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Abstract

Probabilistic approaches have been applied to the theory of rough set in sev-
eral forms, including decision-theoretic analysis, variable precision analysis, and
information-theoretic analysis. Based on rough membership functions and rough
inclusion functions, we revisit probabilistic rough set approximation operators and
present a critical review of existing studies. Intuitively, they are defined based on a
pair of thresholds representing the desired levels of precision. Formally, the Bayesian
decision-theoretic analysis is adopted to provide a systematic method for determin-
ing the precision parameters by using more familiar notions of costs and risks.
Results from existing studies are reviewed, synthesized and critically analyzed, and
new results on the decision-theoretic rough set model are reported.

Key words: rough sets, approximation operators, decision-theoretic model,
variable precision and parameterized models, probabilistic rough set models

1 Introduction

In the standard rough set model proposed by Pawlak [26,27], the lower and
upper approximations are defined based on the two extreme cases regarding
the relationships between an equivalence class and a set. The lower approxi-
mation requires that the equivalence class is a subset of the set. For the upper
approximation, the equivalence class must have a non-empty overlap with
the set. A lack of consideration for the degree of their overlap unnecessarily
limits the applications of rough sets and has motivated many researchers to in-
vestigate probabilistic generalizations of the theory [11,14,25,28–30,32,33,42–
46,52,54,56–58,60,66,69].

Probabilistic approaches to rough sets have appeared in many forms, such
as the decision-theoretic rough set model [52,54,56–58], the variable preci-
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sion rough set model [14,66,69], the Bayesian rough set model [11,34,35],
information-theoretic analysis [3,41], probabilistic rule induction [6,8,13,19–
21,31,37–39,64,65,67,68], and many related studies [44,45]. The extensive re-
sults increase our understanding of the theory. At the same time, it seems
necessary to provide a unified and comprehensive framework so that those
results can be put together into an integrated whole, rather than separated
studies [54]. Most of the papers in this special issue aim at such a goal. The
current paper focuses specifically on the issues of probabilistic approximations.
The existing results are revisited and critically reviewed and new results are
provided.

Probabilistic rough set approximations can be formulated based on the notions
of rough membership functions [28] and rough inclusion [30]. Both notions can
be interpreted in terms of conditional probabilities or a posteriori probabil-
ities. Threshold values, known as parameters, are applied to a rough mem-
bership function or a rough inclusion to obtain probabilistic or parameterized
approximations. Three probabilistic models have been proposed and stud-
ied intensively. They are the decision-theoretic rough set model [52,54,56,58],
the variable precision rough set model [14,66], and the Bayesian rough set
model [11,34,35]. The main differences among those models are their different,
but equivalent, formulations of probabilistic approximations and interpreta-
tions of the required parameters.

The variable precision rough set model treats the required parameters as a
primitive notion. The interpretation and the process of determining the pa-
rameters are based on rather intuitive arguments and left to empirical studies.
There is a lack of theoretical and systematic studies and justifications on the
choices of the threshold parameters. In fact, a solution to this problem was
reported earlier in a decision-theoretic framework for probabilistic rough set
approximations [52,56,58], based on the well established Bayesian decision pro-
cedure for classification [7]. Within the decision-theoretic framework, the re-
quired threshold values can be easily interpreted and calculated based on more
concrete notions, such as costs and risks. Unfortunately, many researchers are
still unaware of the decision-theoretic model and tend to estimate the pa-
rameters based on tedious trial-and-error approaches. By explicitly showing
the connections of the two models in this paper, we hope to increase further
understanding of the theoretical foundations of probabilistic approximations.

The Bayesian rough set model [11,34,35] attempts to provide an alternative
interpretation of the required parameters. The model is based on the Bayes’
rule that expresses the change from the a priori probability to the a posteriori

probability, and a connection between classification and hypothesis verifica-
tion. Under specific interpretations, the required parameters can be expressed
in terms of various probabilities. It is not difficult to establish connections
between the probabilities used in the Bayesian rough set model and the costs
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used in the decision-theoretic model. Additional parameters are introduced in
the Bayesian rough set model. There remains the question of how to interpret
and determine the required parameters systematically.

With the objective of bringing together existing studies on probabilistic rough
set approximations in a unified and comprehensive framework, the rest of the
paper is organized into four parts. In Section 2, we review the basic concepts of
the standard rough set approximations. This establishes a basis and guidelines
for various probabilistic generalizations. In Section 3, we examine the two
fundamental notions of rough membership functions and rough inclusions.
They serve as a foundation on which probabilistic rough set approximations
can be developed. In Section 4, we critically review different formulations of
probabilistic rough set approximations. In Section 5, we explicitly show the
conditions on a loss function so that many specific classes of probabilistic rough
set approximations introduced in Section 4 can be derived in the decision-
theoretic model.

2 Standard Rough Set Approximations

Suppose U is a finite and nonempty set called the universe. Let E ⊆ U × U
be an equivalence relation on U , i.e., E is reflexive, symmetric, and transitive.
The basic building blocks of rough set theory are the equivalence classes of E.
For an element x ∈ U , the equivalence class containing x is given by:

[x]E = {y ∈ U | xEy}. (1)

When no confusion arises, we also simply write [x]. The family of all equiv-
alence classes is also known as the quotient set of U , and is denoted by
U/E = {[x] | x ∈ U}. It defines a partition of the universe, namely, a family
of pairwise disjoint subsets whose union is the universe.

For an equivalence relation, the pair apr = (U, E) is called an approximation
space [26,27]. In the approximation space, we only have a coarsened view of
the universe. Each equivalence class is considered as a whole granule instead
of many individuals [51]. Equivalence classes are the elementary definable,
measurable, or observable sets in the approximation space [26,27,50]. By tak-
ing unions of elementary definable sets, one can derive larger definable sets.
The family of all definable sets contains the empty set ∅, the whole set U ,
and is closed with respect to set complement, intersection, and union. It is an
σ-algebra over U . Furthermore, σ(U/E) defines uniquely a topological space
(U, σ(U/E)), in which σ(U/E) is the family of all open and closed sets [26].

