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Abstract

Concepts are the basic units of thought that under-
lie human intelligence and communication. From the
perspective of cognitive informatics, a layered frame-
work is suggested for concept formation and learning.
It combines cognitive science and machine learning ap-
proaches. The philosophical issues and various views of
concepts are reviewed. Concept learning methods are
presented based on the classical view of concepts.

1. Introduction

Cognitive science is the study of intelligence and
its computational processes in humans and animals, in
computers, and in the abstract [18]. Informatics deals
with gathering, storing, retrieving, manipulating, pro-
cessing and interpreting recorded information. The com-
bination of cognitive science and informatics leads to an
emerging, multidisciplinary research area known as cog-
nitive informatics [13, 24]. There is a fast growing inter-
est in this new research initiative.

Wang [23] presented a general framework for the
study of cognitive informatics. Following the definition
of cognitive science given by Simon and Kaplan [18],
one may view cognitive informatics as the study of in-
formation processing in humans, in computers, and in
the abstract. The first two topics can be concisely de-
scribed as “information processing in mind and ma-
chine”, the subtitle of a book by Sowa published in
1984 [21]. Based on results from psychology, philoso-
phy, linguistics, and neuroscience, cognitive informatics
studies the internal information processing mechanisms
and the natural intelligence of the brain [23]. From the

point of view of computer science and particularly ar-
tificial intelligence, cognitive informatics aims at build-
ing machines and systems that simulate human ways of
knowing and thinking. The findings and an in-depth un-
derstanding of human intelligence would have a signifi-
cant impact on the development of the next generation
technologies in informatics, computing, software, and
cognitive sciences [23].

The ideas of studying intelligence in humans, in com-
puters, and in the abstract can be used to study any par-
ticular topics of cognitive informatics. Concepts are the
basic units of thought that underlie human intelligence
and communication. The study of concept formation and
learning is central to cognitive informatics. The objec-
tive of this paper is therefore to investigate basic issues
of concept formation and learning from cognitive in-
formatics perspectives. We propose a layered model for
concept formation and learning and present two concept
learning algorithms.

The study of concept formation and learning from the
perspective of cognitive informatics captures both cog-
nitive and algorithmic aspects and issues. The results
suggest that in general the connections between cogni-
tive science and informatics need to be further explored.

The rest of the paper is organized as follows. Sec-
tion 2 presents a three-level framework for knowledge
discovery and machine, namely, the philosophy level,
the algorithm/technique level, and the application level.
Sections 3 to 5 examine the issues of concept formation
and learning with reference to the three levels.

2. A Layered Model for Knowledge
Discovery

The notion of architectures plays an important role in
the study of cognitive science, which allows the study of



intelligence and its computational processes in the ab-
stract. The fundamental design specifications of an in-
telligent system are referred to as its architecture [18].
The components of the architecture only abstractly rep-
resent the underlying physical structures. The architec-
ture may be specified at different levels of abstraction.
For example, one can study the architectures of digital
computer at various levels. It is also possible to derive
a general architecture of human cognitive system [18].
Systems based on cognitive informatics can be similarly
specified. Wanget al. [25] presented a layered reference
model of the brain, ranging from lower level functions
of sensation and memory to higher level cognitive func-
tions.

The same idea can be used in building a framework
for knowledge discovery from databases, or data min-
ing. One needs to separate the study of knowledge and
the study of knowledge discovery algorithms, and in turn
to separate them from the study of the utility of the dis-
covered knowledge. A three-level framework, consist-
ing of philosophy level, the algorithm/technique level,
and the application level, has been proposed [27].

The three levels of the layered model focus on three
fundamental questions. The philosophical level ad-
dresses questions about knowledge, the algorithm level
concentrates on knowledge discovery methods, and the
application level deals with the utility of the discov-
ered knowledge. Their main features and functionalities
are summarized below.

A. Philosophy level
The philosophy level is the study of knowledge

and knowledge discovery in mind. One attempts to
answer the fundamental question, namely, what is
knowledge? There are many related issues to this
question, such as the representation of knowledge
in the brain, the expression and communication of
knowledge in words and languages, the relation-
ship between knowledge in the mind and in the
external real world, and the classification and or-
ganization of knowledge [21]. One also needs to
study the cognitive process in which knowledge is
acquired, understood, processed, and used by hu-
mans. It is necessary to define precisely “knowl-
edge” and the “basic unit of knowledge”, which
serve as the primitive notions of knowledge discov-
ery.

