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Summary. Classification is one of the main tasks in machine learning, data mining,
and pattern recognition. A granular computing model is suggested for learning two
basic issues of concept formation and concept relationship identification. A classifi-
cation problem can be considered as a search for suitable granules organized under
a partial order. The structures of search space, solutions to a consistent classifica-
tion problem, and the structures of solution space are discussed. A classification
rule induction method is proposed. Instead of searching for a suitable partition, we
concentrate on the search for a suitable covering of the given universe. This method
is more general than partition-based methods. For the design of covering granule
selection heuristics, several measures on granules are suggested.

1 Introduction

Classification is one of the main tasks in machine learning, data mining, and
pattern recognition [3, 10, 12]. It deals with classifying labelled objects. Knowl-
edge for classification can be expressed in different forms, such as classification
rules, discriminant functions, and decision trees. Extensive research has been
done on the construction of classification models.

Mainstream research in classification focus on classification algorithms and
their experimental evaluations. By comparison, less attention has been paid to
the study of fundamental concepts such as structures of search space, solution
to a consistent classification problem, as well as the structures of a solution
space. For this reason, we present a granular computing based framework for
a systematic study of these fundamental issues.

Granular computing is an umbrella term to cover any theories, method-
ologies, techniques, and tools that make use of granules in problem solv-
ing [25, 27, 33, 34]. A granule is a subset of the universe. A family of gran-
ules that contains every object in the universe is called a granulation of the
universe. The granulation of a given universe involves dividing the universe
into subsets or grouping individual objects into clusters. There are many fun-
damental issues in granular computing, such as the granulation of a given
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universe, the descriptions of granules, the relationships between granules, and
the computation of granules.

Data mining, especially rule-based mining, can be molded in two steps,
namely, the formation of concepts and the identification of relationship be-
tween concepts. Formal concept analysis may be considered as a concrete
model of granular computing. It deals with the characterization of a concept
by a unit of thoughts consisting the intension and the extension of the con-
cept [4, 23]. From the standing point of granular computing, the concept of
a granule may be exemplified by a set of instances, i.e., the extension; the
concept of a granule may be described or labelled by a name, i.e., the inten-
sion. Once concepts are constructed and described, one can develop compu-
tational methods using granules [27]. In particular, one may study relation-
ships between concepts in terms of their intensions and extensions, such as
sub-concepts and super-concepts, disjoint and overlap concepts, and partial
sub-concepts. These relationships can be conveniently expressed in the form of
rules and associated quantitative measures indicating the strength of rules. By
combining the results from formal concept analysis and granular computing,
knowledge discovery and data mining, especially rule mining, can be viewed
as a process of forming concepts and finding relationships between concepts
in terms of intensions and extensions [28, 30, 32].

The organization of this chapter is as follows. In Section 2, we first present
the fundamental concepts of granular computing which serve as the basis of
classification problems. Measures associated with granules for classification
will be studied in Section 3. In Section 4, we will examine the search spaces of
classification rules. In Section 5, we remodel the ID3 and PRISM classification
algorithms from the viewpoint of granular computing. We also propose the
kLR algorithm and a granule network algorithm to complete the study of the
methodology in granular computing model.

2 Fundamentals of a Granular Computing Model for
Classification

This section provides an overview of the granular computing model [28, 30].

2.1 Information tables

Information tables are used in granular computing models. An information
table provides a convenient way to describe a finite set of objects called a
universe by a finite set of attributes [14, 33]. It represents all available in-
formation and knowledge. That is, objects are only perceived, observed, or
measured by using a finite number of properties.
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Definition 1. An information table is the following tuple:

S = (U,At,L, {Va | a ∈ At}, {Ia | a ∈ At}),

where
U is a finite nonempty set of objects,
At is a finite nonempty set of attributes,
L is a language defined by using attributes in At,
Va is a nonempty set of values of a ∈ At,
Ia : U → Va is an information function that maps an object of U to

exactly one possible value of attribute a in Va.

We can easily extend the information function Ia to an information function
on a subset of attributes. For a subset A ⊆ At, the values of an object x on
A is denoted by IA(x), where IA(x) =

∧
a∈A Ia(x).

Definition 2. In the language L, an atomic formula is given by a = v, where
a ∈ At and v ∈ Va. If φ and ψ are formulas, then so are ¬φ, φ∧ψ, and φ∨ψ.

The semantics of the language L can be defined in the Tarski’s style
through the notions of a model and the satisfiability of the formulas.

Definition 3. Given the model as an information table S, the satisfiability
of a formula φ by an object x, written x |=S φ, or in short x |= φ if S is
understood, is defined by the following conditions:

(1) x |= a = v iff Ia(x) = v,

(2) x |= ¬φ iff not x |= φ,

(3) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(4) x |= φ ∨ ψ iff x |= φ or x |= ψ.

Definition 4. Given a formula π, the set mS(φ), defined by

mS(φ) = {x ∈ U | x |= φ}, (1)

is called the meaning of the formula φ in S. If S is understood, we simply
write m(φ).

A formula φ can be viewed as the description of the set of objects m(φ),
and the meaning m(φ) of a formula is the set of all objects having the property
expressed by φ. Thus, a connection between formulas of L and subsets of U
is established.

2.2 Concept formulation

To formalize data mining, we have to analyze the concepts first. There are two
aspects of a concept, the intension and the extension [4, 23]. The intension of
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a concept consists of all properties or attributes that are valid for all objects
to which the concept applies. The intension of a concept is its meaning, or
its complete definition. The extension of a concept is the set of objects or
entities which are instances of the concept. The extension of a concept is a
collection, or a set, of things to which the concept applies. A concept is thus
described jointly by its intension and extension, i.e., a set of properties and a
set of objects. The intension of a concept can be expressed by a formula, or an
expression, of a certain language, while the extension of a concept is presented
as a set of objects that satisfies the formula. This formulation enables us to
study formal concepts in a logic setting in terms of intensions and also in a
set-theoretic setting in terms of extensions.