3



In general, the sigma-algebra σ(U/E) is only a subset of the power set 2U .
An interesting issue is therefore the representation of undefinable sets in
2U − σ(U/E) in terms of definable sets, in order to infer knowledge about
undefinable sets. Similar to the interior and closure operators in topological
spaces, one can define rough set approximation operators [26,27]. For a subset
A ⊆ U , its lower approximation is the greatest definable set contained in A,
and its upper approximation is the least definable set containing A. That is,
for A ⊆ U ,

apr(A) =
⋃
{X | X ∈ σ(U/E), X ⊆ A},

apr(A) =
⋂
{X | X ∈ σ(U/E), A ⊆ X}. (2)

In the study of rough set theory, one often uses the following equivalent defi-
nitions [49]:

apr(A) = {x ∈ U | ∀y ∈ U [xEy =⇒ y ∈ A]},

apr(A) = {x ∈ U | ∃y ∈ U [xEy, y ∈ A]}; (3)

and

apr(A) = {x ∈ U | [x] ⊆ A},

apr(A) = {x ∈ U | [x] ∩ A 6= ∅}. (4)

An element is in the lower approximation of A if all of its equivalent elements
are in A, and an element is in the upper approximation of A if at least one of
its equivalent elements is in A.

Definition given by equation (2) is referred to as the subsystem based defini-
tion. Definitions given by equations (3) and (4) are referred to as the element
based definitions [53]. Equivalently, from equation (4), one can also have a
granule based definition:

apr(A) =
⋃
{[x] ∈ U/E | [x] ⊆ A},

apr(A) =
⋃
{[x] ∈ U/E | [x] ∩ A 6= ∅}. (5)

It provides a new interpretation of rough set approximations. The lower ap-
proximation is the union of equivalence classes that are subsets of A and the
upper approximation is the union of equivalence classes that have a non-empty
intersection with A.

Let Ac denote the complement of the set A. Some of the useful properties sat-
isfied by the pair of approximation operators are summarized below [26,27,49]:
for A, B ⊆ U ,
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(L0) apr(A) = (apr(Ac))c,

(U0) apr(A) = (apr(Ac))c;

(L1) apr(A ∩ B) = apr(A) ∩ apr(B),

(U1) apr(A ∪ B) = apr(A) ∪ apr(B);

(L2) apr(A ∪ B) ⊇ apr(A) ∪ apr(B),

(U2) apr(A ∩ B) ⊆ apr(A) ∩ apr(B);

(L3) A ⊆ B =⇒ apr(A) ⊆ apr(B),

(U3) A ⊆ B =⇒ apr(A) ⊆ apr(B);

(L4) apr(A) ⊆ A,

(U4) A ⊆ apr(A);

(L5) apr(A) = apr(apr(A)),

(U5) apr(A) = apr(apr(A));

(L6) apr(A) = apr(apr(A)),

(U6) apr(A) = apr(apr(A));

(L7) apr(A) = A ⇐⇒ A ∈ σ(U/E),

(U7) apr(A) = A ⇐⇒ A ∈ σ(U/E).

Properties (L0) and (U0) state that the lower and upper approximations are a
pair of dual operators. Properties (L1) and (U1) show the distributivity of apr
over set intersection, and apr over set union. Properties (L2) and (U2) state
that the lower approximation operator is not necessarily distributive over set
union, and the upper approximation operator is not necessarily distributive
over set intersection. According to properties (L3)and (U3), both operators are
monotonic with respect to set inclusion. By properties (L4) and (U4), a set lies
within its lower and upper approximations. The next two pairs of properties
state that the result of applying a consecutive approximation operators is the
same as the result of the operator closest to A. Properties (L7) and (U7) state
that a set and its approximations are the same if and only if the set is a
definable set in σ(U/E).

Given a subset A ⊆ U , the universe can be divided into three disjoint regions,
namely, the positive, the negative, and the boundary regions [26]:

POS(A) = apr(A),

NEG(A) = POS(Ac) = (apr(A))c,

BND(A) = apr(A) − apr(A). (6)

An element of the positive region POS(A) definitely belongs to A, an element
of the negative region NEG(A) definitely does not belong to A, and an element
of the boundary region BND(A) only possibly belongs to A.
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The three regions and the approximation operators uniquely determine each
other. One may therefore use any of the three pairs to represent a subset
A ⊆ U :

(POS(A), POS(A) ∪ BND(A)) = (apr(A), apr(A)),

(POS(A), BND(A)) = (apr(A), apr(A) − apr(A)),

(POS(A), NEG(A)) = (apr(A), (apr(A))c).

Each of them makes explicit certain particular aspect of the approximations.
The first pair is the most commonly used one, defining the lower and upper
bounds within which lies the set A. It is related to the notions of the core and
support of a fuzzy set. The second pair explicitly gives the boundary elements
under the approximations. The third pair focuses on what is definitely in A,
in contrast to what is definitely not in A.

3 Rough Membership Functions and Rough Inclusion

Since the lower and upper approximations are dual operators, it is sufficient
to consider one of them. According equations (3) and (4), generalized approx-
imation operators can be introduced by relaxing the conditions:

(LC) ∀y ∈ U [xEy =⇒ y ∈ A],

(SC) [x] ⊆ A.

For the logic condition (LC), one can use probabilistic versions. The results
from graded modal logic [10,24], variable precision logic [22], and probabilis-
tic logic [16] may be adopted. For the set-theoretic condition (SC), we may
adopt the notion of the degree of set inclusion from many studies, such as
approximate reasoning [46,61] and rough mereology [30].

3.1 Rough membership functions

The concept of rough membership functions is based on the generalization of
the strict logic condition (LC) into a probabilistic version. More specifically,
the rough membership value of an element x, with respect to a set A ⊆ U ,
is typically defined in terms of a measure of the degree to which the logic
condition (LC) is true.

The notion of a rough membership function was explicitly introduced by
Pawlak and Skowron [28], although it had been used and studied earlier by
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Wong and Ziarko [43], Pawlak, Wong, and Ziarko [29], Yao, Wong and Lin-
gras [58], Yao and Wong [56], and many authors.

Let P : 2U −→ [0, 1] be a probability function defined on the power set 2U ,
and E an equivalence relation on U . The triplet apr = (U, E, P ) is called
a probabilistic approximation space [29,43]. For a subset A ⊆ U , its rough
membership function is given by the conditional probability as follows:

µA(x) = P (A | [x]), (7)

Rough membership value of an element belonging to A is the probability
of the element in A given that the element is in [x]. With the probabilistic
interpretation of rough membership function, we will use µA(x) and P (A | [x])
interchangeably in subsequent discussions.

