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Abstract. We introduce the notion of high order decision rules. While a standard
decision rule expresses connections between attribute values of the same object, a
high order decision rule expresses connections of different objects in terms of their
attribute values. An example of high order decision rules may state that “if an ob-
ject x is related to another object y with respect to an attribute a, then x is related
to y with respect to another attribute b.” The problem of mining high order deci-
sion rules is formulated as a process of finding connections of objects as expressed
in terms of their attribute values. In order to mine high order decision rules, we
use relationships between values of attributes. Various types of relationships can be
used, such as ordering relations, closeness relations, similarity relations, and neigh-
borhood systems on attribute values. The introduction of semantics information on
attribute values leads to information tables with added semantics. Depending on
the decision rules to be mined, one can transform the original table into another
information table, in which each new entity is a pair of objects. Any standard data
mining algorithm can then be used. As an example to illustrate the basic idea, we
discuss in detail the mining of ordering rules.

1 Introduction

In machine learning and data mining, one often uses an attribute-value lan-
guage to represent individual objects and mined knowledge [9–11,13,14,20].
Each object is represented by the values of a set of attributes. The knowledge
mined from a dataset is represented in the form of rules. At least two types
of rules can be identified [5]. The first type, called type 1 rules in this paper,
is exemplified by decision rules. A type 1 rule states that “if the value of an
object is va on attribute a, then the value of the object is vb on attribute b”.
By pooling together many type 1 rules, we can obtain the second type rules,
called type 2 rules in this paper. An example of type 2 rules is a functional
(or data) dependency rule. A type 2 rule states that “if two objects have the
same value on attribute a, then they have the same value on attribute b”.
The two types of rules represent different levels of knowledge derivable from
a dataset. While type 1 rules focus on a single object, type 2 rules focus on
a pair of objects.

One objective of this paper is to provide a systematic study of type 2 rules,
which have not received much attention. We also refer to type 2 rules as high
order decision rules representing a higher level of knowledge. The phrase “high
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order rules” expresses our intuitive understanding and interpretation of the
type 2 rules. A special kind of high order rules called ordering rules has been
studied in [15,21,22]. By further generalizing the results, we introduce various
high order rules. This is done by generalizing the trivial equality relation on
attribute values used in defining functional (or data) dependency rules. For
example, by using a similarity relation, we derive a weaker functional (or
data) dependency rule: “if two objects have similar values on one set of
attributes, then they have similar values on another set of attributes”. When
preference (ordering) relations are used, an ordering rule is obtained: “if an
object is ranked ahead of another object according to one set of attributes,
then the pair are ranked in the same way with respect to another set of
attributes” [15,21].

Another objective of this paper is to study algorithms for mining high or-
der decision rules. For this purpose, we need to express relationships between
attribute values. Information tables with added semantics are used [19]. The
relationships between attribute values are used to infer relationships between
objects. Depending on the high order decision rules to be mined, one can
transform the original table into another information table, in which each
new entity is a pair of objects. After the transformation, any standard data
mining algorithm can be used. The basic idea is illustrated by showing how
ordering rules can be mined [15,21].

2 Motivations

Two essential tasks in machine learning and data mining are the represen-
tation of objects and the identification of forms and types of knowledge to
be mined. An attribute-value language provides a simple and useful tool for
dealing with the two tasks.

Objects are represented in terms of their values on a set of attributes.
More specifically, information about objects is summarized in an information
table defined by [11]:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where

U is a finite nonempty set of objects,

At is a finite nonempty set of attributes,

Va is a nonempty set of values for a ∈ At,

Ia : U −→ Va is an information function.

Each information function Ia is a total function that maps an object of U to
exactly one value in Va. It can be conveniently given in a tabular form, where
the rows correspond to objects of the universe, the columns correspond to a
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set of attributes, and each cell is the value of an object with respect to an
attribute.

Knowledge derivable from an information table is commonly represented
in the form of rules, such as decision rules [10,14], association rules [1], func-
tional dependency rules [2], and data dependency rules [11]. Roughly speak-
ing, those rules show the connections between attributes, which are normally
characterized by the problem of determining the values of one set of attributes
based on the values of another set of attributes. Depending on the meanings
and forms of rules, one may classify rules in many ways. A clear classification
of rules is useful for the understanding of the basic tasks of machine learning
and data mining.

