
A Logic Language of Granular Computing

Yiyu Yao and Bing Zhou
Department of Computer Science

University of Regina
Regina, Saskatchewan, Canada S4S 0A2
E-mail: {yyao, zhou200b}@cs.uregina.ca

Abstract

Granular computing concerns human thinking and
problem solving, as well as their implications to the de-
sign of knowledge intensive systems. It simplifies com-
plex real world problems by considering different lev-
els of granularity. Basic granules represent the elemen-
tary units of human knowledge. A granular structure re-
flects structural connections of different pieces of knowl-
edge. The main objective of this paper is to show how
to construct granular structures in a logic setting. This
is done by interpreting notions of granular computing
by using a logic language L. Two types of granular
structures are constructed based on the basic granules,
called ∩-closure granular structure and ∪-closure gran-
ular structure. An information table is used to give a
concrete interpretation of the language L for construct-
ing granular structures.

1. Introduction

Cognitive science [15] and cognitive informatics [18,
19] study the human intelligence and its computational
process. As an effective way of thinking, we typically
focus on a particular level of abstraction and ignore
irrelevant details. This not only enables us to iden-
tify differences between objects in the real world, but
also helps us to view different objects as being the
same, if low-level detail is ignored. Granular comput-
ing [1, 5, 10, 21, 23, 26, 28, 30, 32, 33] can be seen as a
formal way of modeling this human thinking process. It
is a practical way to perceive complex real world prob-
lems based on simple computational models. One can
view granular computing from three different angles: a
way of structured thinking, a method of structured prob-
lem solving, and a paradigm of structured information

processing [28]. They focus on three different perspec-
tives. Structured thinking focuses on modeling human
perception of the reality. Structured problem solving fo-
cuses on methods and strategies for finding solutions.
Structured information processing focuses on the im-
plementation of computer based systems. These three
perspectives together form the granular computing tri-
angle [30], and the center of it is granular structures.

A granular structure provides structured description
of a system or an application under consideration. In a
specific application, individuals sharing the same prop-
erties can be put into the same granule. Basic granules
represent the basic knowledge of human intelligence.
They are the main focuses or basic observations of a
problem in the real world. Once the basic granules are
properly identified, one can investigate the relations be-
tween them and define the related computational opera-
tions based on them. In this way, structural knowledge is
formed to help us to see the relationships between differ-
ent parts of the problem, and hence understand the real
world problem more clearly.

During the past decade, many researchers focused
on the semantic and algorithmic aspects of granular-
ity in modeling and reasoning, such as the process
of information granulation and computing with gran-
ules [4, 8, 11, 13]. In 1985, Hobbs [3] briefly presented a
logic based study of granularity. In this paper, we intro-
duce a logic language of granular computing and show
the construction of granular structures for some concrete
granular computing models.

Rough set analysis and formal concept analysis are
two concrete models of granular computing for infor-
mation representation and data analysis [6, 7, 9, 20, 27].
Rough set analysis studies relationships between objects
and their attribute values in an information table. For-
mal concept analysis studies the relationships of objects
and attributes in a formal context. In spite of their differ-
ences, they share the same basic notions, such as concept
definability, and the process of constructing definable

sets of objects and attributes. By extracting the high-
level similarities from the two methods, we propose a
logic language L as a more general logic approach to
granular computing.

The language L is an extension of the decision logic
language used by Pawlak in rough set theory [7]. Instead
of expressing the atomic formulas by a particular con-
crete type of conditions, we treat them as primitive no-
tions that can be interpreted differently. This flexibility
enables us to describe granules in different applications.
The language is interpreted in the Tarski’s style through
the notion of a model and satisfiability [2, 9, 22, 24, 25].
The model is a nonempty domain consisting of a set of
individuals. The basic granules of the model are repre-
sented by atomic formulas. An individual satisfies a for-
mula if the individual has the properties as specified by
the formula. The introduction of the language L brings
new insights into the notion of definability in rough set
analysis and formal concept analysis. That is, a gran-
ule is definable if there is a formula in the language L
that defines it, and undefinable otherwise. The knowl-
edge representation and data analysis are no longer re-
stricted to an information table or a formal context. One
can directly work on relations between objects and their
properties by addressing them with basic granules.