For a finite universe, the rough membership function is typically computed
by [28]:

µA(x) =
|A ∩ [x]|

|[x]|
, (8)

where |A| denotes the cardinality of the set A.

Rough membership functions satisfy the following properties [28,55]:

(m1) µU(x) = 1,

(m2) µ∅(x) = 0,

(m3) xEy =⇒ µA(x) = µA(y),

(m4) x ∈ A =⇒ µA(x) 6= 0,

(m5) x 6∈ A =⇒ µA(x) 6= 1,

(m6) µA(x) = 1 ⇐⇒ [x] ⊆ A,

(m7) µA(x) > 0 ⇐⇒ [x] ∩ A 6= ∅,

(m8) A ⊆ B =⇒ µA(x) ≤ µB(x),

(m9) µAc(x) = 1 − µA(x),

(m10) µA∪B(x) = µA(x) + µB(x) − µA∩B(x),

(m11) A ∩ B = ∅ =⇒ µA∪B(x) = µA(x) + µB(x),

(m12) max(0, µA(x) + µB(x) − 1) ≤ µA∩B(x) ≤ min(µA(x), µB(x)),

(m13) max(µA(x), µB(x)) ≤ µA∪B(x) ≤ min(1, µA(x) + µB(x)).

Those properties easily follow from the properties of a probability function.
While (m1)-(m8) show the properties of rough membership functions, (m9)-
(m13) show the properties of set-theoretic operations with rough membership
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functions. The property (m3) is particularly interesting, which shows that ele-
ments in the same equivalence class must have the same degree of membership.
In other words, equivalent elements must have the same membership value.

3.2 Rough inclusion

The concept of rough inclusion generalizes the set-theoretic condition (SC) in
order to capture graded inclusion. The degree to which [x] is included in A
depends on both the overlap and non-overlap parts of [x] and A.

In the rough set theory literature, the notion of rough inclusion, introduced ex-
plicitly by Polkowski and Skowron [30], has been studied using other names, in-
cluding relative degree of misclassification [66], majority inclusion relation [66],
vague inclusion [33], inclusion degrees [46,60,61], and so on.

Recall that the notion of rough membership functions is a generalization of
the logic condition (LC). By the equivalence of the two conditions (LC) and
(SC), we can extend the notion of a rough membership function to rough
inclusion [30,33]. For the maximum membership value 1, we have [x] ⊆ A,
namely, [x] is a subset of A. For the minimum membership value 0, we have
[x] ∩ A = ∅, or equivalently [x] ⊆ Ac, namely, [x] is totally not a subset of
A. For a value between 0 and 1, it may be interpreted as the degree to which
[x] is a subset of A. Thus, one obtains a measure of graded inclusion of two
sets [30,32,33,61]:

v(B | A) =
|A ∩ B|

|A|
. (9)

For the case where A = ∅, we define v(B | ∅) = 1, namely, the empty set is a
subset of any set. Accordingly, the degree to which the equivalence class [x] is
included in a set A is given by:

v([A | [x]) =
|[x] ∩ A|

|[x]|
. (10)

It follows that v(A | [x]) = µA(x). From the properties of a rough membership
function, one can easily obtain the corresponding properties of rough inclu-
sion. Similar to a rough membership function, the value of v(B | A) can be
interpreted as the conditional probability P (B | A) that a randomly selected
element from A belongs to B. There is a close connection between graded
inclusion and fuzzy set inclusion [33,59].

In the development of the variable precision rough set model, Ziarko [66] used
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an inverse measure of v called the relative degree of misclassification:

c(B | A) = 1 − v(B | A) = 1 −
|A ∩ B|

|A|
. (11)

Bryniarski and Wybraniec-Skardowska [4] proposed to use a family of inclusion
relations called context relations, indexed by a bounded and partially ordered
set called rank set. The unit interval [0, 1] can be treated as a rank set. From
a measure of graded inclusion, a context relation with respect to a value α ∈
[0, 1] can be defined by:

⊆α = {(A, B) | v(B | A) ≥ α}. (12)

If one interprets v as a fuzzy relation on 2U , the relation ⊆α may be interpreted
as an α-cut of the fuzzy relation. The use of a complete lattice, or a rank set,
corresponds to the study of L-fuzzy sets and L-fuzzy relations in the theory
of fuzzy sets [15].

Many proposals have been made to generalize and characterize the notion of
graded inclusion. Skowron and Stepaniuk [33] suggested that graded (vague)
inclusion of sets may be measured by a function, v : 2U × 2U −→ [0, 1],
with monotonicity regarding the first argument, namely, for A, B, C ⊆ U ,
v(B | A) ≤ (C | A) for any B ⊆ C. In this case, the function defined by
equation (9) is an example of such a measure. Skowron and Polkowski [32]
suggested new properties for rough inclusion, in addition to the monotonicity.
The unit interval [0, 1] can also be generalized to a complete lattice in the
definition of rough inclusion [30]. Rough inclusion is only an example for mea-
suring degrees of inclusion in rough mereology. A more detailed discussion on
rough mereology and related concepts can be found in [30,32].

Zhang and Leung [61], and Xu et al. [46] proposed a generalized notion of
inclusion degree in the context of a partially ordered set. Let (L,�) be a
partially ordered set. A function D : L × L −→ [0, 1] is called a measure of
inclusion degree if it satisfies the following properties [46]: for a, b, c ∈ L,

(i). 0 ≤ D(b | a) ≤ 1,

(ii). a � b =⇒ D(b | a) = 1,

(iii). a � b � c =⇒ D(a | b) ≥ D(a | c),

(iv). a � b =⇒ D(a | c) ≤ D(b | c).

Property (i) is the normalization condition. Property (ii) ensures that the
degree of inclusion reaches the maximum value for the standard inclusion.
Properties (iii) and (iv) state two types of monotonicity. When the concept of
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inclusion degree is applied to the partially ordered set (2U ,⊆), we immediately
obtain a rough inclusion [60].