Rules can be classified into two groups in terms of their directions, one-

way and two-way connections, and further classified into two levels in terms
of their applicability, local and global connections [18,19,24]. A one-way con-
nection shows that the values of one set of attributes determine the values
of another set of attributes, but does not say anything of the reverse. A two-
way connection is a combination of two one-way connections, representing
two different directions of connection. A local connection is characterized by
a type 1 rule and shows the relationship between one specific combination
of values on one set of attributes and one specific combination of values on
another set of attributes. A global connection is characterized by a type 2
or high order rule and shows the relationships between all combinations of
values on one set of attributes and all combinations of values on another set
of attributes.

Finding local one-way connection is one of the main tasks of machine
learning and data mining [9,11,13,14]. The well known association rules [1],
which state that the presence of one set of items implies the presence of
another set of items, is a special kind of local one-way connections. Decision
rules from decision tree learning algorithms [14] are also examples of local
one-way connections. Functional dependency in relational databases [2] is a
typical example of global one-way connections. Attribute (data) dependency
studied in the theory of rough sets [11] is another example of global one-way
connections.

Without additional semantic relationships between attribute values, one
can only use the trivial equality relation. In this case, a local one-way con-
nection is expressed by a type 1 rule of the form: for x ∈ U ,

Ia(x) = va ⇒ Ib(x) = vb. (1)

A global one-way connection is expressed by a type 2 or high order rule of
the form: for (x, y) ∈ U × U ,

Ia(x) = Ia(y) ⇒ Ib(x) = Ib(y). (2)

We have used only a single attribute in expressing the conditions in a rule. In
the next section, it will be shown how to construct more complex conditions
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by using many attributes. A closer examination of local and global connec-
tions shows the following difference. A local rule states knowledge about one

object. A local one-way rule shows that if the object has a specific value on
one set of attributes, then it will have specific value on another set of at-
tributes. On the other hand, a global rule states knowledge about a pair of
objects. A global one-way rule suggests that if a pair of objects have the same

value on one set of attributes, then they will have the same value on another
set of attributes. This observation motivates the present study. Since a global
rule states the connection of attributes with respect to pairs of objects, or
equivalently, the connection between object pairs in terms of attributes, it is
referred to as a high order rule.

Majority research in machine learning and data mining has been focused
on discovering type 1 rules. There is relatively less work on type 2 or high
order rules. In addition, the equality relation is commonly used in expressing
rules. Semantically speaking, high order rules explain why two objects are
connected based on the relationships between their attribute values. Type 1
rules are useful for classification. High order rules are useful for the study
of relationships between objects. Many real world problems are related to
high order rule. For example, in multi-attribute decision making, ranking of
universities, ranking of consumer products, one is interested in finding out
the correlation of the overall ranking and the individual rankings induced by
individual attributes [6–8,12,15,21]. Weak or fuzzy functional dependency
characterized by similarity is another example [4]. There is a need for a
systematic study of high order rules. Moreover, when semantics relationships
between attribute values are introduced, one may obtain various classes of
high order decision rules.

3 Mining High Order Decision Rules

For the purpose of mining rules, we add a binary relationRa for each attribute
a ∈ At, a language L0 and a language L1 to an information table. The binary
relation is used to define relationships between values of an attribute, with
the equality relation as a special case. While the language L0 is used to define
conditions in type 1 rules, the language L1 is used to describe conditions in
high order rules. The details of language L0 can be found in [20]. We will
only discuss the language L1.

In the language L1, an atomic formula is Ra for an attribute a ∈ At. If
φ and ψ are formulas, so are ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, and φ ≡ ψ. The
semantics of the language L1 can be defined in the Tarski’s style through the
notions of a model and satisfiability. The model is an information table S
with added binary relations, which provides interpretations for symbols and
formulas of L1. The satisfiability of a formula φ by a pair of objects (x, y),
written (x, y) |=S φ or in short (x, y) |= φ if S is understood, is given by the
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conditions:

(0) (x, y) |= Ra iff Ia(x)RaIa(y),

(1) (x, y) |= ¬φ iff not (x, y) |= φ,

(2) (x, y) |= φ ∧ ψ iff (x, y) |= φ and (x, y) |= ψ,

(3) (x, y) |= φ ∨ ψ iff (x, y) |= φ or (x, y) |= ψ,

(4) (x, y) |= φ→ ψ iff (x, y) |= ¬φ ∨ ψ,

(5) (x, y) |= φ ≡ ψ iff (x, y) |= φ→ ψ and (x, y) |= ψ → φ.