With the introduction of language L, we have a formal description of
concepts. A concept which is definable in an information table is a pair of
(φ,m(φ)), where φ ∈ L. More specifically, φ is a description of m(φ) in S, i.e.
the intension of concept (φ,m(φ)), and m(φ) is the set of objects satisfying φ,
i.e. the extension of concept (φ,m(φ)). We say a formula has meaning if it has
an associated subset of objects; we also say a subset of objects is definable if
it is associated with at least one formula.

Definition 5. A subset X ⊆ U is called a definable granule in an information
table S if there exists at least one formula φ such that m(φ) = X.

By using the language L, we can define various granules. For an atomic
formula a = v, we obtain a granule m(a = v). If m(φ) and m(ψ) are granules
corresponding to formulas φ and ψ, we obtain granules m(φ)∩m(ψ) = m(φ∧ψ)
and m(φ) ∪m(ψ) = m(φ ∨ ψ).

Object height hair eyes class

o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 1. An information table

To illustrate the idea developed so far, consider an information table given
by Table 1, which is adopted from Quinlan [15]. The following expressions are
some of the formulas of the language L:
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height = tall,
hair = dark,

height = tall ∧ hair = dark,

height = tall ∨ hair = dark.

The meanings of the above formulas are given by:

m(height = tall) = {o3, o4, o5, o6, o7},
m(hair = dark) = {o4, o5, o7},
m(height = tall ∧ hair = dark) = {o4, o5, o7},
m(height = tall ∨ hair = dark) = {o3, o4, o5, o6, o7}.

By pairing intensions and extensions, we can obtain formal concepts, such
as (height = tall, {o3, o4, o5, o6, o7}), (hair = dark, {o4, o5, o7}), (height =
tall∧hair = dark, {o4, o5, o7}) and (height = tall∨hair = dark, {o3, o4, o5, o6, o7}).
The involved granules such as {o3, o4, o5, o6, o7}, {o4, o5, o7} and {o3, o4, o5, o6, o7})
are definable granules.

In the case where we can precisely describe a subset of objects X, the
description may not be unique. That is, there may exist two formulas such
that m(φ) = m(ψ) = X. For example,

hair = dark,

height = tall ∧ hair = dark,

have the same meaning set {o4, o5, o7}. Another two formulas

class = +,

hair = red ∨ (hair = blond ∧ eyes = blue),

have the same meaning set {o1, o3, o6}.
In many classification algorithms, one is only interested in formulas of a

certain form. Suppose we restrict the connectives of language L to only the
conjunction connective ∧. Each formula is a conjunction of atomic formulas
and such a formula is referred to as a conjunctor.

Definition 6. A subset X ⊆ U is a conjunctively definable granule in an
information table S if there exists a conjunctor φ such that m(φ) = X.

The notion of definability of subsets in an information table is essential to
data analysis. In fact, definable granules are the basic logic units that can be
described and discussed, upon which other notions can be developed.

2.3 Granulations as partitions and coverings

Partitions and coverings are two simple and commonly used granulations of
the universe.
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Definition 7. A partition of a finite universe U is a collection of non-empty,
and pairwise disjoint subsets of U whose union is U . Each subset in a partition
is also called a block or an equivalence class.

When U is a finite set, a partition π = {Xi | 1 ≤ i ≤ m} of U consists of a
finite number m of blocks. In this case, the conditions for a partition can be
simply stated by:

(i). for all i, Xi 6= ∅,
(ii). for all i 6= j, Xi ∩Xj = ∅,
(iii).

⋃
{Xi | 1 ≤ i ≤ m} = U.

There is a one-to-one correspondence between the partitions of U and the
equivalence relations (i.e., reflexive, symmetric, and transitive relations) on
U . Each equivalence class of the equivalence relation is a block of the corre-
sponding partition. In this paper, we use partitions and equivalence relations,
and blocks and equivalence classes interchangeably.

Definition 8. A covering of a finite universe U is a collection of non-empty
subsets of U whose union is U . The subsets in a covering are called covering
granules.

When U is a finite set, a covering τ = {Xi | 1 ≤ i ≤ m} of U consists
of a finite number m of covering granules. In this case, the conditions for a
covering can be simply stated by:

(i). for all i, Xi 6= ∅,
(ii).

⋃
{Xi | 1 ≤ i ≤ m} = U.

According to the definition, a partition consists of disjoint subsets of the
universe, and a covering consists of possibly overlapping subsets. Partitions
are a special case of coverings.

Definition 9. A covering τ of U is said to be a non-redundant covering if the
collection of subsets derived by deleting any one of the granules from τ is not
a covering.

One can obtain a finer partition by further dividing the equivalence classes
of a partition. Similarly, one can obtain a finer covering by further decompos-
ing the granules of the covering.

Definition 10. A partition π1 is a refinement of another partition π2, or
equivalently, π2 is a coarsening of π1, denoted by π1 ¹ π2, if every block of
π1 is contained in some block of π2. A covering τ1 is a refinement of another
covering τ2, or equivalently, τ2 is a coarsening of τ1, denoted by τ1 ¹ τ2, if
every granule of τ1 is contained in some granule of τ2.
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The refinement relation is a partial ordering of the set of all partitions,
namely, it is reflexive, antisymmetric and transitive. This naturally defines a
refinement order on the set of all partitions, and thus form a partition lattice,
denoted as Π(U). Likewise, a refinement order on the set of all covering forms
a covering lattice, denoted as T (U).