4 Probabilistic Rough Set Approximations

The standard approximation operators ignore the detailed statistical informa-
tion of the overlap of an equivalence class and a set [29,43]. By exploring such
information, probabilistic approximation operators can be introduced.

4.1 Standard approximations as the core and the support of a fuzzy set

According to properties (m6) and (m7) of rough membership functions, µA(x) =
1 if and only if for all y ∈ U , xEy implies y ∈ A, and µA(x) > 0 if and only if
there exists a y ∈ U such that xEy and y ∈ A. A rough membership function
µA may be interpreted as a special kind of fuzzy membership function. Under
this interpretation, it is possible to re-express the standard rough set approx-
imations [28,29,43], and to establish their connection to the core and support
of a fuzzy set [55], as follows:

apr(A) = {x ∈ U | µA(x) = 1}

= core(µA),

apr(A) = {x ∈ U | µA(x) > 0}

= support(µA). (13)

That is, the lower and upper approximations of a set A are in fact the core
and support of the fuzzy set µA, respectively.

In the theory of fuzzy sets, fuzzy set intersection and union are commonly
defined in terms of a pair of t-norm and t-conorm [15]. Suppose fuzzy set
complement is defined by 1 − (·). For a pair of t-norm and t-conorm, core
and support of fuzzy sets satisfy the same properties of (L0)-(L6), and (U0)-
(U6), except in which the lower approximation is replaced by the core, and
the upper approximation by the support, respectively [55]. If the core and
support are interpreted as a qualitative representation of a fuzzy set, one
may conclude that the theories of fuzzy sets and rough sets share the same
qualitative properties.
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4.2 The 0.5 probabilistic approximations

An attempt to use probabilistic information for approximations was suggested
by Pawlak, Wong, Ziarko [29]. Their model is based essentially on the majority
rule. An element x is put into the lower approximation of A if the majority of
its equivalent elements [x] are in A. That is,

apr
0.5

= {x ∈ U | P (A | [x]) > 0.5),

apr0.5 = {x ∈ U | P (A | [x]) ≥ 0.5). (14)

The lower and upper 0.5 probabilistic approximation operators are dual to
each other. The boundary region consists of those elements whose conditional
probabilities are exactly 0.5, which represents maximal uncertainty.

4.3 Probabilistic approximations as the α-cuts of a fuzzy set

The standard approximations and 0.5 probabilistic approximations use special
points of the probability, namely, the two extreme points 0 and 1, and the
middle point 0.5. By considering other values, Yao and Wong [56] introduced
more general probabilistic approximations in the decision-theoretic model.

In the theory of fuzzy sets, α-cut and strong α-cut are important notions [15].
For α ∈ [0, 1], the α-cut and strong α-cut are defined, respectively, by:

(µA)α = {x ∈ U | µA(x) ≥ α},

(µA)α+ = {x ∈ U | µA(x) > α}. (15)

Using α-cuts, the standard rough set approximations can be expressed apr(A) =
(µA)1 and apr(A) = (µA)0+ . The 0.5 probabilistic approximations can be ex-
pressed as apr

0.5
(A) = (µA)0.5+ and apr0.5(A) = (µA)0.5.

For generalized probabilistic approximations, a pair of parameters α, β ∈ [0, 1]
with α ≥ β are used. The condition α ≥ β ensures that the lower approxima-
tion is smaller than the upper approximation in order to be consistent with
existing approximation operators. Yao and Wong [56] considered two separate
cases, 0 ≤ β < α ≤ 1 and 0 6= β = α. For 0 ≤ β < α ≤ 1, the standard rough
approximations are extended by the definition [56]:

apr
α

= {x ∈ U | P (A | [x]) ≥ α),

aprβ = {x ∈ U | P (A | [x]) > β). (16)
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For α = β 6= 0, the 0.5 probabilistic approximations are extended by the
definition [56]:

apr
α

= {x ∈ U | P (A | [x]) > α),

aprα = {x ∈ U | P (A | [x]) ≥ α). (17)

For 0 < β ≤ α < 1, Wei and Zhang [42] suggested another version in which
the lower approximation is defined by > and the upper approximation by ≥
instead. One advantage of their definition is that we do not need to have two
separated cases. However, their definition cannot produce the standard rough
set approximations. As will be shown in the next section, both versions are
derivable from the decision-theoretic model if different tie-breaking criteria
are used.

With a pair of arbitrary α and β, the probabilistic approximation operators are
not necessarily dual to each other. In order to obtain a pair of dual operators,
we set β = 1 − α. Then, the lower and upper probabilistic approximation
operators are dual operators.

Although the above formulation is motivated by the notion of α-cuts in fuzzy
set theory, similar notions have in fact been considered in many fields, such
as variable precision (probabilistic) logic [22], probabilistic modal logic [10],
graded/fuzzy modal logic [24], and many others. The use of thresholds on
probability values for making a practical decision is in fact a common method
in many fields, such as pattern recognition and classification [7], machine learn-
ing [23], data mining [2], and information retrieval [40], to name just a few.

Consider the condition α > β. Based on the definition of equation (16), the
probabilistic rough set operators satisfy the following properties [56,66]: for
0 ≤ β < α ≤ 1, α′ ∈ (0, 1] and β ′ ∈ [0, 1),

(PL0) apr
α
(A) = (apr1−α(Ac))c,

(PU0) aprα(A) = (apr
1−α

(Ac))c;

(PL1) apr
α
(A ∩ B) ⊆ apr

α
(A) ∩ apr

α
(B),

(PU1) aprβ(A ∪ B) ⊇ aprβ(A) ∪ aprβ(B);

(PL2) apr
α
(A ∪ B) ⊇ apr

α
(A) ∪ apr

α
(B),

(PU2) aprβ(A ∩ B) ⊆ aprβ(A) ∩ aprβ(B);

(PL3) A ⊆ B =⇒ apr
α
(A) ⊆ apr

α
(B),

(PU3) A ⊆ B =⇒ aprβ(A) ⊆ aprβ(B);

(PLU4) apr
α
(A) ⊆ aprβ(A);

(PL5) apr
α
(A) = aprβ(apr

α
(A)),

(PU5) aprβ(A) = apr
α
(aprβ(A));
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(PL6) apr
α
(A) = apr

α′
(apr

α
(A)),

(PU6) aprβ(A) = aprβ′(aprβ(A));

(PL7) apr
α
(A) = A ⇐⇒ A ∈ σ(U/E),

(PU7) aprβ(A) = A ⇐⇒ A ∈ σ(U/E).