For formula φ, the set mS(φ) defined by:

mS(φ) = {(x, y) ∈ U × U | (x, y) |= φ}, (3)

is called the meaning set of φ in S. If S is understood, we simply write m(φ).
Obviously, the properties hold:

(m1). m(Ra) = {(x, y) ∈ U × U | Ia(x)RaIa(y)},

(m2). m(¬φ) = U × U −m(φ),

(m3). m(φ ∧ ψ) = m(φ) ∩m(ψ),

(m4). m(φ ∨ ψ) = m(φ) ∪m(ψ).

A pair (x, y) ∈ m(φ) is said to satisfy the expression φ. The formula φ can
be viewed as the description of the set of object pairs m(φ), and each object
pair in m(φ) as an instance of the concept given by φ.

For two subsets of attributes A,B ⊆ At with A ∩ B = ∅, let φ and ψ
be formulas constructed from attributes in A and B, respectively. A high
order decision rule can be expressed in the form, φ ⇒ ψ. In many studies of
machine learning and data mining, a rule is usually paraphrased by an if-then
statement. This interpretation suggests a kind of cause and effect relationship
between φ and ψ, although such a cause and effect relationship does exist.
We therefore need to closely look at the meaning and interpretation of rules.

An immediately interpretation of rules is through logic implication. That
is, the symbol⇒ is interpreted as the logical implication → of the languageL1.
In practice, such an interpretation may be too restrictive to be useful. More-
over, one may only be interested in the satisfiability of ψ under the condition
that the object pair (x, y) satisfies φ. Under those situations, probabilistic
interpretations may be more appropriate. Many probabilistic interpretations
can be found in [23]. We choose to use two measures called accuracy and
coverage defined by [16]:

accuracy(φ⇒ ψ) =
|m(φ ∧ ψ)|

|m(φ)|
,

coverage(φ⇒ ψ) =
|m(φ ∧ ψ)|

|m(ψ)|
, (4)
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where | · | denotes the cardinality of a set. While the accuracy reflects the
correctness of the rule, the coverage reflects the applicability of the rule. If
accuracy(φ ⇒ ψ) = 1, relationships between objects induced by φ would
determine the relationship induced by ψ. We thus have a strong associa-
tion between the two relationships induced by φ and ψ. A smaller value of
accuracy indicates a weaker association. A high order rule with higher cover-
age suggests that relationships of more pairs of objects can be derived from
the rule. The accuracy and coverage are not independent of each other, as
both are related to the quantity |m(φ ∧ ψ)|. It is desirable for a rule to be
accurate as well as to have a high degree of coverage. In general, one may
observe a trade-off between accuracy and coverage. A rule with higher cover-
age may have a lower accuracy, while a rule with higher accuracy may have
a lower coverage.

In theory, if we have a finite set of attributes and each attribute has a
finite set of values, high order rules can be derived from an information table
by searching all pairs of formulas. The meaning sets m(φ), m(ψ) andm(φ∧ψ)
can be used to eliminate those rules that are not interesting. In what follows,
we present a transformation method so that any existing machine learning
and data mining algorithm can be directly applied.

For each object pair (x, y), a formula is either satisfied or not satisfied.
The relationship between objects induced by an attribute a can be easily
represented by the satisfiability of the atomic formula Ra. Thus, if we create
a new universe consisting of pair of objects, we can produce a binary in-
formation table that preserve the relationships of objects induced by binary
relation relations. A binary information table is defined as follows:

Ia(x, y) =

{

1, Ia(x)RaIa(y),
0, not [Ia(x)RaIa(y)].

(5)

The values 1 and 0 show that the pair satisfy the atomic expression Ra and
does not satisfy the atomic expression, respectively. Statements in the origi-
nal information table expressed in a language L1 be translated into equiva-
lent statements expressed in a language L0 in the binary information table,
and vice versa. More specifically, the atomic formula Ra corresponds to an
atomic formula Ia(x, y) = 1. The formula ¬Ra corresponds to the formula
¬(Ia(x, y) = 1), or equivalently, Ia(x, y) = 0.

