
A Generalized Decision Logic Language

for Granular Computing
Y.Y. Yao

Department of Computer Science, University of Regina, Regina

Saskatchewan, Canada S4S 0A2, E-mail: yyao@cs.uregina.ca

Churn-Jung Liau

Institute of Information Science, Academia Sinica, Taipei, Taiwan

E-mail: liaucj@iis.sinica.edu.tw

Abstract - A generalized decision logic language
GDL is proposed for granular computing (GrC) in
the Tarski’s style through the notions of a model and
satisfiability. The model is an information table con-
sisting of a finite set of objects described by a finite
set of attributes. A concept or a granule is charac-
terized by a pair consisting of the intension of the
concept, a formula of the language GDL, and the ex-
tension of the concept, a subset of the universe. We
discuss the application of GDL in formal concepts and
decision rules. The former deals with description and
interpretation of granules, and the latter deals with
the relationships between granules.

I. INTRODUCTION

The concept of information granulation was first intro-
duced by Zadeh in the context of fuzzy sets in 1979 [23].
The basic ideas of information granulation have appeared
in fields, such as interval analysis, quantization, rough set
theory, the theory of belief functions, divide and conquer,
cluster analysis, machine learning, databases, and many
others [24]. There is a fast growing and renewed interest
in the study of information granulation and computations
under the umbrella of Granular Computing (GrC) [5], [7],
[10], [11], [12], [13], [15], [16], [19], [20], [25].

Basic ingredients of granular computing are subsets,
classes, and clusters of a universe [16], [24]. There are
many fundamental issues in granular computing, such as
granulation of the universe, description of granules, re-
lationships between granules, and computing with gran-
ules. Issues of granular computing may be studied from
two related aspects, the construction of granules and
computing with granules. The former deals with the for-
mation, representation, and interpretation of granules,
while the latter deals with the utilization of granules in
problem solving [18]. Granular computing can be studied
from both the semantic and algorithmic perspectives [18].
Semantic studies focus on the “why” type questions, and

the algorithmic studies focus on the “how” type of ques-
tions. More specifically, semantics studies deal with is-
sues such as why two objects are put into the same gran-
ule, and why different granules are related. Algorith-
mic studies deal with the actual processes of information
granulation and computing with granules.

A general framework of granular computing was given
in a recent paper by Zadeh [24]. Granules are con-
structed and defined based on the concept of general-
ized constraints. Examples of constraints are equality,
possibilistic, probabilistic, fuzzy, and veristic constraints.
Granules are labeled by fuzzy sets or natural language
words. Relationships between granules are represented
in terms of fuzzy graphs or fuzzy if-then rules. The asso-
ciated computation method is known as computing with
words [22]. Many more concrete models of granular com-
puting have been studied by many authors [6], [10], [11],
[12], [13], [15], [19].

The main objective of this paper is to propose a logic
based framework for granular computing, which is com-
plementary to existing studies. We adopt the decision
logic language DL that was discussed in [9] and gen-
eralized in [3], [18]. The proposed generalized decision
logic language GDL combines the vigorous formulation
and solid foundation of decision logic and the flexibil-
ity and intuitive interpretation of generalized constraints.
The language is developed in the Tarski’s style through
the notions of a model and satisfiability. The model is
an information table (either crisp or fuzzy) consisting
of a finite set of objects described by a finite set of at-
tributes. Granular computing is formulated in terms of
formal concepts, which can be used to develop a math-
ematical model for data mining [18]. A concept or a
granule is defined as a pair consisting of the intension
of the concept, a formula of GDL, and the extension of
the concept, a subset of the universe. The intension is
a formal description of the granule, and the extension is

the granule itself. An object satisfies the formula of a
concept if the object has the properties as specified by
the formula, and the object belongs to the extension of
the concepts. Rules are used to describe relationships
between concepts. By interpreting a concept or a gran-
ule as a pair consisting of a logic formula and a subset of
the universe, we can study granular computing in either
logic or set-theoretic setting.