They are counterparts of the properties (L0)-(L7) and (U0)-(U7) of the stan-
dard rough set approximation operators. As stated earlier, apr

α
and aprβ are

defined differently for the case when α = β, where similar properties can be
obtained. For probabilistic approximation operators, one can have additional
properties: for α, α′ ∈ (0, 1] and β, β ′ ∈ [0, 1),

(PL8) α ≥ α′ =⇒ apr
α
(A) ⊆ apr

α′
(A),

(PU8) β ≥ β ′ =⇒ aprβ(A) ⊆ aprβ′(A);

(PL9) apr(A) = apr
1
(A),

(PU9) apr(A) = apr0(A).

Properties (PL8) and (PU8) show that both probabilistic approximation op-
erators are monotonic decreasing with respect to the parameters α and β.
Properties (PL9) and (PU9) establish the connection between probabilistic
approximation operators and the standard approximation operators.

4.4 The variable precision and parameterized rough set models

With the introduction of rough inclusion, the standard approximation space
can be generalized to apr = (U, I, v), where I : U −→ 2U is an information
function and v is a measure of rough inclusion [25,33]. The mapping [·] that
maps an element to its equivalence class is an instance of the information
function I. By applying threshold values on a rough inclusion v, it is possible
to derive variable precision or parameterized approximations [11,33,66] by
generalizing equation (4) of the element based definition or equation (5) of
the granule based definition. The variable precision rough set model is one of
the well known such formulations [66].

In formulating the variable precision rough set model, Ziarko [66] used the
relative degree of misclassification function c and the granule based definition
of approximations. To be consistent with the previous and subsequent discus-
sions, we present a slightly different, but equivalent, formulation based on the
rough inclusion,

v(A | [x]) =
|A ∩ [x]|

|[x]|
= P (A | [x]), (18)
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and the element based definition. As mentioned in the earlier discussion, based
on the rough inclusion v, we can define different levels of set inclusion [4,66]:

[x] ⊆α A⇐⇒ v(A | [x]) ≥ α

⇐⇒P (A | [x]) ≥ α, (19)

where α ∈ (0, 1].

When defining the lower approximation, the majority requirement of the vari-
able precision rough set model suggests that more than 50% of elements in an
equivalence class [x] must be in A in order for x to be in the lower approxima-
tion. In other words, the set-theoretic condition (SC) must hold to a degree
greater than 0.5. We need to choose the threshold value α in the range (0.5, 1].
By generalizing equation (4), the α-level lower approximation is given by: for
α ∈ (0.5, 1],

apr
α
(A) = {x ∈ U | [x] ⊆α A}

{x ∈ U | P (A | [x]) ≥ α}. (20)

The corresponding upper approximation is defined based on the dual of the
lower approximation:

apr1−α(A) = (apr
α
(Ac))c

= {x ∈ U | P (A | [x]) > 1 − α}. (21)

The condition 0.5 < α ≤ 1 implies 0 ≤ 1 − α < 0.5. It follows that the lower
approximation is a subset of the upper approximation. The pair of parameters
(α, 1−α) is referred to as the symmetric bounds, as it produces a pair of dual
approximation operators (apr

α
, apr1−α).

Variable precision rough sets with asymmetric bounds were examined by
Katzberg and Ziarko [14]. It is only required that 0 ≤ β < α ≤ 1, where
β is used to define the upper approximation and α is used to define the lower
approximation, as defined in equation (16). Although apr

α
and aprβ are not

necessarily dual to each other, Yao and Wong [56] showed that the two pairs
of operators, (apr

α
, aprβ) and (apr

1−β
, apr1−α) are complement to each other.

For the special rough inclusion v(A | [x]) = P (A | [x]), the probabilis-
tic approximations from the decision-theoretic model and the variable pre-
cision model are equivalent. The main differences are their formulations. The
decision-theoretic model systematically derives many types of approximation
operators and provides theoretical guidelines for the estimation of required
parameters, while the variable precision model relies much on intuitive argu-
ments.
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Ślȩzak and Ziarko [35] and Ślȩzak [34] introduced the Bayesian rough set model
in an attempt to provide an alternative interpretation of the required parame-
ters in the variable precision rough set model. By setting the parameters as the
a priori probabilities, a pair of probabilistic approximations is defined by [35]:
for A ⊆ U ,

apr
P (A)

(A) = {x ∈ U | P (A | [x]) > P (A)},

aprP (A)(A) = {x ∈ U | P (A | [x]) ≥ P (A)}. (22)

They correspond to the case where α = β = P (A). Ślȩzak [34] examined a
more complicated version of Bayesian rough set approximations by comparing
probabilities P ([x] | A) and P ([x] | Ac):

bapr
δ1

(A) = {x ∈ U | P ([x] | A) ≥ δ1P ([x] | Ac)},

baprδ2
(A) = {x ∈ U | P ([x] | A) ≥ δ2P ([x] | Ac)}, (23)

where δ1 and δ2 are parameters. Based on the Bayes’ rule, one can easily find
their corresponding variable precision approximations [34]. The corresponding
parameters of the variable precision approximations are expressed in terms the
probability P (A), δ1 and δ2. In comparison with the variable precision model,
the new parameters of the Bayesian rough set model are less intuitive and
their estimation becomes a challenge.

Greco, Matarazzo and S lowiński [11,12] observed that rough membership func-
tions and rough inclusions, as defined by the conditional probabilities P (A |
[x]), consider the overlap of A and [x] and do not explicitly consider the over-
lap of A and [x]c. By considering both overlaps, they introduced a relative
rough membership function:

µ̂A(x) =
|A ∩ [x]|

|[x]|
−

|A ∩ [x]c|

|[x]c|

= P (A | [x]) − P (A | [x]c). (24)

The relative rough membership function is an instance of a class of mea-
sures known as the Bayesian confirmation measures [9]. By incorporating a
confirmation measure to the existing parameterized models, they proposed
two-parameterized approximations [11,12]:

apr
α,a

= {x ∈ U | P (A | [x]) ≥ α and bc([x], A) ≥ a},

aprβ,b = {x ∈ U | P (A | [x]) > β or bc([x], A) > b}, (25)

where bc(·) is a Bayesian confirmation measure, and a and b are parameters in
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the range of bc(·). They have shown that the variable precision and Bayesian
rough set models are special cases. More details of the two-parameterized
approximation models can be found in their paper in this issue [11]. The extra
parameters may make the model more effective, which at the same time leads
to more difficulties in estimating those parameters.