Based on the refinement relation, we can construct multi-level granulations
of the universe [29]. Given two partitions π1 and π2, their meet, π1∧π2, is the
finest partition of π1 and π2, their join, π1 ∨π2, is the coarsest partition of π1

and π2. The equivalence classes of a meet are all nonempty intersections of an
equivalence class from π1 and an equivalence class from π2. The equivalence
classes of a join are all nonempty unions of an equivalence class from π1 and
an equivalence class from π2.

Since a partition is a covering, we use the same symbol to denote the
refinement relation on partitions and refinement relation on covering. For a
covering τ and a partition π, if τ ¹ π, we say that τ is a refinement of π,
which indicates that every granule of τ is contained in some granule of π.

Definition 11. A partition is called a definable partition (πD) in an infor-
mation table S if every equivalence class is a definable granule. A covering is
called a definable covering (τD) in an information table S if every covering
granule is a definable granule.

For example, in information Table 1 {{o1, o2, o6, o8}, {o3, o4, o5, o7}} is a
definable partition/covering, since the granule {o1, o2, o6, o8} can be defined
by the formula hair=blond, and the granule {o3, o4, o5, o7} can be defined
by the formula ¬hair=blond. We can also justify that another partition
{{o1, o2, o3, o4}, {o5, o6, o7, o8}} is not a definable partition.

If partitions π1 and π2 are definable, π1∧π2 and π1∨π2 are definable par-
titions. The family of all definable partitions forms a partition lattice ΠD(U),
which is a sub-lattice of Π(U). Likewise, if two coverings τ1 and τ2 are defin-
able, τ1 ∧ τ2 and τ1 ∨ τ2 are definable coverings. The family of all definable
coverings forms a covering lattice TD(U), which is a sub-lattice of T (U).

Definition 12. A partition is called a conjunctively definable partition (πCD)
if every equivalence class is a conjunctively definable granule. A covering is
called a conjunctively definable covering (τCD) if every covering granule is a
conjunctively definable granule.

For example, in Table 1 {{o1, o2, o8}, {o3, o4, o5, o6}, {o7}} is a conjunc-
tively definable partition or covering since the granule {o1, o2, o8} can be
defined by the conjunctor height=short, the granule {o3, o4, o5, o6} can be
defined by the conjunctor height=tall∧eyes=blue, and the granule {o7} can
be defined by the conjunctor hair=dark∧eyes=brown. Note, the join of these
three formulas cannot form a tree structure.

The family of conjunctively definable partitions forms a definable partition
lattice ΠCD(U), which is a sub-lattice of ΠD(U). The family of conjunctively
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definable coverings forms a definable covering lattice TCD(U), which is a sub-
lattice of TD(U).

Definition 13. A partition is called a tree definable partition (πAD) if every
equivalence class is a conjunctively definable granule, and all the equivalence
classes form a tree structure.

A partition ΠAD(U) is defined by At, or a subset of At. For a subset A of
attributes, we can define an equivalence relation EA as follows:

xEAy ⇐⇒
∧

a ∈ A, Ia(x) = Ia(y)

⇐⇒ IA(x) = IA(y). (2)

For the empty set, we obtain the coarsest partition {U}. For a nonempty sub-
set of attributes, the induced partition is conjunctively definable. The family
of partitions defined by all subsets of attributes forms a definable partition
lattice ΠAD(U), which is a sub-lattice of ΠCD(U).

For the information in Table 1, we obtain the following partitions with
respect to subsets of the attributes:

π∅ = {U},
πheight = {{o1, o2, o8}, {o3, o4, o5, o6, o7}},

πhair = {{o1, o2, o6, o8}, {o3}, {o4, o5, o7}},
πeyes = {{o1, o3, o4, o5, o6}, {o2, o7, o8}},

πheight∧hair = {{o1, o2, o8}, {o3}, {o4, o5, o7}, {o6}},
πheight∧eyes = {{o1}, {o2, o8}, {o3, o4, o5, o6}, {o7}},

πhair∧eyes = {{o1, o6}, {o2, o8}, {o3}, {o4, o5}, {o7}},
πheight∧hair∧eyes = {{o1}, {o2, o8}, {o3}, {o4, o5}, {o6}, {o7}}.

Since each subset defines a different partition, the partition lattice has the
same structure as the lattice defined by the power set of the three attributes
height,hair, and eyes.

All the notions developed in this section can be defined relative to a par-
ticular subset A ⊆ At of attributes. A subset X ⊆ U is called a definable
granule with respect to a subset of attributes A ⊆ At if there exists at least
one formula φ over A such that m(φ) = X. A partition π is called a defin-
able partition with respect to a subset of attributes A if every equivalence
class is a definable granule with respect to A. Let ΠD(A)(U), ΠCD(A)(U), and
ΠAD(A)(U) denote the partition (semi-) lattices with respect to a subset of
attributes A ⊆ At, respectively. We have the following connection between
partition (semi-) partition lattices and they provide a formal framework of
classification problems.
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ΠAD(U) ⊆ ΠCD(U) ⊆ ΠD(U) ⊆ Π(U),
ΠAD(A)(U) ⊆ ΠCD(A)(U) ⊆ ΠD(A)(U) ⊆ Π(U),

TCD(U) ⊆ TD(U) ⊆ T (U),
TCD(A)(U) ⊆ TD(A)(U) ⊆ T (U).

3 Measures associated with granules

We introduce and review three types of quantitative measures associated with
granules, measures of a single granule, measures of relationships between a pair
of granules [28, 32], and measures of relationships between a granule and a
family of granules, as well as a pair of family of granules.

