3) = {ws, ws},
UP(ts) = {ws},
(
(
(

»n n w
T T

wn

UP(t1 Vv tz) =W,
SUP(t1 Vv t3}) = {wl,w2;w3;w5}a
SUP(t1 V t4) = {w1,w2;w3}a
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SUP(t2 V t3) = {ws, wq, w5},

SUP(t2 V t4) = {w3, ws, w5},

SUP(t3 V t4) = {ws, ws},

SUP(t; Vita Vig) =W,

SUP(t1 Vita Vitg) =W,

SUP(t1 Vtg V t4}) = {wy, w2, w3, ws},
SUP(ty V t3 V t4) {ws, wa, ws},
SUP(true) =

The procedure presented here can be easily extended for the construction of
any interval structure over two Boolean algebras.

4 Interval Structures and Belief Functions

As a typical interval-based numeric method, belief functions have generated con-
siderable interest in uncertainty management (Shafer 1976; Smets 1988). Belief
functions are particularly useful in those situations where the input required
by the Bayesian theory is not available. This section examines the relationship
between belief functions and interval structures.

Given a non-empty finite set O, referred to as a frame of discernment, a
belief function Bel is a mapping Bel : 2° — [0,1] satisfying the following
axioms:

(B1) Bel(D) =0,
(B2) Bel(©) =1

(B3) For every positive integer n and every collection Ay, As, ..., A, € 2°,
ZB@Z )= > Bel(A;iNAj) £...+ (=1)""' Bel(A; N Ay ...N A,)
i<j
= > (-1)'FBel((Ai) < Bel(A; UAy...UA,),
1C{1,2,..., n} el
1#0

where |-| denotes the cardinality of a set. The corresponding plausibility function
is defined as:
PI(A) =1 — Bel(—A). (17)

We can interpret Bel(A) as the belief one actually commits to A, and PI(A)
as the maximum possible belief one may commit to A. It can be easily ver-
ified that Bel(A) < PI(A). The interval [Bel(A), PI(A)] defines the numeric
uncertainty of proposition A. In the special case where < is replaced by =
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in axiom (B3), both the belief and plausibility functions reduce to the same
probability function.

A belief function can be equivalently defined by a basic probability assignment
m: 29 — [0, 1] satisfying the conditions:

(M1) m(0) =0,
(M2) > m(A)=1.
Ag2°©

The belief in a proposition A € 2€ can be expressed as:

(M3) Bel(A) = Y m(B).

BCA

A subset A € 29 with m(A4) > 0 is called a focal element. By the Mobius
inversion, one can construct a basic probability assignment from a belief function
using the formula:

m(A) = Y (-1)*~PIBel(B). (18)

BCA

Thus, a belief function can be defined by axioms (B1)-(B3) or axioms (M1)-
(M3).

A pair of belief and plausibility functions may be viewed as the envelopes of a
set of probability functions. A probability function P is said to be bounded by a
pair of belief and plausibility functions, Bel and Pl, if Bel(A) < P(A) < PI(A)
for every A € 29. Let ® denote the set of all probability functions bounded by
a pair of belief and plausibility functions (Bel, Pl). Dempster (1967) showed
that:

Bel(A) = Iigrelbe(A),
PI(A) = sup P(A). (19)

That is, Bel and Pl are the lower and the upper envelopes of ®.

Bundy (1992), and Correa da Silva and Bundy (1990) studied the correspon-
dence between incidence structures and probability functions, and the relation-
ship between lower and upper bounds of incidence and belief and plausibility
functions. Given an interval structure (f, f), if f and f satisfy both axioms
(L2) and (U1), they reduce to the same incidence structure. Let I denote the
set of all incidence structures bounded by an interval structure (f,f). The
non-numeric lower envelope inf;eyi(A) of I is defined as the subset of W such
that inf;e;i(A) C i(A) for all ¢ € I, and that for any X C W, if X C i(A4)
for all i € I, then X C inf;c;i(A). Similarly, the non-numeric upper envelope
sup;c; t(A) of I is defined as the subset of W such that i(A) C sup;c;i(A) for all
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i € I, and that for any X C W, if i(A) C X for all i € I, then sup;c;i(A) C X.
Using these definitions, similar to equation (19), an interval structure can be
expressed as (Wong, Wang and Yao 1992b):

flA) = 1nfz(A)

- icl

f(A) = supi(A). (20)

icl

That is, the non-numeric belief f and plausibility f are the lower and the upper
envelopes of I. B

The next two theorems summarize the relationship between a pair of belief
and plausibility functions and an interval structure.

