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Abstract

Information granulation and concept approximation are some of the fun-

damental issues of granular computing. Granulation of a universe involves

grouping of similar elements into granules to form coarse-grained views of the

universe. Approximation of concepts, represented by subsets of the universe,

deals with the descriptions of concepts using granules. In the context of rough

set theory, this paper examines the two related issues. The granulation struc-

tures used by standard rough set theory and the corresponding approximation

structures are reviewed. Hierarchical granulation and approximation structures

are studied, which results in stratified rough set approximations. A nested se-

quence of granulations induced by a set of nested equivalence relations leads

to a nested sequence of rough set approximations. A multi-level granulation,

characterized by a special class of equivalence relations, leads to a more general

approximation structure. The notion of neighborhood systems is also explored.

1 Introduction

Granular computing may be regarded to as a label of the family of theories, method-

ologies, and techniques that make use of granules, i.e., groups, classes, or clusters

of a universe, in the process of problem solving [33, 40]. The basic ideas of granu-

lar computing have appeared in many fields, such as interval analysis, quantization,

rough set theory, Dempster-Shafer theory of belief functions, divide and conquer,

cluster analysis, machine learning, databases, information retrieval, and many oth-

ers [39, 38]. There are many reasons for the study of granular computing [27, 38].

The practical necessity and simplicity in problem solving are perhaps some of the
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main reasons. When a problem involves incomplete, uncertain, or vague information,

it may be difficult to differentiate distinct elements and one is forced to consider

granules. Although detailed information may be available, it may be sufficient to use

granules in order to have an efficient and practical solution. Very precise solutions

may not be required for many practical problems. The use of granules generally leads

to simplification of practical problems. The acquisition of precise information may be

too costly, and coarse-grained information reduces cost. There is clearly a need for

the systematic studies of granular computing. It is expected that granular computing

will play an important role in the design and implementation of efficient and practical

intelligent information systems.

The construction, representation, and interpretation of granules, as well as utiliza-

tion of granules for problem solving, are some of the fundamental issues of granular

computing. Information granulation depends on the available knowledge. A gran-

ule normally consists of elements that are drawn together by indistinguishability,

similarity, proximity, or functionality [30, 38, 39]. An intermediate implication of in-

formation granulation is the need for approximation. With the granulated universe,

one considers elements within a granule as a whole rather than individually [38]. The

loss of information through granulation implies that some subsets of the universe can

only be approximately described. We have to deal with approximations of concepts,

represented by subsets of the universe, in terms of granules.

A general framework of granular computing was presented in a recent paper by

Zadeh [39] in the context of fuzzy set theory. Granules are defined by generalized

constraints. Examples of constraints are equality, possibilistic, probabilistic, fuzzy,

and veristic constraints. Many specific models of granular computing have also been

proposed. Pawlak [16], Polkowski and Skowron [21], and Skowron and Stepaniuk [24]

examined granular computing in connection with the theory of rough sets. Yao [32]

suggested the use of hierarchical granulations for the study of stratified rough set

approximations. Lin [7] and Yao [30, 31] studied granular computing using neigh-

borhood systems. Klir [4] investigated some basic issues of computing with granular

probabilities.

Based on these studies, the main objectives of this paper are to investigate the two

related issues of information granulation and approximation in the context of rough

set theory, and to review studies on these topics. We focus on the analysis of approx-

imation structures with respect to various granulations of the universe. Granulation

structures are defined by similarity between elements of the universe. The types of

similarities range from simple equivalence relations, tolerance relations, and reflexive
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binary relations to families of relations, hierarchies, and neighborhood systems. In

Section 2, two simple granulation structures are reviewed. The standard rough set

theory starts from an equivalence relation. A universe is divided into a family of dis-

joint subsets. The granulation structure adopted is a partition of the universe, which

is well known in mathematics as a quotient set. A pair of lower and upper approx-

imations is used. The approximations are expressed in terms of granules according

to their overlaps with the set to be approximated. By weakening the requirement

of equivalence relations, we can have more general granulation and approximation

structures based on coverings of the universe. In Section 3, hierarchical granulation

structures are examined. The notion of stratified rough set approximations is intro-

duced. With respect to different level of granulations, various approximations are

obtained. Special types of partition based granulation structures are investigated. A

nested sequence of granulations by a nested sequence of equivalence relations leads to

a nested sequence of rough set approximations. A hierarchical granulation, character-

ized by a special class of equivalence relations, leads to a more general approximation

structure. For non-partition based granulation structures, we explore the notion of

neighborhood systems.