The only measure of a single granule m(φ) of a formula φ is the generality,
defined as:

G(φ) =
|m(φ)|
|U | , (3)

which indicates the relative size of the granule m(φ). A concept defined by
the formula φ is more general if it covers more instances of the universe.
The quantity may be viewed as the probability of a randomly selected object
satisfying φ.

Given two formulas φ and ψ, we introduce a symbol ⇒ to connect φ and
ψ in the form of φ ⇒ ψ. It may be intuitively interpreted as a rule which
enables us to infer information about ψ from φ. The strength of φ ⇒ ψ can
be quantified by two related measures [20, 28].

The confidence or absolute support of ψ provided by φ is the quantity:

AS(φ ⇒ ψ) =
|m(φ ∧ ψ)|
|m(φ)| =

|m(φ) ∩m(ψ)|
|m(φ)| . (4)

It may be viewed as the conditional probability of a randomly selected object
satisfying ψ given that the object satisfies φ. In set-theoretic terms, it is
the degree to which m(φ) is included in m(ψ). Thus, AS is a measure of
the correctness or the precision of the inference. A rule with the maximum
absolute support 1 is a certain rule. The coverage ψ provided by φ is the
quantity:

CV (φ ⇒ ψ) =
|m(φ ∧ ψ)|
|m(ψ)| =

|m(φ) ∩m(ψ)|
|m(ψ)| . (5)

It may be viewed as the conditional probability of a randomly selected object
satisfying φ given that the object satisfies ψ. Thus, CV is a measure of the ap-
plicability or recall of the inference. Obviously, we can infer more information
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about ψ from φ if we have both a high absolute support and a high coverage.
In general, there is a trade-off between support and coverage.

Consider now a family of formulas Ψ = {ψ1, . . . , ψn} which induces a
partition π(Ψ) = {m(ψ1), . . . , m(ψn)} of the universe. Let φ ⇒ Ψ denote
the inference relation between φ and Ψ . In this case, we obtain the following
probability distribution in terms of φ ⇒ ψi’s:

P (Ψ | φ) =
(

P (ψ1 | φ) =
|m(φ) ∩m(ψ1)|

|m(φ)| , . . . , P (ψn | φ) =
|m(φ) ∩m(ψn)|

|m(φ)|
)

.

The conditional entropy H(Ψ | φ) defined by:

H(Ψ | φ) = −
n∑

i=1

P (ψi | φ) log P (ψi | φ), (6)

provides a measure that is inversely related to the strength of the inference
φ ⇒ Ψ . If P (ψi0 | φ) = 1 for one formula ψi0 and P (ψi | φ) = 0 for all
i 6= i0, the entropy reaches the minimum value 0. In this case, if an object
satisfies φ, one can identify one equivalence class of π(Ψ) to which the object
belongs without uncertainty. When P (ψ1 | φ) = . . . = (ψn | φ) = 1/n, the
entropy reaches the maximum value log n. In this case, we are in a state of
total uncertainty. Knowing that an object satisfies the formula φ does not
help in identifying an equivalence class of π(Ψ) to which the object belongs.

Suppose another family of formulas Φ = {φ1, . . . , φm} define a partition
π(Φ) = {m(φ1), . . . , m(φm)}. The same symbol ⇒ is also used to connect two
families of formulas that define two partitions of the universe, namely, Φ ⇒ Ψ .
The strength of this connection can be measured by the conditional entropy:

H(Ψ | Φ) =
m∑

j=1

P (φj)H(Ψ | φj)

= −
m∑

j=1

n∑

i=1

P (ψi ∧ φj) log P (ψi | φj), (7)

where P (φj) = G(φj). In fact, this is the most commonly used measure for
selecting attributes in the construction of decision tree for classification [15].

The measures discussed so far quantified two levels of relationships, i.e.,
granule level and granulation level. As we will show in the following section, by
focusing on different levels, one may obtain different methods for the induction
of classification rules.

4 Induction of Classification Rules by Searching
Granules

For classification tasks, it is assumed that each object is associated with a
unique class label. Objects can be divided into classes which form a granula-
tion of the universe. We further assume that information about objects are
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given by an information table as defined in Section 2. Without loss of general-
ity, we assume that there is a unique attribute class taking class labels as its
value. The set of attributes is expressed as At = C ∪ {class}, where C is the
set of attributes used to describe the objects. The goal is to find classification
rules of the form, φ =⇒ class = ci, where φ is a formula over C and ci is a
class label.

Let πclass ∈ Π(U) denote the partition induced by the attribute class. An
information table with a set of attributes At = C ∪ {class} is said to provide
a consistent classification if all objects with the same description over C have
the same class label, namely, if IC(x) = IC(y), then Iclass(x) = Iclass(y).
Using the concept of a partition lattice, we define the consistent classification
problem as follows.

Definition 14. An information table with a set of attributes At = C∪{class}
is a consistent classification problem if and only if there exists a partition
π ∈ ΠD(C)(U) such that π ¹ πclass, or a covering τ ∈ TD(C)(U) such that
τ ¹ πclass.

It can be easily verified that a consistent classification problem can be
considered as a search for a definable partition π ∈ ΠD(U), or more generally,
a conjunctively definable partition π ∈ ΠCD(U), or a tree definable partition
π ∈ ΠAD(U) such that π ¹ πclass. For the induction of classification rules, the
partition πAD(C)(U) is not very interesting. In fact, one is more interested in
finding a subset A ⊂ C of attributes such that πAD(A)(U) that also produces
the correct classification. Similarly, a consistent classification problem can
also be considered as a search for a conjunctively definable covering τ such
that τ ¹ πclass. This leads to different kinds of solutions to the classification
problem.