Theorem 6 Let W and © be two finite sets. Let (f, f) be an interval structure
with [ : 20— oW and f: 2° — 2W. Suppose P is a probability function
on W. Then P(f(A)) is a belief function and P(f(A)) is the corresponding

plausibility function.

The correspondence between the basic assignment of an interval structure
and the basic probability assignment of a belief function is stated in the following
corollary.

Corollary 2 Let j be the basic assignment of an interval structure (f, f), and
m the basic probability assignment of the belief function Bel(A) = P(f(A)).
Then

m(A) = P(j(A)). (21)

Theorem 7 Two mappings Bel and Pl from 2° to [0,1] are belief and plausi-
bility functions, if and only if there exists an interval structure (f, f) on a finite
set W, and a probability P on 2V such that:

Bel(A) = P(f(A)),  PU(A) = P(f(A)). (22)

It is clear from the above analysis that belief and plausibility functions can
be better understood in terms of interval structures.

5 Conclusion

In this paper, we have introduced a unified framework for representing uncer-
tainty based on the notion of interval structures. An interval structure is defined
as a pair of mappings between two Boolean algebras, which can be equivalently
defined by a basic assignment. Such a structure can be considered as the non-
numeric counterpart of a pair of belief and plausibility functions, while the basic
assignment as the non-numeric counterpart of the basic probability assignment.
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We have discussed two views for interpreting an interval structure. The

compatibility view is based on a relation between the elements of two Boolean
algebras. The pair of lower and upper approximations in the rough-set model
is an example of an interval structure in the compatibility view. On the other
hand, the set of tightest lower and upper bounds in incidence calculus provide
an example of an interval structure in the allocation view. This unified ap-
proach enables us to develop a more efficient algorithm to compute the tightest
incidence bounds.
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Appendix: Proofs of Theorems

In this appendix, we only give the proofs of those lemmas and theorems that
do not follow trivially from the discussion in the text.

Lemma 4.proof For any two elements a and b of a Boolean algebra, a < b <=
a A'b = a. Therefore, we prove this lemma by showing that f(a) A f(a) = f(a)
as follows:

fla) = fla)nl
= fla)A[f(ma)V —f(-a)]
= fla)A[f(=a)V f(a)]
= [f(a) A f(=a)] V [f(a) A f(a)]
= flan—a)V[f(a) A f(a)]
= 0V [f(a)Af(a)]
= fla)A fla)

Theorem 1.proof (if ) From a given basic assignment j, we construct a mapping
fi A—B:forac A,

fla)="\/ i)

b=<a

By the distributive properties of V and A,

faynfo) = [\ iIAlV @)

c=a d=b
=V Vi@ni@]
c=a d=<b

From (A3),

V Vi) ri@l =\ i) =flanb).

c=xa d=b c=aNnb

That is, f(a) A f(b) = f(aAb). Also, axioms (A1) and (A2) trivially imply that

f0)=0, [f(1)=1.

Hence, (f, f) is an interval structure, where f(a) = —f(-a) for all a € A.

(only if )  Given an interval structure (f,f), we can construct a mapping
j: A—B:

jla) = f(a) A=[\ £

b<a
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We will first show that f(a) = \/,~,(b). By the distributive properties of
V and A, it follows: -

@ ViV I} = {f@nr-[\ fOVEV f0)}

= VIV IO ALY VIV F0)
b<a b <a b<a
= {faV[\/ LB} A1

By definition, f: A — B is a A-homomorphism. From Lemma 1, we have:

b=a=>f(b) < f(a) and \/ f(b) =

b<a

Hence,

o)V fO)} = fl@) vV f0)} = f(a).

b<a b<a

By applying the above equation recursively, we obtain:

f@) =\ i)
b=<a

Now we show that j satisfies (A1)-(A3). Axioms (L3) and (L4) trivially
imply (A1) and (A2). Since < is antisymmetric, we can divide the proof of (A3)
into two cases: (i) a Aband b A a, and (ii) a < b (or b < a).