The study of concepts is central to philosophy,
psychology, cognitive science, inductive data pro-
cessing and analysis, and inductive learning [7, 20,
21, 22]. Concepts are assumed to be basic con-
stituents of thought and belief, and the basic units
of thought and knowledge. The focus of the philos-
ophy level is on the representation, interpretation,

connection and organization of concepts, the pro-
cesses of forming and learning concepts, and the
the processes of reasoning with concepts.

B. Algorithm/technique level
The algorithm level is the study of knowledge

and knowledge discovery in machine. One attempts
to answer the question, how to discover knowl-
edge? In the context of computers, there are many
issues related to this question, such as the cod-
ing, storage, retrieval of knowledge in a computer,
the implementation of human knowledge discovery
methods in programming languages, and the effec-
tive use of knowledge in intelligent systems. The
focus of technique level is on algorithms and meth-
ods for extracting knowledge from data.

The main stream of research in machine learn-
ing, data mining, and knowledge discovery has
concentrated on the technique level. Many concept
learning algorithms have been proposed and stud-
ied.

C. Application level
The ultimate goal of knowledge discov-

ery is to effectively use the discovered knowl-
edge. The application level therefore should focus
on the notions of “usefulness” and “meaningful-
ness” of discovered knowledge. These notions
can not be discussed in total isolation with ap-
plications, as knowledge in general is domain
specific.

The notion of usefulness can be interpreted
based on utility theory [5] and the notion of mean-
ingfulness can be modeled based on explanation-
oriented data mining [29, 30].

The division between the three levels is not a clear
cut, and may have overlap with each other. It is expected
that the results from philosophy level will provide guide-
line and set the stage for the algorithm and application
levels. On the other hand, it is desirable that philosophi-
cal study does not depend on the availability of specific
techniques, and technical study is not constrained by a
particular application. The existence of a type of knowl-
edge in data is unrelated to whether we have an algo-
rithm to extract it. The existence of an algorithm does
not necessarily imply that the discovered knowledge is
meaningful and useful [27].

The three levels represent the understanding, dis-
covery, and utilization of knowledge. Any of them is
indispensable in the study of intelligence and intelli-
gent systems. They must be considered together in a
common framework through multi-disciplinary stud-
ies, rather than in isolation. Many research efforts
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Figure 1. The meaning triangle (adopted
from [21])

have been made to achieve such a goal. For exam-
ple, Sowa [21] combined cognitive science and artificial
intelligence approaches for modeling information pro-
cessing in mind and machine based on conceptual struc-
ture. The book edited by Van Mchelenet al. [22] brings
together the cognitive research on categories and con-
cepts (i.e., the philosophy level study) and data analysis
(i.e., the technique level study).

The general ideas of the layered framework can be
immediately applied to the study of cognitive informat-
ics. One can address different types of issues at the three
levels. In the following sections, we study concept for-
mation and learning with respect to the three levels.

3. Philosophy Level Study of Concepts

There are many theoretical views of concepts, con-
cept formation and learning [15, 20, 21, 22]. The clas-
sical view treats concepts as entities with well-defined
borderlines and describable by sets of singly necessary
and jointly sufficient conditions [22]. Other views in-
clude the prototype view, the exemplar view, the frame
view, and the theory view [22]. Each view captures spe-
cific aspects of concepts, and has a different implication
for concept formation and learning. The applications of
different views for inductive data analysis have been ad-
dressed by many authors [16, 21, 22].

In this section, we review the classical view of con-
cepts and the basic issues related to concept formation
and organization. More complete treatments of these is-
sues can be found in the references [11, 15, 20, 21, 22].

3.1. Classical view of concepts

In the classical view, every concept is understood as
a unit of thought that consists of two parts, the intension

and the extension of the concept [20, 21, 22]. The inten-
sion (comprehension) of a concept consists of all prop-
erties or attributes that are valid for all those objects to
which the concept applies. The extension of a concept is
the set of objects or entities which are instances of the
concept. All objects in the extension have the same prop-
erties that characterize the concept. In other words, the
intension of a concept is an abstract description of com-
mon features or properties shared by elements in the ex-
tension, and the extension consists of concrete examples
of the concept. A concept is thus described jointly by its
intension and extension.