II. A DECISION LOGIC LANGUAGE FOR
GRANULAR COMPUTING

Intuitively, a granule is “a clump of points (objects)
drawn together by indistinguishability, similarity, prox-
imity or functionality” [24]. In order to make those no-
tions more precise, we need to design a scheme for rep-
resenting objects under consideration. The notion of in-
formation tables is used for this purpose, in which each
object can be described by using a finite set of attributes
or features. Indistinguishability and similarity can be de-
fined through their values on the set of attributes. More
specifically, two objects are indistinguishable or similar
if we can not differentiate them through their values [9].

A. Information Tables with Added Semantics

An information table can be expressed as [9], [19]:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where

U is a finite nonempty set of objects,

At is a finite nonempty set of attributes,

Va is a nonempty set of values for a ∈ At,

Ia : U → Va is an information function.

Each information function Ia is a total function that
maps an object of U to exactly one value in Va. An in-
formation table represents all available information and
knowledge. That is, objects are only perceived, observed,
or measured by using a finite number of properties. By
generalize the information function Ia, we can obtain
generalized information tables.

An information table defined above does not have any
knowledge or information about relationship between val-
ues of an attribute. Consequently, one can only use the
trivial equality relation = on attribute values to describe
relationships between objects [16]. Theory of rough sets
and the decision logic language for an information table
is developed based on the equality relation [9]. Gran-
ules of rough sets form a partition of the universe. Each
granule is described by using equality conditions. For ex-
ample, with respect to an attribute a ∈ At and a value

v ∈ Va, a granule can be defined by {x ∈ U | Ia(x) = v}.
The formula of the decision logic language correspond-
ing to this granule is given by (a, v). A granule therefore
consists of objects having the same values on some at-
tributes. Other types of relationships between attribute
values can be introduced to provide added semantics to
an information table [16].

Relationships between attribute values lead to granu-
lations of the attribute values. Examples of such granu-
lations are the discretization and clustering of attribute
values. For an attribute a ∈ At, let La be a set of labels
used to name granules of Va. In general, each member
of La can be a subset of Va. In the degenerated case,
La consists of only singleton subsets of Va. Formally, an
information table with added semantics can be described
by a pair:

S+ = (S, {La | a ∈ At}), (1)

where S is a standard information table. In an informa-
tion table with added semantics, one can state conditions
using labels in La. Depending on the physical meanings
of labels, one may consider various types of relations. For
an attribute a ∈ At and a label l ∈ La, we may introduce
a formula of the form (a, r, l) in a generalized decision
logic language, where r denotes a particular relation be-
tween an attribute value and a label. The formula defines
the granule of the universe, {x ∈ U | Ia(x) r l}. Thus,
the granulation of attribute values induces a granulation
of the universe.

Formulas of the form (a, r, l) are closely related to
the notion of the generalized constraints proposed by
Zadeh [24]. Let X be a variable taking values from
U . A generalized constraint on the values of X is ex-
pressed in a general form as X isr R, where R is the
constraining relation, isr is a variable copula and r is
variable which defines the way in which R constrains X .
The form of the generalized constraints allows us to de-
scribe many different types, such as equality constraints,
possibilistic constraints, veristic constraints, probabilis-
tic constraints, probability value constraints, random set
constraints, and fuzzy graph constraints [24]. With a
generalized constraint, the set of objects satisfying the
constraint forms a granule. Decision logic languages use
a similar interpretation. Formulas of the original decision
logic language can be used to describe the equality con-
straints, and formula of the generalized decision logic lan-
guage can be used to describe other types of constraints.

The notion of generalized constraints is intuitively ap-
pealing and useful. In order to use generalized con-
straints, one needs to precisely define and interpret vari-
ous notions involved. In other words, one need to intro-
duce a framework in which the semantics of a particular
type of generalized constraints can be clearly explained.

In contrast, the decision logic language may be less gen-
eral and its expressive power is limited. However, it uses
an information table as a model to interpret various con-
cepts. The advantage enables us to establish a solid basis
for the study of granular computing.