(i) Suppose a £ b and b £ a. First, we want to demonstrate that a Ab < b
and aAb < a. Since aAb < band aAb =< a for any a,b € A, it is only necessary
to show that a Ab # b and a Ab # a. Suppose a Ab = a. Since a Ab < b, we
have ¢ =< b. This is a contradiction. Thus, a A b # a. Similarly, we can show
aNb#b.

By the definition of j,

jla) = fl@n-=[V f(o)

c<a

AN{[ ) f@IV flanb)}
c;;;\b

[\ @] A-flanb)}
c;é;(/l\b

f(a) A=[f(a AD)].

PN
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Likewise,

J(0) =X f(b) A—f(aND).
Therefore, j(a) A j(b) = [f(a) A=f(a AD)] A [f(b) A—f(a Ab)]. On the other
hand, since f is a A-homomorphism, for all a,b € A, we obtain:

[f(@) AN=flanDIALfO) A=flanb)] = [fla) A f(O)]A—flaAb)

= flanb)A=f(aAb)=0.
It follows that j(a) A j(b) = 0.

(ii) Suppose a < b (the case for b < a can be proved in the same manner).
In this case, we have:

f@nj) = fla) A {f®) A=\ f]}

Since j(a) < f(a), j(a) Aj(b) = f(a) Aj(b) = 0. That is, j(a) A j(b) = 0.

By combining the results of (i) and (i), we can immediately conclude that
(A3) holds.
Theorem 3.proof Showing that the pair (INF,SUP) is the tightest mappings of
(inf, sup) is equivalent to showing that given any A € P, there exist incidence
structures 41 and ¢ bounded by (INF, SUP), namely, for all B € P,

INF(B) C i1(B) C SUP(B),
INF(B) C iz(B) C SUP(B),

such that
11(A) = INF(A), i2(A) = SUP(A).

By Theorem 2, (INF,SUP) is an interval structure. Based on Theorem 1
there is a basic assignment j: P — 2W satisfying (A1)-(A3). For any C € P
with C' # false, we can express C' as a disjunctive normal form, say, C =
t1 VitaV...Vitg. Let C' = {t1,ta,...,tx} denote the corresponding set of
minterms. Thus, for any B € P, INF(B) = .. 55(C) =Ugicp 3(C). With
respect to a fixed A € P, for each focal element C € P, i.e., j(C) # 0, one can
construct a mapping jo: €’ — 29(©) satisfying the following conditions:

(D1)  J je®) =4(0),

teC”’
(D2) je(ti) Nijc(t;) =0, if i # j,
(D3) je(t)=0ifte A andC"' ¢ A'.
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For any term ¢, let i1(t) = Ugep jo(t) and i1(A) = U,c 4 1(t). Clearly, iy is
an incidence structure. Now we want to show that INF(B) C i1(B) C SUP(B)
for all B € P. Suppose w € INF(B), where B is any proposition in P. There
exists a ¢/ C B’ such that w € j(C). By the construction of jc, there exists
a term t € C' such that w € jo(t). Since C' C B’, we have t € B’. By the
construction of i1, w € Joepjo(t) = i1(t). Thus, w € U, cp i1(t') = i1(B).
That is, INF(B) C i1(B) for any B € P. Similarly, i1(B) C SUP(B).

For any w € i1(A), there exists a term ¢ € A’ such that w € 11( ) =
Ucepjc(t). That is, there exists a C' € P such that w € jco(t). By (D3),
C’" C A'. By construction, w € j(C). Therefore, w € INF(C) C INF( )s
namely, w € INF(A). It follows that INF(A) = i;(A).