Extensional objects are mapped to intensional con-
cepts through perception, and concepts are coded by
words in speech. The two mappings of perception and
speech define an indirect mapping between words and
objects [12, 21]. This is depicted by the meaning trian-
gle given in Figure 1. The peak is the concept, intension,
thought, idea, or sense, the left corner is the symbol or
word, and the right corner is the referent, object, or ex-
tension.

The classical view of concepts enables us to study
concepts in a logic setting in terms of intensions and also
in a set-theoretic setting in terms of extensions. Reason-
ing about intensions is based on logic [21]. Inductive in-
ference and learning attempt to derive relationships be-
tween the intensions of concepts based on the relations
between the extensions of concepts. Through the con-
nections between extensions of concepts, one may es-
tablish relationships between concepts [26, 27].

3.2. Concept formation and structures

Human knowledge is conceptual and forms an inte-
grated whole. In characterizing human knowledge, one
needs to consider two topics, namely, context and hier-
archy [15, 19]. The two topics have significant implica-
tions for concept formation and organization.

A context in which concepts are formed provides
meaningful interpretations of the concepts. The theory
view of concepts attempts to, to a large extent, reflect the
contextual feature of concepts [11]. It is assumed that the
formation of individual concepts and the overall concep-
tual structure depend on one’s theory of a domain. One’s
theories and complex knowledge structures play a cru-
cial role in concept formation, combination and learn-
ing.

Human knowledge is organized in a tower or a par-
tial ordering. The base or minimal elements of the or-
dering are the most fundamental concepts and higher-
level concepts depend on lower-level concepts [19]. The
first-level concept is formed directly from the percep-
tual data [15]. The higher-level concepts, representing a



relatively advanced state of knowledge, are formed by a
process of abstracting from abstractions [15].

In concept formation, there are two basic issues
known as aggregation and characterization [4]. Aggre-
gation aims at the identification of a group of objects
so that they form the extension of a concept. Char-
acterization attempts to describe the derived set of
objects in order to obtain the intension of the con-
cept [4].

For aggregation, one considers two main processes
called differentiation and integration [15]. Differentia-
tion enables us to grasp the differences between objects,
so that we can separate one or more objects from other
objects. Integration is the process of putting together ele-
ments into an inseparable whole. As the final step in con-
cept formation, characterization provides a definition of
a concept.

4. Technique Level Study of Concepts

Based on the philosophy level study, one can build
computational model for concept formation and learn-
ing. A particular concrete model is normally based on
some philosophical assumptions and may not be able to
cover all issues. As an illustration, we consider a sim-
ple model. The intensions are expressed as formulas of
a logic language. The extensions are defined by adopt-
ing Tarski’s approach through the notions of a model and
satisfiability [3, 14, 26, 27]. Concept learning is mod-
eled as search in a conjunctive concept space.

4.1. Intensions of concepts defined by
a language

Traditionally, the intension of a concept is given by
a set of properties. In artificial intelligence, one can de-
fine a language so that the intension of a concept is ex-
pressed as a formula of the language.

LetAt be a finite set of attributes or features. For each
attributea ∈ At, we associate it with a set of values or
labelsVa. LetU be a set of universe whose elements are
called objects. For eacha ∈ At, there is a mappingIa
connecting elements ofU and elements ofVa. Further-
more, it is assumed that the mappingIa is single-valued.
In this case, the value of an objectx ∈ U on an attribute
a ∈ At is denoted byIa(x).

In order to formally define intensions of concepts, we
adopt the decision logic languageL used and studied
by Pawlak [14]. Formulas ofL are constructed recur-
sively based on a set of atomic formulas corresponding
to some basic concepts. An atomic formula is given by
a = v, wherea ∈ At andv ∈ Va. For each atomic for-
mulaa = v, an objectx satisfies it ifIa(x) = v, writ-

tenx |= a = v. Otherwise, it does not satisfya = v and
is written¬x |= a = v. From atomic formulas, we can
construct other formulas by applying the logic connec-
tives¬, ∧, ∨, →, and↔. The satisfiability of any for-
mula is defined as follows:

(1) x |= ¬φ iff not x |= φ,

(2) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(3) x |= φ ∨ ψ iff x |= φ or x |= ψ,

(4) x |= φ→ ψ iff x |= ¬φ ∨ ψ,
(5) x |= φ↔ ψ iff x |= φ→ ψ and x |= ψ → φ.