In summary, the generalized decision logic language for
an information table with added semantics extends the
standard decision logic language and avoids some prob-
lem of the generalized constraints. In the following sub-
section, we present a formal description of the generalized
decision logic language.

B. A Generalized Decision Logic Language

A detailed discussion of a decision logic language DL for
an information table was given in the book by Pawlak [9].
Similar languages have been studied by many authors.
We propose a generalized decision logic language called
GDL by introducing additional vocabulary to DL.

The basic alphabet of GDL consists of the following
three types of symbols:

• a finite set of attribute symbols At,
• a finite set of relation (constraint) symbols Ra for

each attribute a ∈ At, and
• a set of label symbols La for each attribute a ∈ At.

For simplicity, we directly use the attribute names as
attribute symbols, as attribute symbols will be assigned
attribute names [3]. Each relation symbol represents a
particular relation with the equality relation as a special
case. Each label in La can be interpreted using Va. In
fact, it is a granule of Va. Furthermore, we assume that
there exists a type compatibility relation Ta between Ra
and La for each attribute a. In general, Ta(r, l) holds if
it indeed makes sense to apply the relation symbol r to
the label symbol l. The syntax of GDL is then defined
as follows.

Definition 1: Formulas of GDL are defined by the
following two rules.

• An atomic formula of GDL is a descriptor (a, r, l),
where a ∈ At, r ∈ Ra, l ∈ La, and Ta(r, l) holds.

• The well-formed formulas (wff) of GDL is the small-
est set containing the atomic formulas and closed
under ¬, ∩, ∪, → and ≡.

The semantics interpretation of formulas of GDL is
provided by an information table S+. Attribute symbols
are assigned attribute names, and labels symbols are as-
signed granule names of the attribute values. An atomic
formula describes a condition on one attribute of objects.
It can be verified if an object satisfies such a condition.
This leads to the satisfiability relation between elements

of the universe and wffs of GDL.

Definition 2: Given a GDL and an information ta-
ble S+, the satisfiability of a formula φ by an object x,
written x |=S+ φ or in short x |= φ if S+ is understood,
is defined as follows:

(1) x |= (a, r, l) iff Ia(x) r l,

(2) x |= ¬φ iff not x |= φ,

(3) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(4) x |= φ ∨ ψ iff x |= φ or x |= ψ,

(5) x |= φ→ ψ iff x |= ¬φ ∨ ψ,

(6) x |= φ ≡ ψ iff x |= φ→ ψ and x |= ψ → φ.

The previous interpretation of GDL is essentially
based on the classical two-valued logic. An object either
satisfies a formula or does not satisfy the formula. The
dichotomous notion of satisfiability can be generalized by
considering degrees of satisfiability. With the notion of
satisfiability, one may obtain a set-theoretic interpreta-
tion of formulas of GDL.

Definition 3: If φ is a formula, the set mS+(φ) de-
fined by:

mS+(φ) = {x ∈ U | x |= φ}, (2)

is called the meaning of the formula φ in S. If S+ is
understood, we simply write m(φ).

Definition 4: A formula φ is said to be valid in an
information table S+, written |=S+ φ or |= φ for short
when S+ is clear from the context, if and only if m(φ) =
U . That is, φ is satisfied by all objects in the universe.

By definition, the following properties hold [9]:

(c1). |= φ iff m(φ) = U,

(c2). |= ¬φ iff m(φ) = ∅,

(c3). |= φ→ ψ iff m(φ) ⊆ m(ψ),

(c4). |= φ ≡ ψ iff m(φ) = m(ψ).

Thus, we can study the relationships between concepts
described by formulas of the GDL based on the relation-
ships between their corresponding sets of objects.

C. Special Cases of the Decision Logic Language

The semantics of GDL depends on the satisfiability of
the atomic formulas. However, we did not give any con-
crete examples of the relation symbols and label symbols.
Roughly speaking, relation symbols correspond to the isr
variable copula of Zadeh’s generalized constraints, and
label symbols correspond to the constraining relations.
In this subsection, two concrete examples are discussed.