5 The Decision-Theoretic Rough Set Model

A fundamental difficulty with the probabilistic, variable precision, and param-
eterized approximations introduced in the last section is the physical interpre-
tation of the required threshold parameters, as well as systematic methods
for setting the parameters. This difficulty has in fact been resolved in the
decision-theoretic model of rough sets proposed earlier [52,56,58]. This section
reviews and summarizes the main results of the decision-theoretic framework
and its connections to other studies. It draws extensive results from two pre-
vious papers [52,56] on the one hand and re-interprets these results on the
other. For clarity, we only consider the element based definition of proba-
bilistic approximation operators. The same argument can be easily applied to
other cases.

5.1 An overview of the Bayesian decision procedure

Bayesian decision procedure deals mainly with making decision with mini-
mum risk or cost under probabilistic uncertainty. We present an overview by
following the discussion in the textbook by Duda and Hart [7], in which more
detailed information can be found.

Let Ω = {w1, . . . , ws} be a finite set of s states, and let A = {a1, . . . , am} be a
finite set of m possible actions. Let P (wj|x) be the conditional probability of an
object x being in state wj given that the object is described by x. Without loss
of generality, we simply assume that these conditional probabilities P (wj|x)
are known.

Let λ(ai|wj) denote the loss, or cost, for taking action ai when the state is wj .
For an object with description x, suppose action ai is taken. Since P (wj|x) is
the probability that the true state is wj given x, the expected loss associated
with taking action ai is given by:

R(ai|x) =
s∑

j=1

λ(ai|wj)P (wj|x). (26)
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The quantity R(ai|x) is also called the conditional risk. Given description x,
a decision rule is a function τ(x) that specifies which action to take. That is,
for every x, τ(x) assumes one of the actions, a1, . . . , am. The overall risk R is
the expected loss associated with a given decision rule. Since R(τ(x)|x) is the
conditional risk associated with action τ(x), the overall risk is defined by:

R =
∑

x

R(τ(x)|x)P (x), (27)

where the summation is over the set of all possible descriptions of objects, i.e.,
the knowledge representation space. If τ(x) is chosen so that R(τ(x)|x) is as
small as possible for every x, the overall risk R is minimized.

The Bayesian decision procedure can be formally stated as follows. For every x,
compute the conditional risk R(ai|x) for i = 1, . . . , m defined by equation (26),
and then select the action for which the conditional risk is minimum. If more
than one action minimizes R(ai|x), any tie-breaking rule can be used.

5.2 Probabilistic rough set approximations

In an approximation space apr = (U, E), all elements in the equivalence class
[x] share the same description [27,43]. For a given subset A ⊆ U , the approx-
imation operators partition the universe into three disjoint classes POS(A),
NEG(A), and BND(A). Furthermore, one decides how to assign x into the
three regions based on the conditional probability P (A | [x]). It follows that
the Bayesian decision procedure can be immediately applied to solve this prob-
lem [52,56,58].

For deriving the probabilistic approximation operators, we have the following
problem. The set of states is given by Ω = {A, Ac} indicating that an element
is in A and not in A, respectively. We use the same symbol to denote both a
subset A and the corresponding state. With respect to three regions, the set
of actions is given by A = {a1, a2, a3}, where a1, a2, and a3 represent the three
actions in classifying an object, namely, deciding POS(A), deciding NEG(A),
and deciding BND(A), respectively.

Let λ(ai|A) denote the loss incurred for taking action ai when an object in
fact belongs to A, and let λ(ai|A

c) denote the loss incurred for taking the
same action when the object does not belong to A. The rough membership
values µA(x) = P (A|[x]) and µAc(x) = P (Ac|[x]) = 1−P (A|[x]) are in fact the
probabilities that an object in the equivalence class [x] belongs to A and Ac,
respectively. The expected loss R(ai|[x]) associated with taking the individual
actions can be expressed as:
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R(a1|[x]) = λ11P (A|[x]) + λ12P (Ac|[x]),

R(a2|[x]) = λ21P (A|[x]) + λ22P (Ac|[x]),

R(a3|[x]) = λ31P (A|[x]) + λ32P (Ac|[x]), (28)

where λi1 = λ(ai|A), λi2 = λ(ai|A
c), and i = 1, 2, 3. The Bayesian decision

procedure leads to the following minimum-risk decision rules:

(P) If R(a1|[x]) ≤ R(a2|[x]) and R(a1|[x]) ≤ R(a3|[x]),

decide POS(A);

(N) If R(a2|[x]) ≤ R(a1|[x]) and R(a2|[x]) ≤ R(a3|[x]),

decide NEG(A);

(B) If R(a3|[x]) ≤ R(a1|[x]) and R(a3|[x]) ≤ R(a2|[x]),

decide BND(A).

Tie-breaking rules should be added so that each element is classified into only
one region.

Since P (A|[x]) + P (Ac|[x]) = 1, the above decision rules can be simplified so
that only the probabilities P (A|[x]) are involved. We can classify any object
in the equivalence class [x] based only on the probabilities P (A|[x]), i.e., the
rough membership values, and the given loss function λij, i = 1, 2, 3 and
j = 1, 2.

Consider a special kind of loss functions with λ11 ≤ λ31 < λ21 and λ22 ≤
λ32 < λ12. That is, the loss of classifying an object x belonging to A into the
positive region POS(A) is less than or equal to the loss of classifying x into
the boundary region BND(A), and both of these losses are strictly less than
the loss of classifying x into the negative region NEG(A). The reverse order
of losses is used for classifying an object that does not belong to A. For this
type of loss functions, the minimum-risk decision rules (P)-(B) can be written
as:

(P) If P (A|[x]) ≥ γ and P (A|[x]) ≥ α, decide POS(A);

(N) If P (A|[x]) ≤ β and P (A|[x]) ≤ γ, decide NEG(A);

(B) If β ≤ P (A|[x]) ≤ α, decide BND(A);

where

α =
λ12 − λ32

(λ31 − λ32) − (λ11 − λ12)
,

γ =
λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
,
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β =
λ32 − λ22

(λ21 − λ22) − (λ31 − λ32)
. (29)

By the assumptions, λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, it follows that
α ∈ (0, 1], γ ∈ (0, 1), and β ∈ [0, 1).