2 Simple Granulations and Approximations

This section reviews some simple granulation structures used in the theory of rough

sets. They are characterized by one-level, i.e., single-layered, granulation of the uni-

verse.

2.1 Rough set approximations induced by equivalence rela-

tions

Let U be a finite and non-empty set called the universe, and let E ⊆ U ×U denote an

equivalence relation on U . The pair apr = (U, E) is called an approximation space.

The equivalence relation E partitions the set U into disjoint subsets. This partition

of the universe is called the quotient set induced by E and is denoted by U/E. The

equivalence relation is the available information or knowledge about the objects under

consideration. It represents a very special type of similarity between elements of the

universe. If two elements x, y in U belong to the same equivalence class, we say that

x and y are indistinguishable, i.e., they are similar. Each equivalence class may be

viewed as a granule consisting of indistinguishable elements. It is also referred to as
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an equivalence granule. The granulation structure induced by an equivalence relation

is a partition of the universe.

An arbitrary set X ⊆ U may not necessarily be a union of some equivalence

classes. This implies that one may not be able to describe X precisely using the

equivalence classes of E. In this case, one may characterize X by a pair of lower and

upper approximations:

apr(X) =
⋃
{[x]E | x ∈ U, [x]E ⊆ X},

apr(X) =
⋃
{[x]E | x ∈ U, [x]E ∩ X 6= ∅}, (1)

where

[x]E = {y | y ∈ U, xEy}, (2)

is the equivalence class containing x. Both lower and upper approximations are unions

of some equivalence classes. More precisely, the lower approximation apr(X) is the

union of those equivalence granules which are subsets of X. The upper approximation

apr(X) is the union of those equivalence granules which have a non-empty intersection

with X.

In addition to the equivalence class oriented definition, i.e., granule oriented defi-

nition, we can have an element oriented definition:

apr(X) = {x | x ∈ U, [x]E ⊆ X},

apr(X) = {x | x ∈ U, [x]E ∩ X 6= ∅}. (3)

An element x ∈ U belongs to the lower approximation of X if all its equivalent

elements belong to X. It belongs to the upper approximation of X if at least one of

its equivalent elements belongs to X. This interpretation of approximation operators

is related to interpretation of the necessity and possibility operators in modal logic [28,

34].

Lower and upper approximations are dual to each other in the sense:

(Ia) apr(X) = (apr(Xc))c,

(Ib) apr(X) = (apr(Xc))c,

where Xc = U − X is the complement of X. The set X lies within its lower and

upper approximations:

(II) apr(X) ⊆ X ⊆ apr(X).
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Intuitively, lower approximation may be understood as the pessimistic view and the

upper approximation the optimistic view in approximating a set. One can verify the

following properties:

(IIIa) apr(X ∩ Y ) = apr(X) ∩ apr(Y ),

(IIIb) apr(X ∪ Y ) = apr(X) ∪ apr(Y ).

The lower approximation of the intersection of a finite number of sets can be ob-

tained from their lower approximations. The similar observation is true for upper

approximation of the union of a finite number of sets. However, we only have:

(IVa) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ),

(IVb) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ).

One cannot obtain the lower approximation of the union of some sets from their lower

approximations, nor obtain the upper approximation of the intersection of some sets

from their upper approximations. Additional properties of rough set approximations

can be found in Pawlak [14, 15], and Yao and Lin [34].

The accuracy of rough set approximation is defined as [14]:

α(X) =
|apr(X)|

|apr(X)|
, (4)

where | · | denotes the cardinality of a set. For the empty set ∅, we define α(∅) = 1.