The translation of the original table into a binary information table is a
crucial step for mining high order rules. With the translation, high order rules
of the original table reduce to standard decision rules of the binary table.
Consequently, any standard machine learning and data mining algorithms
can be used to mine high order rules.

For clarity and simplicity, we have only considered a very simply language
L1 in which there is only one relation on values of each attribute. In general,
one may use many binary relations on attribute values to represent different
types of relationships. Accordingly, a more powerful language is needed. The
arguments presented so far can be easily applied with slight modification.
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4 Mining Ordering Rules: an Illustrative Example

In real world situations, we may face many problems that are not simply clas-
sification [3,12]. One such type of problems is the ordering of objects. Two
familiar examples of ordering problems are the ranking of universities and
the ranking of the consumer products produced by different manufactures.
In both examples, we have a set of attributes that are used to describe the
objects under consideration, and an overall ranking of objects. Consider the
example of ranking consumer products. Attributes may be the price of prod-
ucts, warranty of products, and other information. The values of a particular
attribute, say the price, naturally induce an ordering of objects. The overall
ranking of products may be produced by the market shares of different man-
ufactures. The orderings of objects by attribute values may not necessarily
be the same as the overall ordering of objects.

The problem of mining ordering rules can be stated as follows. There is
a set of objects described by a set of attributes. There is an order relation
�a on values of each attribute a ∈ At, and there is also an overall ordering
of objects �o. The overall ordering may be given by experts or obtained
from other information, either dependent or independent of the orderings
of objects according to their attribute values. We are interested in mining
the association between the overall ordering and the individual orderings
induced by different attributes. More specifically, we want to derive ordering
rules exemplified by the statement that “if an object x is ranked ahead of
another object y on an attribute a, then x is ordered ahead of y”.

Order relations are special types of relations that induce orderings on the
set of objects. An ordering of values of a particular attribute a naturally
induces an ordering of objects, namely, for x, y ∈ U :

x �a y ⇐⇒ Ia(x) �a Ia(y), (6)

where �a also denotes an order relation on U induced by the attribute a. An
object x is ranked ahead of another object y according to an attribute a if
and only if the value of x on a is ranked ahead of the value of y on a. The
order relation on objects has exactly the same properties as that of the order
relation on attribute values. For this reason, we have used the same symbol
to denote both relations. Typically, an order relation should satisfy certain
conditions. We consider the two properties:

Asymmetry : x � y =⇒ ¬(y � x),

Negative transitivity : [¬(x � y),¬(y � z)] =⇒ ¬(x � z).

An order relation satisfying these properties is called a weak order [17]. An
important implication of a weak order is that the relation,

x ∼ y ⇐⇒ [¬(x � y),¬(y � x)], (7)
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is an equivalence relation. For two objects, if x ∼ y we say x and y are
indiscernible by �. The equivalence relation ∼ induces a partition U/∼ on
U , and an order relation on U/∼ can be defined by:

[x]∼ �∗ [y]∼ ⇐⇒ x � y, (8)

where [x]∼ is the equivalence class containing x. Moreover, �∗ is a linear
order [17]. Any two distinct equivalence classes of U/∼ can be compared.
It is therefore possible to arrange the objects into levels, with each level
consisting of indiscernible objects defined by �. For a weak order, ¬(x � y)
can be written as y � x or x � y, which means y � x or y ∼ x. For any two
objects x and y, we have either x � y or y � x, but not both.

In the subsequent discussion, we assume that all order relations are weak
orders. For simplicity, we also assume that there is a special attribute, called
decision attribute. The ordering of objects by the decision attribute is denoted
by �o and is called the overall ordering of objects.

By making use of the physical meaning of order relations, we can re-
express ordering rules in a easy to read form. Consider an ordering rule,

�a ∧¬ �b ⇒ �c . (9)

It can be re-expressed as,

x �a y ∧ x �b y ⇒ x �c y. (10)

The rule suggests that the ordering of objects by c is determined by the
ordering of objects by a and b. For two arbitrary objects x and y, if x is
ranked ahead of y by a, and at the same time, x is not ranked ahead of y by
b, then x is ranked ahead of y by c.