Definition 15. A partition solution to a consistent classification problem is
a conjunctively definable partition π such that π ¹ πclass. A covering solution
to a consistent classification problem is a conjunctively definable covering τ
such that τ ¹ πclass.

Let X denote a block in a partition or a covering granule of the universe,
and let des(X) denote its description using language L. If X ⊆ m(class = ci),
we can construct a classification rule: des(X) ⇒ class = ci. For a partition
or a covering, we can construct a family of classification rules. The main
difference between a partition solution and a covering solution is that an
object is only classified by one rule in a partition-based solution, while an
object may be classified by more than one rule in a covering-based solution.

Consider the consistent classification problem of Table 1. We have the
partition by class, a conjunctively defined partition π, and a conjunctively
defined covering τ :
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πclass : {{o1, o3, o6}, {o2, o4, o5, o7, o8}},
π : {{o1, o6}, {o2, o8}, {o3}, {o4, o5, o7}},
τ : {{o1, o6}, {o2, o7, o8}, {o3}, {o4, o5, o7}}.

Clearly, π ¹ πclass and τ ¹ πclass. So π ¹ πclass and τ ¹ πclass are solutions
of consistent classification problem of Table 1. A set of classification rules of
π is:

(r1) hair = blond ∧ eyes = blue =⇒ class = +,

(r2) hair = blond ∧ eyes = brown =⇒ class = −,

(r3) hair = red =⇒ class = +,

(r4) hair = dark =⇒ class = −.

A set of classification rules of τ consists of (r1), (r3), (r4) and part of (r2):

(r2′) eyes = brown =⇒ class = −.

The first set of rules is in fact obtained by the ID3 learning algorithm [16],
and the second set is by the PRISM algorithm [2]. In comparison, rule (r2′)
is shorter than (r2). Object o7 is classified by (r4) in the partition solution,
while it is classified by two rules (r2′) and (r4) in the covering solution.

The left hand side of a rule is a formula whose meaning is a block of the
solution. For example, for the first rule, we have m(hair = blond ∧ eyes =
blue) = {o1, o6}.

We can re-express many fundamental notions of classification in terms of
partitions.

Depending on the particular lattice used, one can easily establish proper-
ties of the family of solutions. Let Πα(U), where α = AD(C), CD(C), D(C),
denote a (semi-) lattice of definable partitions. Let ΠS

α (U) be the correspond-
ing set of all solution partitions. We have:

(i) For α = AD(C),CD(C), D(C), if π′ ∈ Πα(U), π ∈ ΠS
α (U) and π′ ¹ π,

then π′ ∈ ΠS
α (U);

(ii) For α = AD(C), CD(C), D(C), if π′, π ∈ ΠS
α (U), then π′ ∧ π ∈ ΠS

α (U);
(iii)For α = D(C), if π′, π ∈ ΠS

α (U), then π′ ∨ π ∈ ΠS
α (U);

It follows that the set of all solution partitions forms a definable lattice, a
conjunctively definable lattice, or a tree definable lattice.

Mining classification rules can be formulated as a search for a partition
from a partition lattice. A definable lattice provides the search space of po-
tential solutions, and the partial order of the lattice provides the search direc-
tion. The standard search methods, such as depth-first search, breadth-first
search, bounded depth-first search, and heuristic search, can be used to find
a solution to the consistent classification problem. Depending on the required
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properties of rules, one may use different definable lattices that are introduced
earlier. For example, by searching the conjunctively definable partition lattice
ΠCD(C)(U), we can obtain classification rules whose left hand sides are only
conjunctions of atomic formulas. By searching the lattice ΠAD(C)(U), one can
obtain a similar solution that can form a tree structure. The well-known ID3
learning algorithm in fact searches ΠAD(C)(U) for classification rules [15].

Definition 16. For two solutions π1, π2 ∈ Πα of a consistent classification
problem, namely, π1 ¹ πclass and π2 ¹ πclass, if π1 ¹ π2, we say that π1 is a
more specific solution than π2, or equivalently, π2 is a more general solution
than π1.

Definition 17. A solution π ∈ Πα of a consistent classification problem is
called the most general solution if there does not exist another solution π′ ∈
Πα, π 6= π′, such that π ¹ π′ ¹ πclass.

For a consistent classification problem, the partition defined by all at-
tributes in C is the finest partition in Πα. Thus, the most general solution
always exists. However, the most general solution may not be unique. There
may exist more than one the most general solutions.

In the information Table 1, consider three partitions from the lattice
ΠCD(C)(U):

π1 : {{o1}, {o2, o8}, {o3}, {o4, o5}, {o6}, {o7}},
π2 : {{o1, o6}, {o2, o8}, {o3}, {o4, o5, o7}},
π3 : {{o1, o6}, {o2, o7, o8}, {o3}, {o4, o5}}.

We have π1 ¹ π2 ¹ πclass and π1 ¹ π3 ¹ πclass. Thus, π1 is the more specific
solution than both π2 and π3. In fact, both π2 and π3 are the most general
solutions.

The roles of attributes are well-studied in the theory of rough sets [14],
and can be re-expressed as follows:

Definition 18. An attribute a ∈ C is called a core attribute if πC−{a} is not
a solution to the consistent classification problem.

Definition 19. An attribute a ∈ C is called a superfluous attribute if πC−{a}
is a solution to the consistent classification problem, namely, πC−{a} ¹ πclass.

Definition 20. A subset A ⊆ C is called a reduct if πA is a solution to the
consistent classification problem and πB is not a solution for any proper subset
B ⊂ A.

For a given consistent classification problem, there may exist more than
one reduct.