Obviously, 0 ≤ α(X) ≤ 1. If X is a union of some equivalence granules, we have

apr(X) = apr(X) = X, and hence α(X) = 1. For X 6= ∅, α(X) = 0 if and only

if apr(X) = ∅, independent of its upper approximation. The accuracy measure can

be interpreted using the well-known Marczewski-Steinhaus metric, or MZ metric for

short. For two sets X and Y , the MZ metric measures the distance between two

sets [10]:

D(X, Y ) =
|X∆Y |

|X ∪ Y |
= 1 −

|X ∩ Y |

|X ∪ Y |
, (5)

where X∆Y = (X ∪Y )− (X ∩Y ) denotes the symmetric difference between two sets

X and Y . It reaches the maximum value of 1 if X and Y are disjoint, i.e., they are

totally different, and it reaches the minimum value of 0 if X and Y are exactly the
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same. By applying the MZ metric to the lower and upper approximations, we have:

D(apr(X), apr(X)) = 1 −
|apr(X) ∩ apr(X)|

|apr(X) ∪ apr(X)|

= 1 −
|apr(X)|

|apr(X)|
,

= 1 − α(X). (6)

The accuracy of rough set approximation may be viewed as an inverse of MZ metric

when applied to lower and upper approximations. In other words, the distance be-

tween the lower and upper approximations determines the accuracy of the rough set

approximations.

Example 1 The notions of granulation by partitions and rough set approximations

can be illustrated by a concrete example using information tables [13]. An information

table is a quadruple,

T = (U, At, {Va | a ∈ At}, {fa | a ∈ At}),

where

U is a finite and nonempty set of objects,

At is a finite and nonempty set of attributes,

Va is a finite and nonempty set of values for each attribute a ∈ At,

fa : U −→ Va is an information function for each attribute a ∈ At.

An information table provide a simple, convenient, and powerful tool for describing

a set of objects based on their attribute values. Table 1 is an example of information

table. We may form granulated views of the universe based on attribute values of

objects. For a subset of attributes A ⊆ At, we can define an equivalence relation:

xEAy ⇐⇒ (∀a ∈ A)fa(x) = fa(y). (7)

Two elements are equivalent (indiscernible) if and only if they have the same value

for every attribute in A. The reflexivity, symmetry and transitivity of EA follow from

the properties of the equality relation = between attribute values. For the subset of

attributes {A1, A2}, the equivalence relation is defined by the following partition:

U/EA1A2
= {{a}, {b, c}, {d}, {e, f}}.
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Object A1 A2 A3 A4 Class
a 1 1 1 1 -
b 1 2 1 0 -
c 1 2 0 0 +
d 1 3 1 1 +
e 0 1 0 1 +
f 0 1 1 1 +

Table 1: An information table

Consider the set of objects + = {c, d, e, f}, we have the rough set approximations:

apr(+) = {d} ∪ {e, f} = {d, e, f},

apr(+) = {b, c} ∪ {d} ∪ {e, f} = {b, c, d, e, f}.

The accuracy of approximation is given by:

α(+) =
|apr(+)|

|apr(+)|
=

|{d, e, f}|

|{b, c, d, e, f}|
=

3

5
.

Similarly, one can choose other subsets of attributes to obtain different approxima-

tions of the set +. Conceptually, one of the tasks of machine learning, i.e., finding a

subset of attributes that properly describe the class +, may be formulated as searching

for a subset of attributes that produce suitable level of approximations [14]. 2

2.2 Rough set approximations induced by reflexive relations

Let R ⊆ U×U be a binary relation on U , which is at least reflexive. For two elements

x, y ∈ U , if xRy, we say that y is R-related to x. A binary relation may be more

conveniently represented using successor neighborhoods, or successor granules [29]:

(x)R = {y | y ∈ U, xRy}. (8)

The successor neighborhood (x)R consists of all R-related elements of x. When R

is an equivalence relation, (x)R is the equivalence class containing x. When R is a

reflexive relation, the family of successor neighborhoods U/R = {(x)R | x ∈ U} is a

covering of the universe, namely,
⋃

x∈U(x)R = U . The binary relation R represents the
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similarity between elements of a universe. It is reasonable to assume that similarity

is at least reflexive, but not necessarily symmetric and transitive [25].