By using the language L, we can formally define
granules in the model M . We can construct two types
of granular structures. One is constructed by a top-down
process by dividing larger granules into smaller and
lower level granules, we call it an ∩-closure granular
structure. The other is constructed by a bottom-up pro-
cess by forming larger and higher level granules with
smaller granules, we call it an ∪-closure granular struc-
ture. As an illustration, we interpret the language L in
an information table and analyze two types of granular
structures.

2. The Logic Language L
In this section, we introduce a logic language L of

granular computing by adopting and modifying the de-
cision logic language used in rough set theory [7, 24].

2.1. Formulation

The language L is constructed from a finite set of
atomic formulas, denoted by A = {p, q, ...}. Each
atomic formula may be interpreted as representing one
piece of basic knowledge. We assume that they are the
elementary units that one uses to represent and under-
stand a real world problem. The physical meaning of
atomic formulas becomes clearer in a particular applica-
tion. In general, an atomic formula corresponds to one

particular property of an individual under discussion.
The construction of atomic formulas is an essential step
of knowledge representation. The set of atomic formu-
las provides a basis on which more complex knowledge
can be represented. Compound formulas can be built re-
cursively from atomic formulas by using logic connec-
tives. If φ and ψ are formulas, then so are (¬φ), (φ∧ψ),
(φ ∨ ψ), (φ → ψ), and (φ ↔ ψ).

The semantics of the language L is defined in the
Tarski’s style by using the notions of a model and sat-
isfiability. The model is a nonempty domain consisting
of a set of individuals, denoted by M = {x, y, ...}. The
meaning of formulas can be given recursively. For an
atomic formula p, we assume that an individual x ∈ M
either satisfies p or does not satisfy p, but not both. For
an individual x ∈ M , if it satisfies an atomic formula
p, we write x |= p, otherwise, we write x 2 p. The sat-
isfiability of an atomic formula by individuals of M is
viewed as the knowledge describable by the language
L. An individual satisfies a formula if the individual has
the properties as specified by the formula. Let φ and ψ
be two formulas, the satisfiability of compound formulas
is defined as follows:

(1). x |= ¬φ iff x 2 φ,

(2). x |= φ ∧ ψ iff x |= φ and x |= ψ,

(3). x |= φ ∨ ψ iff x |= φ or x |= ψ,

(4). x |= φ → ψ iff x |= ¬φ ∨ ψ,

(5). x |= φ ↔ ψ iff x |= φ → ψ and
x |= ψ → φ.

To emphases the roles played by the set of atomic for-
mulas A and the set of individuals M , we also rewrite
the language L as L(A,M).

A fundamental difference between the language L
and other decision logic languages is the treatment of
the set of atomic formulas. In early works, atomic for-
mulas are defined based on other notions. For example,
atomic formulas can be defined in an information table
based on the values of attributes [7, 24]. In this paper,
we treat atomic formulas as a primitive notion. Many
concrete examples of this language can be obtained by
specific definitions of atomic formulas. The construction
of the set of atomic formulas and the model M depends
on a particular application. For modeling different prob-
lems, we may choose different sets of atomic formulas
and models. The language L therefore is flexible and en-
ables us to describe a variety of problems.

With the notion of satisfiability, one can introduce a
set-theoretic interpretation of formulas of the language
L. If φ is a formula, the meaning of φ in the model M is
the set of individuals defined by:

m(φ) = {x ∈ M | x |= φ}. (1)

That is, m(φ) is the set of individuals satisfying the
formula φ. This establishes a correspondence between
logic connectives and set-theoretic operators. The fol-
lowing properties hold [7]:

(C1). m(¬φ) = −m(φ),
(C2). m(φ ∧ ψ) = m(φ) ∩m(ψ),
(C3). m(φ ∨ ψ) = m(φ) ∪m(ψ),
(C4). m(φ → ψ) = −m(φ) ∪m(ψ),
(C5). m(φ ↔ ψ) = (m(φ) ∩m(ψ)) ∪

(−m(φ) ∩ −m(ψ)),

where−m(φ) = M−m(φ) denotes the set complement
of m(φ).