In the information Table 1, attributes hair and eyes are core attributes.
Attribute height is a superfluous attribute. The only reduct is the set of
attributes {hair, eyes}.
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5 The Studies on Classification Algorithms

With the concepts introduced so far, we can remodel some popular classifi-
cation algorithms. We study various algorithms from a granular computing
view and propose a more general and flexible granulation algorithm.

5.1 ID3

The ID3 [15] algorithm is probably the most popular algorithm in data mining.
Many efforts have been made to extend the ID3 algorithm in order to get a
better classification result. The C4.5 algorithm [17] is proposed by Quinlan
himself and generates fuzzy decision tree [8].

The ID3-like learning algorithms can be formulated as a heuristic search
of the semi- conjunctively definable lattice ΠAD(C)(U). The heuristic used
for the ID3-like algorithms is based on an information-theoretic measure of
dependency between the partition defined by class and another conjunctively
definable partition with respect to the set of attributes C. Roughly speaking,
the measure quantifies the degree to which a partition π ∈ ΠAD(C)(U) satisfies
the condition π ¹ πclass of a solution partition.

Specifically, the direction of ID3 search is from the coarsest partitions of
ΠAD(C)(U) to more refined partitions. The largest partitions in ΠAD(C)(U)
are the partitions defined by single attributes in C. Using the information-
theoretic measure, ID3 first selects a partition defined by a single attribute. If
an equivalence class in the partition is not a conjunctively definable granule
with respect to class, the equivalence class is further divided into smaller
granules by using an additional attribute. The same information-theoretic
measure is used for the selection of the new attribute. The smaller granules
are conjunctively definable granules with respect to C. The search process
continues until a partition π ∈ ΠAD(C)(U) is obtained such that π ¹ πclass.

Figure 1 shows the learning algorithm of ID3.

Fig. 1. The learning algorithm of ID3

IF all cases in the training set belong to the same class

THEN Return the value of the class

ELSE

(1) Select an attribute a to split the universe, which is with the

maximum information gain.

(3) Divide the training set into non empty subsets, one for each

value of attribute a.
(3) Return a tree with one branch for each subset, each branch

having a descendant subtree or a class value produced by

applying the algorithm recursively for each subset in turn.
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Following the algorithm we start with the selection of the attribute hair.
The first step of granulation is to partition the universe with values of hair
as it is with the largest information gain. Since there are three values for
hair, we obtain three granules for this partition. Elements of (hair=dark)
and (hair=red) granules belong to the same class, we do not need to fur-
ther decompose these two granules. As elements in granule (hair=blond) do
not belong to same class, we granulate the new universe (hair=blond) with
attribute eyes. We stop granulation when elements in the two new granules
(eyes=blue) and (eyes=brown) are in the same class. The partition tree is
shown in Figure 2 which is the familiar ID3 decision tree.

ID3 is a granulation oriented search algorithm. It searches a partition
of a problem at one time. The top-down construction of a decision tree for
classification searches for a partition solution to a consistent classification
problem. The induction process can be briefly described as follows. Based on
a measure of connection between two partitions, one selects an attribute to
divide the universe into a partition [15]. If an equivalence class is not a subset
of a user defined class, it is further divided by using another attribute. The
process continues until one finds a decision tree that correctly classifies all
objects. Each node of the decision tree is labelled by an attribute, and each
branch is labelled by a value of the parent attribute.

Fig. 2. An example partition generated by ID3

Universe
{o1,o2,o3,o4,o5,o6,o7,o8}

hair=blond
{o1,o2,o6,o8}

+/-

eyes=blue
{o1,o6}

+

eyes=brown
{o2,o8}

-

hair=dark
{o4,o5,o7}

-

hair=red
{o3}
+

5.2 kLR

Algorithms for finding a reduct in the theory of rough sets can also be viewed
as heuristic search of the partition lattice ΠAD(C)(U). Two directions of search
can be carried, either from coarsening partitions to refinement partitions or
from refinement partitions to coarsening partitions.
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The smallest partition in ΠAD(C)(U) is πC . By dropping an attribute a
from C, one obtains a coarsening partition πC−{a}. Typically, a certain fitness
measure is used for the selection of the attribute. The process continues until
no further attributes can be dropped. That is, we find a subset A ⊆ C such
that πA ¹ πclass and ¬(πB ¹ πclass) for all proper subsets B ⊂ A. The
resulting set of attributes A is a reduct.

Fig. 3. The learning algorithm of kLR

Let k = 0.
The k-level, k > 0, of the classification tree is built based on the

(k − 1)th level described as follows:

if there is a node in (k − 1)th level that does not consist of only

elements of the same class then
(1) Choose an attribute based on a certain criterion γ : At −→ <;
(2) Divide all the inconsistent nodes based on the selected

attribute and produce the kth level nodes, which are subsets

of the inconsistent nodes;

(3) Label the inconsistent nodes by the attribute name, and label

the branches coming out from the inconsistent nodes by the

values of the attribute.

The largest partition in ΠAD(C)(U) is π∅. By adding an attribute a, one
obtains a refined partition πa. The process continues until we have a partition
satisfying the condition πA ¹ πclass. The resulting set of attributes A is a
reduct.

The kLR algorithm [31] is proposed as one of the rough set-type search
algorithms to find a reduct, which is a set of individually necessary and jointly
sufficient attributes that correctly classify the objects. kLR is described in
Figure 3.