For the granulation induced by the covering U/R, granule oriented rough set

approximations can be defined by generalizing equation (1). The equivalence class

[x]E may be replaced by the successor neighborhood (x)R. One of such generalizations

is given by [29]:

apr′(X) =
⋃
{(x)R | x ∈ U, (x)R ⊆ X},

apr′(X) = (apr′(Xc))c. (9)

In this definition, we generalize the lower approximation and define the upper approx-

imation through duality. While the lower approximation is the union of some suc-

cessor neighborhoods, the upper approximation cannot be expressed in this way [29].

The approximations satisfy properties (I), (II), and (IV). They do not satisfy prop-

erty (III). Nevertheless, they satisfy a weaker version:

(Va) apr′(X ∩ Y ) ⊆ apr′(X) ∩ apr′(Y ),

(Vb) apr′(X ∪ Y ) ⊇ apr′(X) ∪ apr′(Y ).

By definition, apr′(X ∩ Y ) can be written as a union of some successor granules.

Although both apr′(X) and apr′(Y ) can be expressed as unions of successor granules,

apr′(X) ∩ apr′(Y ) cannot be so expressed. Alternatively, we generalize the upper

approximation and define the lower approximation through duality:

apr′′(X) = (apr′′(Xc))c,

apr′′(X) =
⋃
{(x)R | x ∈ U, (x)R ∩ X 6= ∅}. (10)

For a reflexive binary relation, they satisfy properties (I)-(IV). With respect to the

element oriented definition, the generalization of equation (3) results in:

apr(X) = {x | x ∈ U, (x)R ⊆ X},

apr(X) = {x | x ∈ U, (x)R ∩ X 6= ∅}. (11)

For a reflexive binary relation, they satisfy properties (I)-(IV). In general, these three

generalized definitions are not necessarily equivalent to each other. For a reflexive

binary relation, they are related to each other by [29]:

apr′′(X) ⊆ apr(X) ⊆ apr′(X) ⊆ X ⊆ apr′(X) ⊆ apr(X) ⊆ apr′′(X). (12)

Additional properties of these rough set approximations and their connections can be

found in Yao [29].
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Example 2 Granulation and approximation in terms of covering can also be illus-

trated using information tables. A covering of the universe may arise in several

ways. One may use binary relations on attribute values to define coverings of the

universe [37]. Coverings of universe can also be obtained in set-valued information

tables or incomplete information tables [9, 12, 26, 36]. This example uses the latter

approach. A set-valued information table is the same as a standard information table

except that the information function fa is a set-valued function, i.e., fa : U −→ 2Va .

Furthermore, we assume fa(x) 6= ∅ for every a ∈ At and x ∈ U . The set-valued

information functions are interpreted as follows. Although an object must take ex-

actly one value from Va, the available information may be insufficient to determine

which value is the actual one. Instead, a set of values is used. Table 2 is a set-valued

information table. For a subset of attributes A ⊆ At, we can define a compatibility

or tolerance relation, i.e., a reflexive and symmetric relation:

xSAy ⇐⇒ (∀a ∈ A)fa(x) ∩ fa(y) 6= ∅. (13)

Two elements are similar if and only if they possibly share the same value for every

attribute in A. For the subset of attributes {A1, A2}, the tolerance relation is given

by:

(a)SA1A2
= (e)SA1A2

= {a, b, d, e},

(b)SA1A2
= (d)SA1A2

= {a, b, c, d, e},

(c)SA1A2
= {b, c, d},

(f)SA1A2
= {f}.

They provide a covering of the universe:

U/SA1A2
= {{a, b, d, e}, {a, b, c, d, e}, {b, c, d}, {f}}.

The set of objects + = {c, d, e, f} is approximated by:

apr′(+) = apr′′(+) = apr(+) = {f},

apr′(+) = apr′′(+) = apr(+) = U.

with an accuracy of 1/6. For an arbitrary set, granule oriented and element oriented

approximations may not be the same. For example, for the set {b, c, d}, we have:

apr′({b, c, d}) = {b, c, d}, apr′({b, c, d}) = {a, b, c, d, e},
apr′′({b, c, d}) = ∅, apr′′({b, c, d}) = {a, b, c, d, e},
apr({b, c, d}) = {c}, apr({b, c, d}) = {a, b, c, d, e}.