The languageL can be used to reason about inten-
sions. Each formula represents an intension of a con-
cept. For two formulasφ andψ, we say thatφ is more
specific thanψ, andψ is more general thanφ, if and
only if |= φ → ψ, namely,ψ logically follows fromφ.
In other words, the formulaφ→ ψ is satisfied by all ob-
jects with respect to any universeU and any informa-
tion functionIa. If φ is more specific thanψ, we write
φ � ψ, and callφ a sub-concept ofψ, andψ a super-
concept ofφ.

4.2. Conjunctive concept space

Concept learning, to a large extent, depends on the
structure of the target concepts. Typically, each learn-
ing algorithm focuses on a specific type of concepts.

Consider the class of conjunctive concepts used in
version space learning method [9]. LetCN(L) denote
the class of conjunctive concepts. It contains the spe-
cial formula> which is satisfied by every object, the
atomic formula, and formula constructed from atomic
formula by only logic connective∧. Furthermore, we as-
sume that an attribute appears at most once in each for-
mula ofCN(L).

The classCN(L) is referred to as the conjunctive
concept space. For two concepts withφ � ψ, φ is called
a specification ofψ andψ a generalization ofφ. Further-
more,φ is called a most general specification ofψ and
ψ a most specific generalization ofφ, if there does not
exist another concept betweenφ andψ. The conjunc-
tive concept space can be represented as a graph by con-
necting a concept with its most specific generalizations
and its most general specifications. At the top level, the
most general concept is defined by the formula>. The
next level concepts are defined by atomic formulas. The
combination of two atomic formulas produces the next
level of concepts, and so on. Finally, at the bottom level,
a most specific concept is formed by the conjunction of
each atomic formula from every attribute.

Figure 2 draws part of the graph of the conjunctive
space for three attributes,{Height, Hair, Eyes}, with



the following domains:

VHeight = {short , tall},
VHair = {blond , dark , red},
VEyes = {blue, brown}.

In the figure, an atomic formula is simply represented
by the attribute value. For example, the atomic formula
Height = short is simply written asshort .

We can classify conjunctive concepts by the num-
ber of atomic concepts in them. A concept involvingk
atomic concepts is called ak-conjunction. Obviously,
the most general specifications ofk-conjunction are
(k + 1)-conjunctions, and the most specific generaliza-
tions ofk-conjunction are(k − 1)-conjunctions.

4.3. Extensions of concepts defined by
an information table

In inductive learning and concept formation, exten-
sions of concepts are normally defined with respect to
a particular training set of examples. With respect to a
dataset, we can build a model based on an information
table:

M = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}). (1)

In this case,U is typically a finite set of objects.
If φ is a formula, the setm(φ) defined by:

m(φ) = {x ∈ U | x |= φ}, (2)

is called the meaning of the formulaφ in M . The mean-
ing of a formulaφ is therefore the set of all objects hav-
ing the property expressed by the formulaφ. In other
words,φ can be viewed as the description of the set
of objectsm(φ). Thus, a connection between formulas
and subsets ofU is established. Obviously, the follow-
ing properties hold [14]:

(a) m(¬φ) = −m(φ),

(b) m(φ ∧ ψ) = m(φ) ∩m(ψ),

(c) m(φ ∨ ψ) = m(φ) ∪m(ψ),

(d) m(φ→ ψ) = −m(φ) ∪m(ψ),

(e) m(φ ≡ ψ) = (m(φ) ∩m(ψ)) ∪
(−m(φ) ∩ −m(ψ)).

With the introduction of languageL, we have a formal
description of concepts. A concept definable in a model
M is a pair(φ,m(φ)), whereφ ∈ L. More specifically,
φ is a description ofm(φ) in M , the intension of con-
cept(φ,m(φ)), andm(φ) is the set of objects satisfying
φ, the extension of concept(φ,m(φ)).

Table 1 is an example of an information table, taken
from an example from Quinlan [17]. Each object is de-
scribed by three attributes. The column labeled by Class
denotes an expert’s classification of the objects.