Comparing the kLR algorithm with ID3-like algorithms, we note that an
important feature of ID3-like algorithms is that when partitioning an inconsis-
tent granule, a formula is chosen based on only information about the current
granule. The criteria used by ID3-like methods is based on local optimization.
In the decision tree, different granules at the same level may use different for-
mulas, and moreover the same attribute may be used at different levels. The
use of local optimal criteria makes it difficult to judge the overall quality of the
partial decision tree during its construction process. The kLR algorithm may
solve this difficulty by partitioning the inconsistent granules at the same level
at the same time using the same formula. One can construct a kLR decision
tree and evaluate its quality level by level. Normally, a kLR decision tree is
different from the corresponding ID3 tree. However, the running example in
Table 1 is too small to show the different resulting trees generated by ID3 and
kLR.
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5.3 PRISM

PRISM [2] is an algorithm proposed by Cendrowska in 1987. Instead of using
the principle of generating decision trees which can be converted to decision
rules, PRISM generates rules from the training set directly. More importantly,
PRISM is a covering-based method. The PRISM algorithm can be formulated
as a heuristic search of the conjunctively definable covering lattice TCD(C)(U).
The heuristic used for PRISM is the conditional probability of a given class
value given a formula. The algorithm is described in Figure 4.

Fig. 4. The learning algorithm of PRISM

For i=1 to n

repeat until all instances of class i have been removed

(1) Calculate the probability of occurrence of class i for each

attribute-value pair.

(2) Select the attribute-value pair with maximum probability and

create a subset of the training set comprising all instances

with the selected combination.

(3) Repeat (1) and (2) for this subset until it contains only

instances of class i. The induced rule is then the conjunction

of all the attribute-value pairs selected in creating this

subset.

(4) Remove all instances covered by this rule from training set.

Fig. 5. An example covering generated by PRISM

(a) +
{o1,o3,o6}

hair=red
{o3}
+

eyes=blue
{o1,o3,o4,o5,o6}

+/-

hair=blond
{o1,o6}

+

(b) -
{o2,o4,o5,o7,o8}

eyes=brown
{o2,o7,o8}

-

hair=dark
{o4,o5,o7}

-

From granular computing point of view, PRISM is actually finding a
covering of the universe. Let’s still use the example of Table 1. There are
two classes, + and -. For (class = +), the meaning set is {o1, o3, o6}. The
largest conditional probability of class + given all the attribute-value pairs
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is P (+|hair= red). We use this attribute-value pair to form a granule {o3}.
The second largest probability is P (+|eyes= blue). We use this attribute-
value pair to form a second granule {o1, o3, o4, o5, o6}, and further refine it
by combining eyes= blue ∧ hair= blond. The granule {o1, o6} contains only
(class = +). So far these two granules cover (class = +). We do the same
for (class = −) and find two granules {o2, o7, o8} and {o4, o5, o7} which cover
(class = −). The covering of universe has four granules. The covering is shown
in Figure 5. For this particular example, PRISM provide shorter rules than
ID3. This is consistent with Cendrowska’s results and a recent review [1].

5.4 Granular computing approach

A granular computing approach [25, 26] is proposed as a granule network to
extend the existing classification algorithms. In a granule network, each node
is labelled by a subset of objects. The arc leading from a larger granule to a
smaller granule is labelled by an atomic formula. In addition, a smaller granule
is obtained by selecting those objects of the larger granule that satisfy the
atomic formula. The family of the smallest granules thus forms a conjunctively
definable covering of the universe.

We need to introduce the concepts of inactive and active granules for the
implementation of this approach.

Definition 21. A granule X is inactive if it meets one of the following two
conditions:

(i). X ⊆ m(class = ci) where ci is one possilbe value of Vclass,

(ii). X =
⋃

Y, where each Y is a child node of X.

A granule X is active if it does not meet any of the above conditions.

Atomic formulas define basic granules, which serve as the basis for the
granule network. The pair (a = v, m(a = v)) is called a basic concept. Each
node in the granule network is a conjunction of some basic granules, and thus a
conjunctively definable granule. The induction process of the granule network
can be briefly described as follows. The whole universe U is selected as the
root node at the initial stage. Evaluate and set the activity status of U . If U is
active with respect to the conditions (i) and (ii), based on a measure of fitness,
one selects a basic concept bc to cover a subset of the universe. Set the status
for both the root node U and the new node. Based on a measure of activity, one
of the active node is selected for further classification. This iterative process
stops when a non-redundant covering solution is found. Figure 6 outlines an
algorithm for the construction of a granule network [26].

The two importance issues of the algorithm is the evaluation of the fit-
ness of each basic concept, and the the evaluation of the activity status of
each active node. The algorithm is basically a heuristic search algorithm.
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Fig. 6. An Algorithm for constructing a granule network

Construct the family of basic concepts with respect to atomic

formulas:

BC(U) = {(a = v, m(a = v)) | a ∈ C, v ∈ Va}.
Set the granule network to GN = ({U}, ∅), which is a graph consisting

of only one node and no arc.

Set the activity status of U.

While the set of inactive nodes is not a non-redundant covering

solution of the consistent classification problem, do:

(1) Select the active node N with the maximum value of activity.

(2) Select the basic concept bc = (a = v, m(a = v)) with maximum value

of fitness with respect to N.

(3) Modify the granule network GN by adding the granule

N ∩ m(a = v) as a new node, connecting it to N by arc, and

labelling it by a = v.
(4) Set the activity status of the new node.

(5) Update the activity status of N.

The measures discussed in the last section can be used to define different
fitness/activity functions. User can also use a measure or some measures to
choose the basic concept and active node. The measure does not need to
be fixed. In other words, in the process of granular computing classification,
user can interactively decide what measure to be used. As a result, different
measures can be used at the different levels of construction. In the rest of this
section, we will use the running example, Table 1, to illustrate the basic ideas.