They clearly satisfy the condition (12). 2
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Object A1 A2 A3 A4 Class
a {0, 1} {1} {1} {0, 1} {−}
b {1} {1, 2} {1} {0} {−}
c {1} {2} {0, 1} {0, 1} {+}
d {1} {1, 2, 3} {0, 1} {1} {+}
e {0, 1} {1} {0} {0, 1} {+}
f {0} {3} {1} {1} {+}

Table 2: A set-valued information table

3 Hierarchical Granulations and Approximations

In the last section, simple one-level granulation structures of the universe are used.

The granulated view of the universe is based on a binary relation representing the

simplest type of similarities between elements of a universe. Two elements are ei-

ther related or unrelated. To avoid such a limitation, in this section we examine

other types of similarities between objects. More general granulation structures and

the corresponding stratified rough set approximations are investigated. Multi-level

granulation structures are constructed by putting together simple granulation struc-

tures. Each level of the complex structure is a simple granulation structure such as a

partition or a covering.

3.1 Nested rough set approximations induced by a nested

sequence of equivalence relations

The use of nested sequences of binary relations for defining rough set approximations

has been discussed by many authors. Each relation defines a particular type or level

of similarities between elements of the universe. Marek and Rasiowa [11] considered

gradual approximations of sets based on a descending sequence of equivalence rela-

tions. Pomykala [22] used a sequence of tolerance relations. Some recent results on

this topic were given by Polkowski [17, 18, 19, 20], Yao [31], and Yao and Lin [35].

A binary relation on U is a subset of the Cartesian product U × U . The set

inclusion defines an order on all equivalence relations on U . An equivalence relation

E1 is said to be finer than another equivalence relation E2, or E2 is coarser than E1,

if E1 ⊂ E2. A finer relation produces smaller granules than a coarser relation, i.e.,

[x]E1
⊆ [x]E2

for all x ∈ U . Each equivalence granule of E2 is in fact a union of some
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equivalence granules of E1. Each granule of E1 is obtained by further partitioning a

granule of E2. The relationship between rough set approximations induced by two

equivalence relations E1 ⊆ E2 is given by:

E1 ⊆ E2 =⇒ apr
E2

(X) ⊆ apr
E1

(X) ⊆ X ⊆ aprE1
(X) ⊆ aprE2

(X).

That is, a finer equivalence relation induces a tighter pair of approximations. In terms

of the accuracy measure, this implies:

E1 ⊆ E2 =⇒ αE2
(X) ≤ αE1

(X).

The reverse is not necessarily true. From the values of the accuracy measure, one

cannot tell if a pair of approximations is tighter than another pair, although one pair

may have a smaller value.

In general, we may consider a nested sequence of m equivalence relations:

E1 ⊆ E2 ⊆ . . . ⊆ Em.

The corresponding sequence of equivalence granules satisfies the condition:

[x]E1
⊆ [x]E2

⊆ . . . ⊆ [x]Em
.

The nested sequence of equivalence relations produces a multi-level partitions of the

universe. This leads to a simple multi-level granulation structure of the universe.

Different granulations of the universe form a linear order. A partition is either a

refinement or a coarsening of the other, although some granules in different levels

may also be the same. The sequence of rough set approximations satisfies:

E1 ⊆ E2 ⊆ . . . ⊆ Em =⇒

apr
Em

(X) ⊆ . . . ⊆ apr
E2

(X) ⊆ apr
E1

(X) ⊆ X ⊆

aprE1
(X) ⊆ aprE2

(X) ⊆ . . . ⊆ aprEm
(X).

It implies:

E1 ⊆ E2 ⊆ . . . ⊆ Em =⇒ αEm
(X) ≤ . . . ≤ αE2

(X) ≤ αE1
(X).