In the study of concepts [14, 16, 17], many interpre-
tations have been proposed and examined. The classical
view regards a concept as a unit of thoughts consisting
of two parts, namely, the intension and extension of the
concept [2, 17, 20]. By using the language L, we ob-
tain a simple and precise representation of a concept in
terms of its intension and extension. That is, a concept
is defined by a pair (φ, m(φ)). The formula φ is the de-
scription of properties shared by individuals in m(φ),
and m(φ) is the set of individuals satisfying φ. A con-
cept is thus described jointly by its intension and exten-
sion. This formulation enables us to study concepts in a
logic setting in terms of intensions and in a set-theoretic
setting in terms of extensions.

2.2. Two Sub-languages

The language L provides a formal method for de-
scribing and interpreting rules in data mining and ma-
chine learning [31]. In many situations, one is only in-
terested in certain types of rules. For example, rules
contain only the logical connective ∧. This requires us
to consider the restriction of the language L to certain
logical connectives. In this paper, we consider two sub-
languages of L. One uses only the conjunctive connec-
tive ∧, written as L∧(A,M,∧).The other uses only the
disjunctive connective ∨, written as L∨(A,M,∨).

3. Granular Structures

In the language L, each formula is associated with
a subset of M . This subset may be viewed as a gran-
ule in M . Therefore, we can study granular structures of
M through the language L. A granular structure at least
contains three basic components [26, 28]:

• internal structure of a granule;

• collective structure of a family of granules;

• hierarchical structure of a web of granules.

The language L enables us to study such structures in
logic terms.

3.1. Internal Structure

Granules are the building blocks to form a granular
structure. The internal structure of a granule represents
the characterization of the granule. Analyzing the inter-
nal structure of a granule helps us to understand why
individuals are draw together.

The indiscernibility relation is a fundamental notion
in rough set analysis [6, 7, 9]. By using the logic lan-
guage L, we can formally define an indiscernibility re-
lation on the model M . For a subset A0 ⊆ A, two indi-
viduals x, y ∈ M are indistinguishable if no formula in
A0 can distinguish them. Let us define a mapping from
M to A as follows:

m′(x) = {p ∈ A | x |= p}.

That is, m′(x) is the set of atomic formulas satisfied by
x. For a subsetA0 ⊆ A, the indiscernibility relation can
be defined by:

x ∼A0 y iff m′(x) ∩ A0 = m′(y) ∩ A0

The language L can be used to reason about inten-
sions. Each formula represents an intension of a concept.
For two formulas φ and ψ, we say that φ is more spe-
cific than ψ, and ψ is more general than φ, if and only
if |= φ → ψ, namely, ψ logically follows from φ. In
this case, the meaning sets of φ and ψ have the relation
m(φ) ⊆ m(ψ). Moreover, m(φ) is called a sub-granule
of m(ψ) and m(ψ) a super-granule of m(φ).

In the language L, logic formulas are used to charac-
terize definability. The definability of a set of individuals
or a granule can be defined formally. We say a subset or
a granule X ⊆ M is definable in the model M if and
only if there exits a formula φ in the language L such
that,

X = m(φ).

Otherwise, it is undefinable. Accordingly, the family of
all definable sets or granules is defined as:

Def(L(A,M)) = {m(φ) | φ ∈ L(A,M)}.

In this way, the language L only enables us to define cer-
tain subsets of M . For an arbitrary subset of M , we may
not be able to construct a formula for it. In other words,
depending on the set of atomic formulas, the language
L can only describe a restricted family of subsets of M .

3.2. Collective Structure

Granules in the same level are formed with respect
to a certain level of abstraction and collectively show a
certain structure. The collective structures are related to
granules in other levels.

We can classify granules by the number of atomic
formulas in their intensions. In the sub-language
L∧(A, M,∧), a granule involving k atomic formu-
las is called an k-conjunction. An k-conjunction gran-
ule is more general than its (k + 1)-conjunctions, and
more specific than its (k − 1)-conjunctions. In the sub-
language L∨(A,M,∨), a granule involving k atomic
formulas is called an k-disjunction. In this case, an
k-disjunction granule is more general than its (k −
1)-disjunctions, and more specific than its (k + 1)-
disjunctions.