Object Height Hair Eyes Class
o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 1. An information table

A concept (φ,m(φ)) is said to be a sub-concept
of another concept(ψ,m(ψ)), or (ψ,m(ψ)) a super-
concept of(φ,m(φ)), in an information table ifm(φ) ⊆
m(ψ). A concept(φ,m(φ)) is said to be a smallest non-
empty concept inM if there does not exist another non-
empty proper sub-concept of(φ,m(φ)). Two concepts
(φ,m(φ)) and(ψ,m(ψ)) are disjoint ifm(φ)∩m(ψ) =
∅. If m(φ) ∩ m(ψ) 6= ∅, we say that the two concepts
have a non-empty overlap and hence are related.

4.4. Relationship between concepts in
an information table

Based on the notions introduced so far, we can study
a special type of knowledge represented by relationship
between overlapping concepts. This type of knowledge
is commonly referred to as rules. A rule can be ex-
pressed in the form,φ ⇒ ψ, whereφ andψ are in-
tensions of two concepts. A crucial issue is therefore
the characterization, classification, and interpretationof
rules. It is reasonable to expect that different types of
rules represent different kinds of knowledge derivable
from a database.

In data mining, rules are typically interpreted in terms
of conditional probability [31]. For a ruleφ ⇒ ψ, its
characteristics can be summarized by the following con-
tingency table:

ψ ¬ψ Total
φ a b a+ b

¬φ c d c+ d

Total a+ c b+ d a+ b+ c+ d = n

a = |m(φ ∧ ψ)|, b = |m(φ ∧ ¬ψ)|,
c = |m(¬φ ∧ ψ)|, d = |m(¬φ ∧ ¬ψ)|.

Different measures can be defined to reflect various as-
pects of rules.
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Figure 2. A conjunctive concept space

Thegeneralityof φ is defined by:

G(φ) =
|m(φ)|

|U |

=
a+ b

n
, (3)

which indicates the relative size of the conceptφ. Obvi-
ously, we have0 ≤ G(φ) ≤ 1. A concept is more gen-
eral if it covers more instances of the universe. A sub-
concept has a lower generality than its super-concept.
The quantity may be viewed as the probability of a ran-
domly selected element satisfyingφ.

Theabsolute supportof ψ provided byφ is:

AS(φ⇒ ψ) = AS(ψ|φ)

=
|m(ψ) ∩m(φ)|

|m(φ)|

=
a

a+ b
, (4)

The quantity,0 ≤ AS(ψ|φ) ≤ 1, states the degree to
whichφ supportsψ. It may be viewed as the conditional
probability of a randomly selected element satisfyingψ

given that the element satisfiesφ. In set-theoretic terms,
it is the degree to whichm(φ) is included inm(ψ).
Clearly,AS(ψ|φ) = 1, if and only if m(φ) 6= ∅ and
m(φ) ⊆ m(ψ). That is, a rule with the maximum abso-
lute support 1 is a certain rule.

Themutual supportof φ andψ is:

MS(φ, ψ) =
|m(φ) ∩m(ψ)|

|m(φ) ∪m(ψ)|

=
a

a+ b+ c
. (5)

One may interpret the mutual support,0 ≤MS(φ, ψ) ≤
1, as a measure of the strength of a pair of rulesφ ⇒ ψ

andψ ⇒ φ.
Thechange of supportof ψ provided byφ is defined

by:

CS(φ⇒ ψ) = CS(ψ|φ)

= AS(ψ|φ) −G(ψ)

=
a

a+ b
−
a+ c

n
. (6)

Unlike the absolute support, the change of support varies
from −1 to 1. One may considerG(ψ) to be the prior
probability ofψ andAS(ψ|φ) the posterior probability
of ψ after knowingφ. The difference of posterior and
prior probabilities represents the change of our confi-
dence regarding whetherφ is actually related toψ. For
a positive value, one may say thatφ is positively related
to ψ; for a negative value, one may say thatφ is nega-
tively related toψ.

The generalityG(ψ) is related to the satisfiability of
ψ by all objects in the database, andAS(φ ⇒ ψ) is re-
lated to the satisfiability ofψ in the subsetm(φ). A high
AS(φ ⇒ ψ) does not necessarily suggest a strong as-
sociation betweenφ andψ, as a conceptψ with a large
G(ψ) value tends to have a largeAS(φ ⇒ ψ) value.
The change of supportCS(φ ⇒ ψ) may be more accu-
rate.