Similarly, we can show that given any A € P, there exists an incidence

structure iz bounded by (INF, SUP) such that i2(A) = SUP(A).
Theorem 4.proof Obviously, j(false) = 0. In Step 2 of Focalfinder, each wy, € W
is uniquely assigned to j(A) for some A € P. Thus, J,cpj(A) = W. Also, for
A # B, j(A)Nj(B) = 0. That is, j satisfies (A1)-(A3). Now, given any A € P,
we want to show that j(B) C INF(A) for any B’ C A’. By Step 2, for any
w € j(B), there exist A, Ag, ..., A; in P such that B = A; AAsA...AA; and
w € inf(4;),i=1,2,...,1. On the other hand, by applying axiom (13) we can
conclude that w € INF(B). By (I3) again, w € INF(A). Thus ]( ) CINF(A)
for any B' C A". Let f(A) = Up/ca j(B) and f(A) = f(=A). This
pair (f, f) forms an interval structure and f(A4) C INF(A) C SUP( ) C f(A).
Suppose there exists a A € P such that f(A4) C INF(A). From the proof of
Theorem 3, for any interval structure (f, f ), there exists an incidence structure
i1 bounded by the interval structure such that f(A) =i1(A) for a given A € P.
This means that i; is bounded by the interval structure (f, f), but not bounded
by (INF,SUP). B

Given A € P, it can be seen from Step 2 of Focalfinder that for every w €
inf(A), there exists a B’ C A’ such that w € j(B). Thus, w € Jg 4 J(B) =
f(A). That is, inf(A) C f(A). Similarly, we can show f(A) C sup(A). There-
fore, we obtain: B

inf(A) C f(A) = i1(A) C INF(A) C SUP(A) € F(A) C sup(A).

Clearly, i1(A) is bounded by (inf,sup) but not bounded by (INF,SUP). By
Lemma 5, this is a contradiction. Thus, f(A) = INF(A) for every A € P.
Similarly, one can show that f(A) = SUP(A) for every A € P. That is, j is the
basic assignment of the pair of tightest mappings (INF, SUP).

Theorem 5.proof (if) Suppose the initial assignment is inconsistent and
Focalfinder does not print “inconsistent”. Then the algorithm must output a
basic assignment. Based on the proof of Theorems 3, one can construct at least
one incidence structure bounded by the initial assignment. This contradicts the
assumption that the initial assignment is inconsistent. Therefore, if the initial
assignment is inconsistent, Focalfinder must print “inconsistent” .
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(only if ) Suppose that the algorithm prints “inconsistent”. In Step 2 of
Focalfinder, there exist a w € W and A;, As, ..., A; in P such that A3 A Ax A
. NA; = false and w € inf(4;), i =1,2,...,1. By rule (I3), this implies that
the lower bound of false contains w. However, there is no incidence structure
that would be bounded by such a lower bound. Thus, the initial assignment is
inconsistent.
Theorem 6.proof Since (f, f) is an interval structure, by Theorem 1 there exists
a basic assignment j: 2° — 2W. Given a probability measure P on 2" one
can define a function m: 2° — [0,1] as

m(A) = Y P({w}) = P(j(4)).
wej(A)
This function satisfies (M1) and (M2). Thus, it is a basic probability assignment.
By definition,
Bel(A) = P(f(A)) = Z P({w}).
we f(A)

From the properties of a basic assignment and the relation f(A) = Jpc 4 J(B),

we obtain:
SooPwh)=> Y Pwh =Y m(B)

we f(A) BCAwej(B) BCA

Therefore, Bel is a belief function. Since f(A) = W — f(=A), Pl(A) = P(f(A))
is the corresponding plausibility function. B
Theorem 7.proof The if part of the proof follows trivially from Theorem 6.
The only if part of the proof is given below.

Suppose Bel: 2© — [0,1] is a belief function. Using the focal elements of
Bel, we can construct a finite set W:

W ={wa | m(A) # 0},
and a probability function P on W:
P({wa}) = m(A).
Using the basic probability assignment m, a basic assignment j: 29 — 2W
can be defined as:
{wa} ifm(A) #0,
0 if m(A) =0.
Let f(A) = Ugcad(B) and f(A) = W — f(=A). By Theorem 1, (f, f) is an

interval structure. Moreover,

J(A) =



and

P(W = f(=4))
1= P(f(=4))

= 1- Bel(—A) = PI(A).
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