If a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12 further satisfies
the condition:

(λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22), (30)

then α ≥ γ ≥ β. The condition ensures that probabilistic rough set approxi-
mations are consistent with the standard rough set approximations. In other
words, the lower approximation is a subset of the upper approximation, and
the boundary region may be non-empty.

The physical meaning of condition (30) may be interpreted as follows. Let
l = (λ12−λ32)(λ21−λ31) and r = (λ31−λ11)(λ32−λ22). While l is the product
of the differences between the cost of making an incorrect classification and
cost of classifying an element into the boundary region, r is the product of the
differences between the cost of classifying an element into the boundary region
and the cost of a correct classification. A larger value of l, or equivalently a
smaller value of r, can be obtained if we move λ32 away from λ12, or move λ31

away from λ21. In fact, the condition can be intuitively interpreted as saying
that cost of classifying an element into the boundary region is closer to the
cost of a correct classification than to the cost of an incorrect classification.
Such a condition seems to be reasonable.

When α > β, we have α > γ > β. After tie-breaking, we obtain the decision
rules:

(P1) If P (A|[x]) ≥ α, decide POS(A);

(N1) If P (A|[x]) ≤ β, decide NEG(A);

(B1) If β < P (A|[x]) < α, decide BND(A).

Based on the relationship between approximations and the three regions, we
obtain the probabilistic approximations:

apr
α
(A) = {x ∈ U | P (A | [x]) ≥ α},

aprβ(A) = {x ∈ U | P (A | [x]) > β}.

When α = β, we have α = γ = β. In this case, we use the decision rules:

(P2) If P (A|[x]) > α, decide POS(A);
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(N2) If P (A|[x]) < α, decide NEG(A);

(B2) If P (A|[x]) = α, decide BND(A).

For the second set of decision rules, we use a tie-breaking criterion so that
the boundary region may be non-empty. Probabilistic approximations can be
obtained, which is similar to the 0.5 probabilistic approximations introduced
by Pawlak, Wong, Ziarko [29].

As an example to illustrate the probabilistic approximations, consider a loss
function:

λ12 = λ21 = 4, λ31 = λ32 = 1, λ11 = λ22 = 0. (31)

It states that there is no cost for a correct classification, 4 units of cost for
an incorrect classification, and 1 unit cost for classifying an object into the
boundary region. From equation (29), we have α = 0.75, β = 0.25 and γ = 0.5.
By decision rules (P1)-(B1), we have a pair of dual approximation operators
apr

0.75
and apr0.25.

In general, the relationships between a loss function λ and the pair of param-
eters (α, β) can be established. For a loss function with λ11 ≤ λ31 < λ21 and
λ22 ≤ λ32 < λ12, we have [52]:

• α is monotonic non-decreasing with respect to λ12 and monotonic non-
increasing with respect to λ32.

• If λ11 < λ31, α is strictly monotonic increasing with respect to λ12 and
strictly monotonic decreasing with respect to λ32.

• α is strictly monotonic decreasing with respect to λ31 and strictly monotonic
increasing with respect to λ11.

• β is monotonic non-increasing with respect to λ21 and monotonic non-
decreasing with respect to λ31.

• If λ22 < λ32, β is strictly monotonic decreasing respect to λ21 and strictly
monotonic increasing with respect to λ31.

• β is strictly monotonic increasing with respect to λ32 and strictly monotonic
decreasing with respect to λ22.

Such connections between the required parameters of probabilistic rough set
approximations and loss functions have significant implications in applying
the decision-theoretic model of rough sets. For example, if we increase the
cost of an incorrect classification λ12 and keep other costs unchanged, the
value α would not be decreased. Parameters α and β are determined from
a loss function. One may argue that a loss function may be considered as a
set of parameters. However, in contrast to the standard threshold values, they
are not abstract notions, but have an intuitive interpretation. One can easily
interpret and measure loss or cost in a real application. In fact, the results
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and ideas of the decision-theoretic model have been successfully applied to
many fields, including data analysis and data mining [5,42,44,62], information
retrieval [17,36], feature selection [48], web-based support systems [47], intelli-
gent agents [18], and email classifications [63]. Some authors have generalized
the decision-theoretic model to multiple regions [1].

5.3 Derivations of existing probabilistic approximations

By imposing various conditions on a loss function, we can easily derive other
more specific probabilistic rough set approximations introduced by many re-
searchers.

5.3.1 Probabilistic rough set approximations

In the development of decision-theoretic model, we have considered the basic
condition:

(B). λ11 ≤ λ31 < λ21,

λ22 ≤ λ32 < λ12.

From the condition (B), we cannot infer the desired relationship between α
and β. In order to make sure that α ≥ β, we have further imposed a condition:

(G). (λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22).

A loss function satisfying both (B) and (G) guarantees that α ≥ β. We there-
fore obtain the variable precision rough set approximation with asymmetric
bounds [14]. The lower and upper approximations, apr

α
and aprβ , are not

necessarily dual operators.

5.3.2 Majority based probabilistic rough set approximations

In addition to the constraint α ≥ β, many authors suggested that the value
of α should be in the range [0.5, 1]. With this condition, an element is in
the lower approximation if the majority of its equivalent elements are in the
set [33,56,58,66]. If a loss function satisfies condition (B) and the following
condition (M):

(M). λ12 − λ32 ≥ λ31 − λ11,
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then α ≥ 0.5. Condition (M) says that the difference between the cost of
classifying an element not in A into positive region and the cost of classifying
the element into the boundary region is more than the difference between the
cost of classifying an element in A into the boundary region and a correct
classification.

Condition (M) is only a part of condition (G). They do not imply each other.
The conditions for α ≥ 0.5 and α ≥ β are (B), (G) and (M).