Decision logic language DL: The decision logic
languageDL studied by Pawlak is a very special case
of GDL. For DL, we have Ra = {=} and La = Va.
In other words, DL considers only the trivial equal-
ity relation and directly uses values from Va as the
set of label symbols. Thus, an atomic formula is of
the form (a,=, v), where a ∈ At and v ∈ Va. The
satisfiability is defined by:

x |= (a,=, v) iff Ia(x) = v. (3)

Concept hierarchy: A hierarchical clustering of at-
tribute values produces a concept hierarchy, which
was widely used in data mining [2]. In a hierar-
chy, one typically associates a name with a cluster
such that elements of the cluster are instances of the
named category or concept. Such names will be used
as labels of the GDL, and each label is interpreted
as representing a subset of the attribute values. Let
Ca be the set of all concepts in a concept hierarchy
with respect to an attribute a. In this case, we have
Ra = {=,∈} and La = Va ∪ Ca and the type com-
patibility relation Ta is defined such that Ta(=, l)
iff l ∈ Va and Ta(∈, l) iff l ∈ Ca. Thus the atomic
formulas are of the two forms, (a,=, v) and (a,∈, c),
where v ∈ Va, c ∈ Ca and c ⊆ Va. The satisfiability
of (a,=, v) is the same as in DL, and the satisfiabil-
ity of (a,∈, c) is defined by:

x |= (a,∈, c) iff Ia(x) ∈ c. (4)

In the special case where there is an order relation
on Va, one may confider intervals.

One may choose other types of relation symbols. For
example, a relation s of “similar to” can be used to pro-
duce an atomic formula (a, s, v) where v ∈ Va. The sat-
isfiability of the formula can be similarly defined. The
language GDL is very flexible due to the introduction of
relation and label symbols.

III. GRANULAR COMPUTING USING GDL

To illustrate the usefulness of GDL for granular com-
puting, we discuss two related notions, namely, formal
concepts and decision rules, by summarizing the results
presented in [18]. The former deals with description and
interpretation of granules, and the latter deals with the
relationship between granules.

A. Formal Concepts

In the study of formal concepts, every concept is under-
stood as a unit of thoughts that consists of two parts, the

intension and extension of the concept [1], [14]. The in-
tension (comprehension) of a concept consists of all prop-
erties or attributes that are valid for all those objects to
which the concept applies. The extension of a concept
is the set of objects or entities which are instances of
the concept. All objects in the extension have the same
properties that characterize the concept. In other words,
the intension of a concept is an abstract description of
common features or properties shared by elements in the
extension, and the extension consists of concrete exam-
ples of the concept. A concept is thus described jointly
by its intension and extension. This formulation enables
us to study formal concepts in a logic setting in terms of
intensions and also in a set-theoretic setting in terms of
extensions.

With the introduction of GDL, we have a formal de-
scription of concepts or granules [18]. A concept defin-
able in an information table is a pair (φ,m(φ)), where
φ is a wff. More specifically, φ is a description of m(φ)
in S+, the intension of concept (φ,m(φ)), and m(φ) is
the set of objects satisfying φ, the extension of concept
(φ,m(φ)). A concept (φ,m(φ)) is said to be a sub-
concept of another concept (ψ,m(ψ)), or (ψ,m(ψ)) a
super-concept of (φ,m(φ)), if |= φ→ ψ or m(φ) ⊆ m(ψ).
A concept (φ,m(φ)) is said to be a smallest non-empty
concept if there does not exist another nonempty and
proper sub-concept of (φ,m(φ)). Two concepts (φ,m(φ))
and (ψ,m(ψ)) are disjoint if m(φ) ∩ m(ψ) = ∅. If
m(φ) ∩ m(ψ) 6= ∅, we say that the two concepts have
a non-empty overlap and hence are related.