We illustrate the ideas developed so far by a simple example. Consider
the information table of five products [21]:

Size Warranty Price Weight Overall

1 middle 3 years $200 heavy best
2 large 3 years $300 very heavy good
3 small 3 years $300 light good
4 small 3 years $250 very light better
5 small 2 years $200 very light good

�Size: small �Size middle �Size large,
�Warranty: 3 years �Warranty 2 years,
�Price: $200 �Price $250 �Price $300,

�Weight: very light �Weight light �Weight heavy �Weight very heavy,

�Overall: best �Overall better �Overall good.
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The order relations induces the following orderings of products:

�Size: [3, 4, 5] �∗

Size [1] �∗

Size [2],

�Warranty: [1, 2, 3, 4] �∗

Warranty [5],

�Price: [1, 5] �∗

Price [4] �∗

Price [2, 3],

�Weight: [4, 5] �∗

Weight [3] �∗

Weight [1] �∗

Weight [2],

�Overall: [1] �∗

Overall [4] �∗

Overall [2, 3, 5].

Examples of formulas and their meaning sets are given by:

m(�Size) = {(1, 2), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)},

m(�Price) = {(1, 2), (1, 3), (1, 4), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4)},

m(�Overall) = {(1, 2), (1, 3), (1, 4), (1, 5), (4, 2), (4, 3), (4, 5)},

m(�Size ∧ �Overall) = {(1, 2), (4, 2)},

m(�Price ∧ �Overall) = {(1, 2), (1, 3), (1, 4), (4, 2), (4, 3)},

m(�Size ∧ �Price) = {(1, 2), (4, 2), (5, 2)},

m(�Size ∧ �Price ∧ �Overall) = {(1, 2), (4, 2)}.

For a rule, �Size⇒�Overall, namely, x �Size y ⇒ x �Overall y, its accuracy
and coverage are:

accuracy(�Size⇒�Overall) = 2/7,

coverage(�Size⇒�Overall) = 2/7.

One may conclude that the Size does not tell us too much information about
the overall ranking in terms of both accuracy and coverage. The accuracy
and coverage of the rule, �Price⇒�Overall, namely, x �Price y ⇒ x �Overall y,
are:

accuracy(�Price⇒�Overall) = 5/8,

coverage(�Price⇒�Overall) = 5/7.

In terms of both measures, the new rule is better. In other words, the Price
tells us more about the overall ranking. By combining both Size and Price,
we have another rule, �Size ∧ �Price⇒�Overall, namely, x �Size y ∧ x �Price

y ⇒ x �Overall y, and

accuracy(�Size ∧ �Price⇒�Overall) = 2/3,

coverage(�Size ∧ �Price⇒�Overall) = 2/7.

The new rule increases the accuracy, but decreases the coverage. In fact, the
third rule is more specific than the first two rules.

It will be an easy task to transform the information table into a binary
information. In the binary information table, the conditional x �a y is re-
placed by Ia(x, y) = 1. The meaning sets, accuracy and coverage of rules can
be similarly defined [15,21].
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5 Conclusion

A functional dependency rule states that if the values of a pair of objects
are the same on one set of attributes, their values are the same on another
set of attributes. A weak or fuzzy functional dependency rule states that
if the values of a pair of objects are similar on one set of attributes, their
values are similar on another set of attributes. An ordering rule suggests that
if an object is ranked ahead of another object according to one attribute,
then the same ranking of the two objects is obtained by another attribute.
All these rules show the connections of objects based on their values on two
sets of attributes. They may be considered as special cases of high order rules
introduced in this paper, which state that if two objects are related according
to one set of attributes, they are related based on another set of attributes.
The relatedness of objects are modeled by a binary relation, or a group of
binary relations, on the values of each attribute.

Information tables with added semantics are used to represent individual
objects and relationships between values of attributes. A language is defined
with respect to an information table, in which various concepts can be in-
terpreted in Tarski’s style. In particular, each formula of the language is
interpreted as a set of object pairs called the meaning set. High order rules
representing connections of two formulas can be interpreted in terms of their
meaning sets.

The main contribution of this paper is the introduction of the notion of
high order decision rules which represent a higher level knowledge than the
standard decision rules, and the formulation of the problem of mining high
order rules. Furthermore, we suggest that this problem can be reduced to
standard machine leaning and data mining problems by a simple transforma-
tion method. Consequently, one can directly apply any existing data mining
algorithms for mining ordering rules.
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