3.3. Hierarchical Structure

Granules can be ordered based on their generalities
or sizes. For example, in set-theoretic setting, the size of
a granule can be defined by its cardinality. One can de-
fine operations on granules so that smaller granules can
form larger granules, and larger granules can be decom-
posed into smaller granules. Elementary granules are the
most basic granules which are defined by atomic formu-
las in the language L(A,M). Based on them, smaller
granules are defined by formulas in the sub-language
L∧(A, M,∧) where atomic formulas are connected by
the conjunctive connective ∧, and larger granules are
defined by formulas in the sub-language L∨(A,M,∨)
where atomic formulas are connected by the disjunctive
connective ∨. In this case, a granule is said to be de-
finable if it is the intersection or union of some elemen-
tary granules [29]. Connections between granules can be
represented as binary relations. For example, the relation
could be an order relation [26] interpreted as “more gen-
eral than” or “more specific than”.

Granules in different levels are linked by the order re-
lations and operations on granules. A higher level con-
tains granules that are ordered before granules in a lower
level, and granules in a lower level are ordered after
granules in a higher level. Granules in a higher level can
be decomposed into many smaller granules with more
detail in a lower level, and conversely granules in a lower
level can form more abstract larger granules in a higher
level. The connections of different levels form a multi-
level hierarchical structure.

3.4. Two Types of Granular Structures

The three components as a whole is referred to as a
granular structure. Based on different relations between
granules, there are two ways to construct a granular
structure. One is constructed by a top-down process, we
call it an ∩-closure granular structure. The other is con-
structed by a bottom-up process, we call it an ∪-closure
granular structure.

Let GS∩(L) denote the ∩-closure granular structure
of the model M . We can formally define it by the sub-
language L∧(A,M,∧), written as:

GS∩(L∧) = (Def(L∧(A, M,∧)),∩),

where Def(L∧(A, M,∧)) is the family of granules de-
fined by the sub-language L∧(A,M,∧).

The process of constructing an ∩-closure granular
structure is a top-down process, which involves divid-
ing a larger granule into smaller and lower level gran-
ules. Each granule is labeled by the formulas of the sub-
language L∧(A, M,∧). At the top level, the most gen-
eral granule is labeled by the formula T, which is sat-
isfied by every individual. The next level are the ele-
mentary granules labeled by atomic formulas. The in-
tersections of two elementary granules produce the next
level of granules labeled by the conjunction of the two
atomic formulas, and so on. Finally, at the bottom level,
we close the structure by a most specific granule formed
by the intersection of all elementary granules.

Let GS∪(L) denote the ∪-closure granular structure
of the model M . We can formally define it by the sub-
language L∨(A,M,∨), written as:

GS∪(L∨) = (Def(L∨(A, M,∨)),∪),

where Def(L∨(A, M,∨)) is the family of granules de-
fined by the sub-language L∨(A,M,∨).

The process of constructing an ∪-closure granular
structure is a bottom-up process, which involves the pro-
cess of forming a larger and higher level granule with
smaller and lower level granules. At the bottom level,
a most specific granule is labeled by the formula T’,
which is not satisfied by any individual. The upper level
are the elementary granules labeled by atomic formulas.
The unions of two elementary granules produce the up-
per level of granules labeled by the disjunction of the
two atomic formulas, and so on. Finally, at the top level,
we close the structure by a most general granule formed
by the union of all elementary granules.

4. Interpreting the Logic Language L in an
Information Table

In this section, we use an information table as a con-
crete granular computing model to show the usefulness
of the language L. We analyze granular structures in
rough set theory [7, 9].

4.1. Information Tables

An information table provides a convenient way to
describe a finite set of objects by a finite set of at-
tributes [7]. Formally, an information table can be ex-
pressed as:

S = (U, At, {Va |a ∈ At}, {{Ra}|a ∈ At}, {Ia |a ∈ At}),

where

U is a finite nonempty set of objects,
At is a finite nonempty set of attributes,
Va is a nonempty set of values for a ∈ At,

{Ra} is a family of binary relations on Va,

Ia : U → Va is an information function.

Each information function Ia maps an object in U to a
value of Va for an attribute a ∈ At.