The initial node U is an active granule with respect to condition (i). Table 2
summarizes the measures of basic concepts with respect to U . There are three
granules which are a subset of one of class values, i.e., {o3} ⊆ (class = +),
{o4, o5, o7} ⊆ (class = −) and {o2, o7, o8} ⊆ (class = −). The values of
entropy of these granules are minimum, i.e., 0. Therefore, these three granules

Confidence Coverage
Formula Granule Generality + - + - Entropy

height = short {o1, o2, o8} 3/8 1/3 2/3 1/3 2/5 0.92
height = tall {o3, o4, o5, o6, o7} 5/8 2/5 3/5 2/3 3/5 0.97
hair = blond {o1, o2, o6, o8} 4/8 2/4 2/4 2/3 2/5 1.00
hair = red {o3} 1/8 1/1 0/1 1/3 0/5 0.00
hair = dark {o4, o5, o7} 3/8 0/3 3/3 0/3 3/5 0.00
eyes = blue {o1, o3, o4, o5, o6} 5/8 3/5 2/5 3/3 2/5 0.97
eyes = brown {o2, o7, o8} 3/8 0/3 3/3 0/3 3/5 0.00

Table 2. Basic granules and their measures for the selected active node U
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are inactive. The generality of latter two granules are higher than the first
granule. These three granules are added to the granule network one by one.

The union of the inactive granules {{o4, o5, o7}, {o2, o7, o8}, {o3} cannot
cover the universe. After adding these three granules to the granule network,
the universe U is still the only active node (with respect to condition (i)
and (ii)), therefore, it is selected. With the consideration of a non-redundant
covering, we will not choose a granule that will not cover the universe even
if other measures are in favor of this granule. Based on the fitness measures
summarized in Table 3, hair = blond and eyes = blue contain the objects
{o1, o6} that can possibly form a non-redundant covering solution. height =
tall and eyes = blue have the highest generality, confidence and coverage.
height = short has the smallest entropy. One can make a comprehensive
decision based on all these measures. For example, the basic concept (eyes =
blue, {o1, o3, o4, o5, o6}) is selected. The granule {o1, o3, o4, o5, o6} is added to
the granule network, labelled by eyes = blue. The new node is active (with
respect to condition (i)). By adding it to the granule network, U is no longer
active (with respect to condition (ii)).

Confidence Coverage
Formula Granule Generality + - + - Entropy

height = short {o1, o2, o8} 3/8 1/3 2/3 1/3 2/5 0.92
height = tall {o3, o4, o5, o6, o7} 5/8 2/5 3/5 2/3 3/5 0.97
hair = blond {o1, o2, o6, o8} 4/8 2/4 2/4 2/3 2/5 1.00
eyes = blue {o1, o3, o4, o5, o6} 5/8 3/5 2/5 3/3 2/5 0.97

Table 3. Basic granules and their measures for the selected active node U

The new node is the only active granule at this stage (with respect to
condition (i)). Table 4 summarizes the measures of basic concepts with re-
spect to it. Based on the fitness measures again, hair = blond contains all
the objects of {o1, o6} that can possibly form a non-redundant covering so-
lution, it is also in favour of confidence, coverage and entropy. By adding

Confidence Coverage
Formula Granule Generality + - + - Entropy

∧height = short {o1} 1/5 1/1 0/1 1/3 0/2 0.00
∧height = tall {o3, o4, o5, o6} 4/5 2/4 2/4 2/3 2/2 1.00
∧hair = blond {o1, o6} 2/5 2/2 0/2 2/3 0/2 0.00
∧hair = red {o3} 1/5 1/1 0/1 1/3 0/2 0.00
∧hair = dark {o4, o5} 2/5 0/2 2/2 0/3 2/2 0.00

Table 4. Basic granules and their measures for the selected active node m(eye =
blue)



Foundations of Classification 95

the concept (hair = blond, {o1, o6}) to the granule network, we can get an-
other inactive granule, and the union of all inactive granules forms a non-
redundant covering solution of the consistent classification problem. It is
τ = {{o4, o5, o7}, {o2, o7, o8}, {o3}, {o1, o6}}. The results are also shown as
the granule network in Figure 7.

Fig. 7. An example of granule network

Universe
{o1,o2,o3,o4,o5,o6,o7,o8}

hair=dark
{o4,o5,o7}

-

eyes=brown
{o2,o7,o8}

-

hair=red
{o3}
+

eye=blue
{o1,o3,o4,o5,o6}

+/-

hair=blond
{o1,o6}

+

{redundant granule}

6 Conclusion

A consistent classification problem can be modelled as a search for a partition
or a covering defined by a set of attribute values. In this chapter, we apply a
granular computing model for solving classification problems. We explore the
structures of classification of a universe. The consistent classification problems
are expressed as the relationships between granules of the universe. Different
classification lattices are introduced. Depending on the properties of classi-
fication rules, solutions to a consistent classification problem are definable
granules in one of the lattices. Such a solution can be obtained by searching
the lattice. The notion of a granule network is used to represent the classifi-
cation knowledge. Our formulation is similar to the well established version
space search method for machine learning [11].

The ID3, kLR and PRISM algorithms are examples of partition and cover-
ing search algorithms. As suggested by the No Free Lunch theorem [24], there
is no algorithm which performs better than any other algorithms for all kinds
of possible problems. It is useless to judge an algorithm irrespectively of the
optimization problem. For some data sets, partition algorithm may be better
than covering algorithm, for some other sets, the situation is vice versa. The
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new formulation enables us to precisely and concisely define many notions,
and to present a more general framework for classification.

The granular computing classification approach discussed in this chapter
provides more freedom of choice on heuristic and measures according to the
user needs. The process is penetrated with the idea that the classification task
can be more useful if it carries with the user preference and user interaction.
In the future research, we will study various heuristics defined by the measures
suggested in this chapter, and the evaluation of the proposed algorithm using
real world data sets.
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