The above formulation of concepts is different from
the study of Wille on concept lattice [14]. Instead of
using a subset of attributes to represent the intension of a
concept, we use a formula from GDL. In our case, we can
also form a concept lattice based on logical implication
→ or set inclusion ⊆. More specifically, for two concepts
(φ,m(φ)) and (ψ,m(ψ)), the meet and join are defined
by:

(φ,m(φ)) ⊓ (ψ,m(ψ)) = (φ ∧ ψ,m(φ) ∩m(ψ)),

(φ,m(φ)) ⊔ (ψ,m(ψ)) = (φ ∨ ψ,m(φ) ∪m(ψ)). (5)

In our formulation, one can easily define the extension
based on the intension of a concept. However, the reverse
is no longer true as in the case of formal concept lattice
of Wille [14].

B. Decision Rules

Relationships between granules as represented by formal
concepts can be expressed as rules. A decision rule of
GDL can be expressed in the form, φ ⇒ ψ, where φ
and ψ are formulas in GDL, representing intensions of

two concepts. By expressing rules with intensions of con-
cepts, we may easily explain them in natural language,
provided that we can explain formulas of GDL.

In many studies of machine learning and data mining,
a rule is usually paraphrased by an if-then statement, “if
an object satisfies φ, then the object satisfies ψ.” The
interpretation suggests a kind of cause and effect relation
between φ and ψ. However, it is not clear if such a cause
and effect relation does exist. In the context of fuzzy
logic, Zadeh pointed out that although keywords such as
IF and THEN are used in describing fuzzy if-then rules,
one should not interpret the rules as expressing logical
implications [24]. These keywords are used to simply
link concepts together. Following Zadeh, we treat ⇒ as
a new connective that links two concepts together.

In the language GDL, ⇒ can be interpreted in terms
of the meaning sets of φ and ψ. A few probabilistic in-
terpretations are summarized below [21]:

Generality: The generality measures the applicabil-
ity of the rule. It tell the extend, namely, the portion
of objects or the relative number of objects, to which
the rule can be applied. The generality is defined by:

G(φ⇒ ψ) =
|m(φ ∧ ψ)|

|U |
=

|m(φ) ∩m(ψ)|

|U |
, (6)

where | · | denotes the cardinality of a set. In data
mining, G is referred to as the support of the rule,
and m(φ ∧ ψ) is the supporting set of the rule.

Absolute support: The absolute support measures
the correctness of the rule. It is defined by:

AS(φ⇒ ψ) =
|m(ψ) ∩m(φ)|

|m(φ)|
. (7)

In data mining, the absolute support is also referred
to as the confidence or accuracy of the rule. It may
be viewed as the conditional probability of a ran-
domly selected element satisfying ψ given that the
element satisfies φ. In set-theoretic terms, it is the
degree to which m(φ) is included in m(ψ).

Change of support: Typically, a decision rule φ ⇒
ψ is used to draw conclusion about ψ based on φ.
Intuitively speaking, the rule is useful if we can
say something more about ψ after knowing φ. The
change of support provides a quantitative measures
to capture this aspect of a rule, which is defined by:

CS(φ⇒ ψ) = AS(φ⇒ ψ) −G(ψ). (8)

One may consider G(ψ) to be the prior probability
of ψ and AS(φ ⇒ ψ) the posterior probability of
ψ after knowing φ. The difference of posterior and

prior probabilities represents the change of our con-
fidence regarding whether φ is actually related to ψ.
For a positive value, one may say that φ is positively
related to ψ; for a negative value, one may say that
φ is negatively related to ψ.

It should be pointed out that the above probabilistic in-
terpretations of rules are different from the interpreta-
tion based on logic implication [18]. More specifically,
probabilistic interpretations focus on the case where φ is
satisfied.