4.5. Concept learning as search

In concept learning, it is assumed that the extension
of the concept is given through a set of positive and neg-



Input : a training set of examplesS and
a partition of the training setΠ,

Output : a set of formulasF .
SetF = ∅;
Setk = 1;
While S is not empty

For eachk-conjunctionφ which is not a specification of a concept inF
If m(φ) ∩ S 6= ∅ is a subset of a class inΠ

Add φ to F ;
For eachk-conjunctionφ in F

Deletem(φ) from S;
Setk = k + 1;

Return (F).

Figure 3. An algorithm for finding all most general concepts

ative examples. One may search for the most general
specifications whose extensions are subsets of the exten-
sion of the given concept. The conjunctive concept space
provides the search space, and the quantitative measures
can be used to either direct the search or evaluate the
results of learning. Two methods are outlined based on
version space method [9], DNF learning [10], PRISM
learning method [2], and a granular computing approach
for machine learning [28].

We assume that a training set is partitioned into a
group of subsets, each represents the extension of a con-
cept. Furthermore, if two objects have the same descrip-
tion, they are in the same class of the partition.

In the first method, we learn all shortest conjunctive
formulas that define the sub-concepts of a concept. This
can be easily done by searching the conjunctive concept
space from general concepts to specific concepts. Fig-
ure 3 presents such an algorithm for finding all most
general sub-concepts of a family of concepts given by
a partition.

For Table 1, the algorithm produces the set of con-
junctive sub-concepts of the class+:

{ Hair = red ,

Hair = blond ∧ Eyes = blue,

Height = short ∧ Eyes = blue,

Height = tall ∧ Hair = blond }.

and the set of conjunctive sub-concepts of the class−:

{ Hair = dark , Eyes = brown }.

From the intension point of view, the two formulas
Height = short ∧ Eyes = blue andHair = blond ∧
Eyes = blue do not have a sub-concept relationship. On
the other hand, their extensions with respect to Table 1

are:

m(Height = short ∧ Eyes = blue) = {o1},
m(Hair = blond ∧ Eyes = blue) = {o1, o6}.

Form only extension point of view, one may choose the
second formula as it covers more examples of+. There-
fore, the algorithm in Figure 3 consider both intensions
and extensions.

In practice, one may only be interested in a subset the
formulas to characterize a partition. Instead of consider-
ing concepts based on the sequence defined byk, one
may consider concepts in a sequence defined based on
an evaluation function [28]. The algorithm given in Fig-
ure 4 finds a set of most general concepts whose exten-
sions cover the training sets.

The set of concepts derived from the algorithm in
Figure 4 depends on the evaluation function. For exam-
ple, one may prefer concept with high generality and
high support. The quantitative measures discussed ear-
lier can be used to define various evaluation functions.

Consider the evaluation function defined by:

eval(φ) = max{AS(φ⇒ Class = +),

AS(φ⇒ Class = −)}. (7)

That is, a concept is evaluated based on its maximum ab-
solute support value of the class+ and the class−. For
the information Table 1, the algorithm of Figure 4 pro-
duces a set of conjunctive concepts in the following se-
quence:

+ : Hair = red ,

− : Hair = dark ,

− : Eyes = brown ,

+ : Height = short ∧ Eyes = blue,

+ : Height = tall ∧ Hair = blond .



Input : a training set of examplesS and
a partition of the training setΠ,
an evaluation functioneval,

Output : a set of formulasF .
SetF = ∅;
SetWF = the set of all 1-conjunctionsφ with m(φ) 6= ∅;
While S is not empty

Select a best formulaφ fromWF according to the evaluation functioneval
If m(φ) is a subset of a class inΠ

Add φ toF ;
Deleteφ fromWF ;
Deletem(φ) fromS;

If m(φ) is not a subset of a class inΠ
Replaceφ by its most general specifications;
Delete fromWF concepts that are specifications of concepts inF ;
Delete fromWF every conceptφ with m(φ) ∩ S = ∅;

Return (F).

Figure 4. An algorithm for finding a set of most general concep ts

It finds the same atomic concepts as the former algo-
rithm. However, the concepts defined by 2-conjunction
are different. When a different evaluation function is
used, different results may be obtained.