The above definition of an information table consid-
ers more knowledge and information about relationships
between values of attributes. Each relation Ra can rep-
resent similarity, dissimilarity, or ordering of values in
Va [2]. The equality relation = is only a special case of
Ra. The standard rough set theory uses the trivial equal-
ity relation on attribute values [7].

Pawlak and Skowron [9] consider a more general-
ized notion of an information table. For each attribute
a ∈ At, a relational structure <a over Va is introduced.
A language can be defined based on the relational struc-
tures. A binary relation is a special case of relational
structures.

4.2. Constructing Granular Structures in an
Information Table

In an information table, if we are interested in the
relationships of objects of the universe U in terms of
their attribute values, we can construct the language L
by using U as the model M . That is, individuals of M
are objects in the universe U . The set of atomic formulas
are constructed as follows. With respect to an attribute
a ∈ At and an attribute value v ∈ Va, an atomic formula
of the language L is denoted by (a,Ra, v). An object
x ∈ U satisfies an atomic formula (a, Ra, v) if the value

Object Height Hair Eyes Class
o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 1. An Information Table

of x on attribute a is Ra-related to the value v, that is
Ia(x) Ra v, we write:

x |= (a,Ra, v) iff Ia(x) Ra v.

We denote the language as L({(a, Ra, v)}, U). The
granule corresponding to the atomic formula (a,Ra, v),
namely, its meaning set, is defined as:

m(a,Ra, v) = {x ∈ U | Ia(x)Rav}.

Granules corresponding to the compound formulas are
defined by Equation (1).

The language for standard rough set theory [6, 7, 9] is
given by L({(a, =, v)}, U) with atomic formulas in the
form of (a,=, v). An object x ∈ U satisfies an atomic
formula (a,=, v) if the value of x on attribute a is v, that
is, Ia(x) = v. We write:

x |= (a,=, v) iff Ia(x) = v.

The granule,

m(a, =, v) = {x ∈ U | Ia(x) = v}.

corresponds to the atomic formula (a,=, v).
We can simply construct the ∩-closure and ∪-closure

granular structures in an information table by using the
equality relation. Formally, we can rewrite the ∩-closure
granular structure as:

GS∩(L) = (Def(L∧((a,=, v), U,∧)),∩).

Similarly, we can rewrite the ∪-closure granular struc-
ture as:

GS∪(L) = (Def(L∨((a,=, v), U,∨)),∪).

Example 1 Table 1 is an information table taken
from [12]. Each object is described by four attributes.
The column labeled by “Class” denotes an expert’s clas-
sification of the objects. The possible values for three

 short tall blond red dark blue brown

short blond short brown tall dark blond blue dark blue dark brown

short blond blue short blond brown tall dark blue tall dark brown

T

Figure 1. An example of ∩-closure granular structure

 short tall blond red dark blue brown

short blond short brown tall dark blond blue dark blue dark brown

short blond blue short blond brown tall dark blue tall dark brown

T'

Figure 2. An example of ∪-closure granular structure

attributes {Height, Hair, Eyes} are:

VHeight = {short, tall},
VHair = {blond,dark, red},
VEyes = {blue, brown}.

If the attribute Height is chosen, we can partition the
universe into the following equivalence classes or ele-
mentary granules:

{o1, o2, o8}, {o3, o4, o5, o6, o7},
corresponding to atomic formulas:

(Height,=, short),
(Height,=, tall),

respectively. Similarly, the use of attribute Hair pro-
duces the following equivalence classes or elementary
granules:

{o1, o2, o6, o8}, {o3}, {o4, o5, o7},

corresponding to atomic formulas:

(Hair,=, blond),
(Hair,=, red),
(Hair,=, dark),

respectively. For the attribute Eyes, we have:

{o1, o3, o4, o5, o6}, {o2, o7, o8},
corresponding to atomic formulas:

(Eyes,=, blue),
(Eyes,=, brown),

respectively.
Smaller granules are set-theoretic intersections of el-

ementary granules. For example, sets

{o1, o2, o8} ∩ {o1, o2, o6, o8} = {o1, o2, o8},
{o3, o4, o5, o6, o7} ∩ {o4, o5, o7} ∩ {o2, o7, o8}

= {o7}

are smaller granules with the corresponding compound
formulas (Height, =, short) ∧ (Hair, =,blond), and
(Height, =, tall)∧ (Hair, =,dark)∧ (Eyes, =,brown),
respectively.