Like the logic implication →, the symbol ⇒ represents
a one-way relationship between concepts. In some situa-
tions, we are interested in two-way relationships [21]. For
this purpose, we introduce a new symbol ⇔ and a new
form of decision rule φ ⇔ ψ. This kind of decision rules
can be used to describe the similarity, independence and
overlap of two concepts. Some probabilistic interpreta-
tions are summarized below:

Mutual support: The mutual support measures the
relative size of the overlap of the two concepts and
is defined by:

MS(φ⇔ ψ) =
|m(φ) ∩m(ψ)|

|m(φ) ∪m(ψ)|
. (9)

The mutual support can be expressed in terms of
the absolute supports of the pair of rules φ⇒ ψ and
ψ ⇒ φ as [21]:

MS(φ⇔ ψ) =
1

1
AS(φ⇒ψ) + 1

AS(ψ⇒φ) − 1
. (10)

The mutual support can be re-expressed by:

MS(φ⇔ ψ) = 1 −
|m(φ)∆m(ψ)|

|m(φ) ∪m(ψ)|
, (11)

where A∆B = (A ∪ B) − (A ∩ B) is the symmetric
difference between two sets A and B. The measure
|A∆B|/|A∪B| is commonly known as the MZ metric
for measuring distance between two sets [8]. Thus,
MS is a similarity measure of φ and ψ.

Probabilistic independence (ratio): The degree
of probabilistic independence of φ and ψ is defined
by:

IND(φ⇔ ψ) =
G(φ ∧ ψ)

G(φ)G(ψ)
. (12)

It is the ratio of the joint probability of φ ∧ ψ and
the probability obtained if φ and ψ are assumed to
be probabilistically independent. Alternatively, in-
dependence can be expressed as [4]:

IND(φ⇔ ψ) =
AS(φ⇒ ψ)

G(ψ)
. (13)

It is related to the change of support in the sense
that IND is the ratio of the posterior probability of
ψ given φ and the prior probability of ψ.

Probabilistic independence (difference): The
difference between G(φ ∧ ψ) and G(φ)G(ψ) may be
used, instead of the ratio, to measure probabilistic
independence:

D(φ⇔ ψ) = G(φ ∧ ψ) −G(φ)G(ψ). (14)

The change of support CS is related to D by:

CS(φ⇒ ψ) =
D(φ⇔ ψ)

G(ψ)
. (15)

Thus, the measure CS(φ ⇒ ψ) may be viewed as a
relative difference.

Each of the probabilistic interpretations of decision
rules discussed so far captures a particular aspect of de-
cision rules. In practice, one may choose any of them
depending on the intended use of decision rules in an ap-
plication. Additional measures should also be studied to
cover other aspects of decision rules.

IV. CONCLUSION

In this paper, we propose a generalized decision logic
language GDL for granular computing. With GDL, ba-
sic issues of granular computing can be studied in either
logical or set-theoretic setting. Our preliminary inves-
tigation uses a two-valued notion of satisfiability. For
future research, we will study many-valued notion of sat-
isfiability. It is expected that this will increase the ex-
pressive power of GDL.

References

[1] S. Demri and E. Orlowska, Logical analysis of indiscernibility,
in: Incomplete Information: Rough Set Analysis, Physica-
Verlag, Heidelberg, 347-380, 1998.

[2] J.W. Han, Y. Cai and N. Cercone, Data-driven discovery of
quantitative rules in relational databases, IEEE Transactions

on Knowledge and Data Engineering, 5, 29-40, 1993.

[3] T.-F. Fan, W.-C. Hu, and C.-J. Liau, Decision logic for knowl-
edge representation in data mining, Proceedings of the 25th

Annual International Computer Software and Applications

Conference, pp. 626-631, 2001.

[4] Gray, B. and Orlowska, M.E. CCAIIA: clustering categori-
cal attributes into interesting association rules, Proceedings of

PAKDD’98, pp. 132-143, 1998.

[5] S. Hirano, M. Inuiguchi, and S. Tsumoto (Eds.), Proceedings

of International Workshop on Rough Set Theory and Granu-

lar Computing, a special issue of the Bulletin of International

Rough Set Society, Vol. 5, No. 1-2, 2001.