5. Application Level Study of Concepts

In the application level, one considers the issues re-
lated to the correct and effective use of concepts, such
as concept definition and characterization, classification,
and explanation. One may also explore the relationships
between concepts. The application level study of con-
cept may be guided by the purposes of learning, which
in turn can be studied within a wide context of scien-
tific research [29].

In a recent paper, Yao and Zhao [29] argued that sci-
entific research and data mining are much in common in
terms of their goals, tasks, processes and methodologies.
Consequently, data mining and knowledge discovery re-
search can be benefited from the long established stud-
ies of scientific research and investigation [8]. Concept
learning is a specific topic of data mining and knowledge
discovery. The same argument immediately applies.

Scientific research is affected by the perceptions and
the purposes of science. Generally speaking, “science
is the search for understanding of the world around us.
Science is the attempt to find order and lawful relations
in the world. It is a method of viewing the world.” [8]
The main purposes of science are to describe and pre-
dict, to improve or manipulate the world around us, and
to explain our world [8]. The results of the scientific
research process provide a description of an event or

a phenomenon. The knowledge obtained from research
helps us to make predictions about what will happen in
the future. Research findings are useful for us to make
an improvement in the subject matter. Research findings
can be used to determine the best or the most effective
interventions to bring about desirable changes. Finally,
scientists develop models and theories to explain why a
phenomenon occurs.

Goals similar to those of scientific research have been
discussed by many researchers in data mining. For ex-
ample, Fayyadet al. [1] identified two high-level goals
of data mining as prediction and description. Prediction
involves the use of some variables to predict the values
of some other variables, and description focuses on pat-
terns that describe the data. Some researchers studied
the issues of manipulation and action based on the dis-
covered knowledge [6]. Yao, Zhao and Maguire [30] in-
troduced a model of explanation-oriented data mining,
which focuses on constructing models for the explana-
tion of data mining results. The ideas may have a sig-
nificant impact on the understanding of data mining and
effective applications of data mining results.

Concepts learning should serve the same purposes,
namely, to describe and predict, to improve or manipu-
late the world around us, and to explain our world.

Consider the example of Table 1. Concept learning
enables us to describe and explain the classes of+ and
− using other concepts defined by attributes. Based on
the results of the algorithm in Figure 4, the class+ is
described and explained by the disjunction of three con-



junctive concepts:

(Hair = red) ∨
(Height = short ∧ Eyes = blue) ∨
(Height = tall ∧ Hair = blond).

Similarly, the class− is described by the disjunction of
two conjunctive concepts:

(Hair = dark ) ∨ (Eyes = brown).

It should be noted that the same class may also be de-
scribed and explained by a different set of concepts.

For prediction, results of algorithm in Figure 4, pro-
duce the following classification rule:

Hair = red ⇒ Class = +,

(Height = short ∧ Eyes = blue) ⇒ Class = +,

(Height = tall ∧ Hair = blond) ⇒ Class = +,

Hair = dark ⇒ Class = −,
Eyes = brown ⇒ Class = −.

That is, we can predict the class of an object based on its
attribute values.

In some situations, the tasks of description and pre-
diction may not be clearly separated. In order to have a
good prediction one must have a good description and
explanation.

The concept learning methods can be applied to study
relationships between attributes. This can be simply
done by generating the partitionΠ using one subset of
attributes, and by learning using another subset of at-
tributes. The results can be explained in a similar man-
ner.

6. Conclusion

From the perspective of cognitive informatics, this
paper examines concept formation and learning. In the
philosophy level study, we focus on the definition, inter-
pretation of concepts, and cognitive process for concept
formation and learning. In the technique level, we focus
on a specific language for defining concepts and present
two algorithms for concept learning. In the application
level, we study explanations and uses of the learned re-
sults.

The objective of the paper is aimed at a more general
framework for concept formation and learning, rather
than a more efficient algorithm. Although some of the
results are not entirely new, their treatment from the cog-
nitive informatics perspective leads to new insights. The
proposed framework may be easily applied to study any
topic in cognitive informatics.

Our investigation demonstrates that the introduction
of cognitive informatics offers us opportunity and chal-
lenges to re-consider many issues in established fields.
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