5.3.3 Dual probabilistic rough set approximations

Properties (PL0) and (PU0) suggest one can define dual probabilistic approxi-
mation operators based on a pair of parameters (α, β) with α+β = 1. The dual
probabilistic approximation operators were examined in the decision-theoretic
rough set model [52,57] and the variable precision rough set model [66].

If dual approximation operators are required, one needs to impose additional
conditions on a loss function [52,57]. If a loss function satisfies condition (B)
and the following condition (D):

(D). (λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31),

then β = 1 − α.

Conditions (B) and (D) do not guarantee that α ≥ β = 1−α, or equivalently
α ≥ 0.5 and α + β = 1. The condition for α = 1− β ≥ 0.5 can be obtained by
combining conditions (G) and (D), or combining conditions (M) and (D). In
other words, for α = 1 − β ≥ 0.5, we have two sets that are equivalent. One
set consists of (B), (G) and (D), the other set consists of (B), (M) and (D).

5.3.4 Standard rough set approximations

Consider the loss function:

λ12 = λ21 = 1, λ11 = λ22 = λ31 = λ32 = 0. (32)

There is a unit cost if an object belonging to A is classified into the nega-
tive region or if an object not belonging to A is classified into the positive
region; otherwise there is no cost. This loss function satisfies the conditions
(B), (G), (M) and (D). A pair of dual approximation operators can be ob-
tained. From equation (29), we have α = 1 > β = 0, α = 1 − β, and γ = 0.5.
According to decision rules (P1)-(B1), we obtain the standard rough set ap-
proximations [26,27].
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The loss function for deriving the standard rough set approximations is in-
tuitively appealing. There may exist more than one loss function to produce
the standard rough set approximations. If a loss function satisfies (B) and the
condition:

(S). λ11 = λ31,

λ32 = λ22,

we have α = 1 and β = 0. The condition (S) requires that the cost of classifying
an element not in A into the negative region (i.e., a correct classification) is
the same as classifying the element into the boundary region, and the cost of
classifying an element in A into the positive region (i.e., a correct classification)
is the same as classifying the element into the boundary region. By condition
(B), those costs should be strictly less than that of incorrect classification.
That is, if a loss function satisfies conditions λ11 = λ31 < λ21 and λ22 = λ32 <
λ12, we derive the standard rough set approximations.

5.3.5 The 0.5 probabilistic rough set approximations

For the derivation of 0.5 probabilistic rough set approximations [29], we need
α = β = 0.5. It suggests that we can consider conditions (M) and (D) together.
Thus, we examine the special case where the ≥ relation in (M) becomes the
equality =. Suppose a loss function satisfies (B) and the condition:

(P). λ12 − λ32 = λ31 − λ11,

λ32 − λ22 = λ21 − λ31.

By substituting these λij’s into equation (29), we obtain α = β = γ = 0.5.
From decision rules (P2)-(B2), we obtain the 0.5 probabilistic rough set ap-
proximations proposed by Pawlak, Wong and Ziarko [29].

Consider the loss function:

λ12 = λ21 = 1, λ31 = λ32 = 0.5, λ11 = λ22 = 0. (33)

That is, a unit cost is incurred if the system classifies an object belonging to
A into the negative region or an object not belonging to A is classified into
the positive region; half of a unit cost is incurred if any object is classified into
the boundary region. For other cases, there is no cost. This loss function has a
very clear and concrete physical interpretation. It satisfies the conditions (B)
and (P), which produces the required parameters α = β = 0.5.
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5.3.6 The Bayesian and two-parameterized rough set models

It has been shown that one can find the corresponding variable precision ap-
proximations for the Bayesian rough set approximations [34]. It has also been
shown that both variable precision and Bayesian rough set models may be
viewed as special cases of the two-parameterized model [34]. As illustrated by
the previous discussion, variable precision approximations can be derived nat-
urally in the decision-theoretic rough set model. Consequently, it is a relatively
easy, although may be tedious, task to interpret the results of the Bayesian and
the two-parameterized rough set models in the decision-theoretic framework.

The parameters of the Bayesian and the two-parameterized models may be
mathematically expressed in terms various probabilities and loss functions.
However, the mixture of probabilities and loss functions may decrease the sim-
plicity and understandability of the decision-theoretic model. In solving many
practical problems, it is extremely important to strive for the right balance
between the simplicity and the power of a model. Although the introduction
of extra parameters may increase the power and flexibility of a model, such a
power cannot be materialized unless a simple and systematic procedure exists
for estimating those parameters. Future research efforts may be put on the
study of this problem.

6 Conclusion

Several forms of probabilistic approaches to rough sets have appeared in the
last decade and new proposals were made recently. It is evident that a general
framework is needed for comparing and synthesizing existing results. A revisit
to probabilistic rough set approximations suggest that the Bayesian decision-
theoretic framework can help us to achieve this goal.

In this paper, we critically reviewed existing studies on the probabilistic rough
set approximations. Results from the decision-theoretic model, the variable
precision model, the Bayesian rough set model, and the two-parameterized
model are pooled together and studied based on the notions of rough mem-
bership functions and rough inclusion. Since both notions are defined by the
same conditional probabilities, one can formulate probabilistic rough set ap-
proximations by using any one of them. The decision-theoretic model uses
rough membership functions and the variable precision model uses rough in-
clusions. Although the same results are produced, the variable precision model
suffers from a fundamental difficulty in the interpretation and determination
of the required parameters. In contrast, the decision-theoretic model adopts
loss functions as a primitive notion and derives systematically all required
parameters. By providing a concrete physical interpretation of loss functions,
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the decision-theoretic model provides theoretical guidelines on the application
of approximations. More specifically, approximations lead to loss or risk, and
the decision-theoretic model ensures that such loss is minimal.

The Bayesian rough set model aims at interpreting the parameters of the vari-
able precision model based on the Bayes factor. The two-parameterized model
extends one-parameterized approximations by introducing also threshold val-
ues on a Bayesian confirmation measure. Both models bring new insights into
probabilistic rough set approximations. A problem of the two models is a lack
of a systematic procedure for setting the required parameters. Although it is
possible to link them mathematically to loss functions, their physical meanings
need to be further explored.
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[11] Greco, S., Matarazzo, B., S lowiński, R. Rough membership and Bayesian
confirmation measures for parameterized rough sets, Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing, Proceedings of RSFDGrC’05, LNAI
3641 (2005) 314-324.
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