[6] T.Y. Lin, Granular computing on binary relations I: data
mining and neighborhood systems, in: L. Polkowski and
A. Skowron (Eds.), Rough Sets in Knowledge Discovery 1,

Methodology and Applications, Physica-Verlag, Heidelberg,
pp. 286-318, 1998.

[7] T.Y. Lin, Y.Y. Yao, and L.A. Zadeh (Eds), Data Mining and

Granular Computing, Physica-Verlag, Heidelberg, in press.

[8] E. Marczewski and H. Steinhaus, On a certain distance of
sets and the corresponding distance of functions, Colloquium

Mathemmaticum, 6, 319-327, 1958.

[9] Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning

about Data, Kluwer Academic Publishers, Dordrecht, 1991.

[10] Z. Pawlak, Granularity of knowledge, indiscernibility and
rough sets, Proceedings of 1998 IEEE International Confer-

ence on Fuzzy Systems, pp. 106-110, 1998.

[11] W. Pedrycz, Granular Computing: An Emerging Paradigm,
Springer-Verlag, Berlin, 2001.

[12] L. Polkowski and A. Skowron, Towards adaptive calculus of
granules, Proceedings of 1998 IEEE International Conference

on Fuzzy Systems, pp. 111-116, 1998.

[13] A. Skowron and J. Stepaniuk, Information granules and
approximation spaces, Proceedings of Seventh International

Conference on Information Processing and Management of

Uncertainty in Knowledge-Based Systems, pp. 354-361, 1998.

[14] R. Wille, Concept lattices and conceptual knowledge systems,
Computers Mathematics with Applications, 23, 493-515, 1992.

[15] R.R. Yager and D. Filev, Operations for granular computing:
mixing words with numbers, Proceedings of 1998 IEEE Inter-

national Conference on Fuzzy Systems, pp. 123-128, 1998.

[16] Y.Y. Yao, Information tables with neighborhood semantics,
Data Mining and Knowledge Discovery: Theory, Tools, and

Technology II, B.V. Dasarathy (Ed.), The International So-
ciety for Optical Engineering, Bellingham, Washington, pp.
108-116, 2000.

[17] Y.Y. Yao, Granular computing: basic issues and possible solu-
tions, Proceedings of the 5th Joint Conference on Information

Sciences, Volume I, Association for Intelligent Machinery, pp.
186-189, 2000.

[18] Y.Y. Yao, Modeling data mining with granular computing,
Proceedings of the 25th Annual International Computer Soft-

ware and Applications Conference, pp. 638-643, 2001.

[19] Y.Y. Yao and N. Zhong, Granular computing with information
table, manuscript, 1998, to appear in [7].

[20] Y.Y. Yao and N. Zhong, Potential applications of granular
computing in knowledge discovery and data mining, Proceed-

ings of World Multiconference on Systemics, Cybernetics and

Informatics, Volume 5, Computer Science and Engineering,
pp. 573-580, 1999.

[21] Y.Y. Yao and N. Zhong, An analysis of quantitative mea-
sures associated with rules, Proceedings of PAKDD’99, 479-
488, 1999.

[22] L.A. Zadeh, Fuzzy logic = computing with words, IEEE

Transactions on Fuzzy Systems, 4, 103-111, 1996.

[23] L.A. Zadeh, Fuzzy sets and information granularity, in: Ad-

vances in Fuzzy Set Theory and Applications, Gupta, N., Ra-
gade, R. and Yager, R. (Eds.), North-Holland, Amsterdam,
pp. 3-18, 1979.

[24] L.A. Zadeh, Towards a theory of fuzzy information granulation
and its centrality in human reasoning and fuzzy logic, Fuzzy

Sets and Systems, 19, 111-127, 1997.

[25] N. Zhong, A. Skowron, and S. Ohsuga S. (Eds.), New Direc-

tions in Rough Sets, Data Mining, and Granular-Soft Com-

puting, Springer-Verlag, Berlin, 1999.