Figure 1 draws part of the ∩-closure granular struc-
ture for Table 1. In the figure, we assume that an
attribute appears at most once in each formula of
GS∩(L). An atomic formula is simply represented by
the attribute value. For example, the atomic formula
(Height, =, short) is simply written as short.

Example 2 In Table 1, larger granules are set-
theoretic unions of elementary granules. For example,
sets

{o1, o2, o8} ∪ {o4, o5, o7} = {o1, o2, o4, o5, o7, o8},
{o3, o4, o5, o6, o7} ∪ {o3} ∪ {o2, o7, o8} =

{o2, o3, o4, o5, o6, o7, o8},

are larger granules for the corresponding compound
formulas (Height,=, short) ∨ (Hair,=, dark), and
(Height, =, tall) ∨ (Hair,=, red) ∨ (Eyes, =,brown),
respectively.

Figure 2 draws part of the ∪-closure granular struc-
ture for Table 1.

5. Conclusion

Granular computing is a new area of research. Its
main purpose is to model, state, and solve real world
problems at multiple levels of granularity. A fundamen-
tal notion of granular computing is granular structures
described in terms of granules, levels, and hierarchical
structures. In order to formally define granular struc-
tures, we introduce a logic language L. Formulas of the
language is recursively constructed from a set of atomic
formulas, representing the basic or elementary observa-
tions. The meaning of formulas is defined in Tarski’s
style by using a model M . It is assumed that an indi-
vidual in M either satisfies a formula or does not satisfy
a formula.

The logic language provides a method to define a
granule as a pair (φ,m(φ)) consisting of a formula of
the language L and a subset of M . Furthermore, the no-
tions of indiscernibility and definability can be defined.
Two sub-languages of L are introduced, each of them
uses only one logic connective. They lead to the intro-
duction of two types of granular structures.

The results from this study show that it is useful to
study formal and concrete models of granular comput-
ing. In addition, it may be necessary to further study
logic approaches to granular computing.

References

[1] Bargiela, A., Pedrycz W. Granular computing: an intro-
duction, Kluwer Academic Publishers, Boston, 2002.

[2] Demri, S., Orlowska, E. Logical analysis of indiscerni-
bility, in: Incomplete Information: Rough Set Analysis,
Orl owska, E. (Ed.), Physica Verlag, Heidelberg, 347-
380, 1997.

[3] Hobbs, Jerry R. Granularity, Proceedings, Ninth Inter-
national Joint Conference on Artificial Intelligence, 432-
435, 1985.

[4] Klir, G.J. Basic issues of computing with granular prob-
abilities, Proceedings of 1998 IEEE International Con-
ference on Fuzzy Systems, 101-105, 1998.

[5] Lin, T.Y., Yao, Y.Y. and Zadeh, L.A. (Eds.) Data min-
ing, rough sets and granular computing, Physica-Verlag,
Heidelberg, 2002.

[6] Nguyen, H. S., Skowron, A., Stepaniuk, J. Granular
computing: a rough set approach, Computational Intel-
ligence, 17, 514-544, 2001.

[7] Pawlak, Z. Rough Sets - Theoretical Aspects of Reason-
ing About Data, Kluwer Publishers, Boston, Dordrecht,
1991.

[8] Pawlak, Z. Granularity of knowledge, indiscernibility
and rough sets, Proceedings of 1998 IEEE International
Conference on Fuzzy Systems, 106-110, 1998.

[9] Pawlak, Z., Skowron, A. Rough sets: some extensions,
Information Science, 177, 28-40, 2007.

[10] Pedrycz, W. (Ed.) Granular computing: an emerging
paradigm, Physica-Verlag, Heidelberg, 2001.

[11] Polkowski, L. and Skowron, A. Towards adaptive calcu-
lus of granules, Proceedings of 1998 IEEE International
Conference on Fuzzy Systems, 111-116, 1998.

[12] Quinlan, J. R. Learning efficient classification proce-
dures and their application to chess end-games, in: Ma-
chine Learning: An Artificial Intelligence Approach,
Michalski, J.S. et al.(Eds.), Morgan Kaufmann, 1, 463-
482, 1983.

[13] Skowron, A. and Stepaniuk, J. Information granules and
approximation spaces, manuscript, 1998.

[14] Smith, E.E. Concepts and induction, in Posner, M.I.
(Ed.), Foundations of Cognitive Science, The MIT Press,
Cambridge, Massachusetts, 501-526, 1989.

[15] Simon, H. A., Kaplan, C. A. Foundations of cognitive
science, in Foundations of cognitive science, M. I. Pos-
ner’s (Ed.), Cambridge, MA: MIT Press, 1-47, 1989.

[16] Sowa, J.F. Conceptual Structures, Information Process-
ing in Mind and Machine, Addison-Wesley, Reading,
Massachusetts, 1984.

[17] Van, Mechelen, I., Hampton, J., Michalski, R.S. and
Theuns, P. (Eds.), Categories and Concepts, Theoreti-
cal Views and Inductive Data Analysis, Academic Press,
New York, 1993.

[18] Wang, Y. Cognitive informatics: a new transdisciplinary
research field, Brain and Mind: A Transdisciplinary
Journal of Neuroscience and Neurophilosophy, 4, 115-
127, 2003.

[19] Wang, Y. On cognitive informatics, Brain and Mind:
A Transdisciplinary Journal of Neuroscience and Neu-
rophilosophy, 4, 151-167, 2003.

[20] Wille, R. Concept lattices and conceptual knowledge
systems, Computers Mathematics with Applications, 23,
493-515, 1992.

[21] Yao, J.T., Yao, Y.Y. Induction of classification rules by
granular computing, Proceedings of the 3rd International
Conference on Rough Sets and Current Trends in Com-
puting, LNAI 2475, 331-338, 2002.

[22] Yao, Y.Y. Modeling data mining with granular comput-
ing, Proceedings of the 25th Annual International Com-
puter Software and Applications Conference, 638-643,
2001.

[23] Yao, Y.Y. Information granulation and rough set approx-
imation, International Journal of Intelligent Systems, 16,
87-104, 2001.

[24] Yao, Y.Y., Liau, C.-J., A generalized decision logic lan-
guage for granular computing, FUZZ-IEEE’02 in The
2002 IEEE World Congress on Computational Intelli-
gence, 1092-1097, 2002.

[25] Yao, Y.Y. A step towards the foundations of data min-
ing, in: Data Mining and Knowledge Discovery: The-
ory, Tools, and Technology V, Dasarathy, B.V. (Ed.), The
International Society for Optical Engineering, 254-263,
2003.

[26] Yao, Y.Y. Granular computing, Proceedings of The 4th
Chinese National Conference on Rough Sets and Soft
Computing, 31, 1-5, 2004.

[27] Yao, Y.Y. A comparative study of formal concept anal-
ysis and rough set theory in data analysis, International
Conference on Rough Sets and Current Trends in Com-
puting (RSCTC’2004), 59-68, 2004.

[28] Yao, Y.Y. Three perspectives of granular computing, The
Proceedings, International Forum on Theory of GrC
from Rough Set Perspective, Journal of Nanchang Insti-
tute of Technology, 25, 16-21, 2006.

[29] Yao, Y.Y. A note on definability and approximations,
Transactions on Rough Sets VII, 274-282, 2007.

[30] Yao, Y.Y. The art of granular computing, Proceeding of
the International Conference on Rough Sets and Emerg-
ing Intelligent Systems Paradigms, LNAI, 4585, 101-112,
2007.

[31] Yao, Y.Y. Zhou, B. Chen, Y.H. Interpreting low and high
order rules: a granular computing approach, LNAI, 4585,
371-380, 2007.

[32] Zadeh, L.A. Towards a theory of fuzzy information gran-
ulation and its centrality in human reasoning and fuzzy
logic, Fuzzy Sets and Systems, 19, 111-127, 1997.

[33] Zadeh, L.A. Some reflections on soft computing, granu-
lar computing and their roles in the conception, design
and utilization of information/intelligent systems, Soft
Computing, 2, 23-25, 1998.