We thus obtain a nested sequence of rough set approximations, which may be viewed

as a special type of stratified rough set approximations. As equivalence relations

approaches to the identity relation I = {(x, x) | x ∈ U}, both lower and upper

approximations approach to X, and the accuracy of approximation approaches to 1.
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Example 3 A nested sequence of equivalence relations can be defined based on in-

formation provided by an information table. Let A1 ⊇ A2 ⊇ . . . ⊇ Am denote

a nested sequence of sets of attributes. Suppose Ei, 1 ≤ i ≤ m, is the equiva-

lence relation defined by the set of attribute Ai. We have a nested sequence of

nested equivalence relations E1 ⊆ E2 ⊆ . . . ⊆ Em. For Table 1, consider the

sequence of subsets of attributions {A1, A2, A3, A4}, {A1, A2}, {A1}, ∅. We have

I = EA1A2A3A4
⊂ EA1A2

⊂ EA1
⊂ E∅ = U × U . The following multi-level granulation

structure is obtained:

4 : {{a, b, c, d, e, f}},
3 : {{a, b, c, d}, {e, f}},
2 : {{a}, {b, c}, {d}, {e, f}},
1 : {{a}, {b}, {c}, {d}, {e}, {f}}.

The top partition corresponds to the equivalence relation E∅. The nested rough set

approximations of + = {c, d, e, f} in different level of granulations are given by:

level lower apr upper apr accuracy
4 ∅ U 0
3 {e, f} U 1/3
2 {d, e, f} {b, c, d, e, f} 3/5
1 {c, d, e, f} {c, d, e, f} 1

In a higher level with coarser granulation, one obtains less accurate rough set approx-

imations. One may search the layered granulations to find the suitable granulation

for approximating +. 2

The multi-level granulation structures defined by a nested sequence of partitions

can be easily generalized. One may consider a nested sequence of tolerance rela-

tions [22, 35]. This leads to a multi-level granulation structure, in which each level of

granulation is a covering of the universe. In an information table, one may consider

all possible subsets of attributes. The resulting multi-level granulation structure is

characterized by a lattice of partitions [5]. A nested sequence partitions is a special

type of lattice.

In the discussion so far, we have used information tables for the representation of

objects. The similarities between objects used for granulations are derived from their

attribute values. This provides us with a more concrete interpretation of granulation

and approximation. In the following subsections, we consider other approaches for

the representation of similarities between objects.
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{e} {f}

{e, f}

{a, b, c, d, e, f}

{d}

{a, b, c, d}

{b, c}

{a}

{b} {c}

Figure 1: A Hierarchical Granulation

3.2 Stratified rough set approximations induced by hierar-

chies

Similarities between objects can be conveniently represented by using a hierarchy on

a universe. It can be described by a tree structure such that each node represents a

cluster or granule. Figure 1 is an example of a hierarchy. For simplicity, we assume

that the root is the entire universe, and the leaves consist of only singleton subsets.

We further assume that granules containing x are distinct at different levels. Con-

ceptually, a hierarchy may be viewed as a successive top-down decomposition of a

universe U . The root is divided into a family of pairwise disjoint clusters. That is,

the children clusters of the root form a partition of the root. Each cluster is further

divided into smaller disjoint clusters. Alternatively, a hierarchy may also be viewed

as a successive bottom-up combination of smaller clusters to form larger clusters. In a

hierarchy, all elements of a cluster at a lower level are included in every node between

that cluster and the root, which form a sequence of nested clusters.

From a hierarchy, one may obtain two partition based multi-level granulation

structures of the universe. One leads to a nested sequence of partitions, and the

other leads to a lattice of partitions.

Given a m-level hierarchy with the root at level m, one can derive a nested se-

quence of equivalence relations such that E1 = I and Em = U × U . For x ∈ U ,
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suppose {x} = Fk(x)(x) ⊂ . . . ⊂ Fm(x) = U, 1 ≤ k(x) ≤ m, is the nested sequence

of clusters containing x. At level 1 ≤ l ≤ m, the equivalence granule containing x

is given by Fl(x) if l ≥ k(x), otherwise, it is given by Fk(x)(x). Obviously, at the

highest level, we obtain the relation Em = U × U , and at the lowest level, we obtain

the identity relation I. A main disadvantage of such a characterization of hierarchy

is that one considers a nested sequence of rough set approximations.

Consider now the set of all granules in a hierarchy:

G = {X ⊆ U | X is a node in the hierarchy}. (14)

For any two granules X, Y ∈ G, we have X ∩ Y = X, X ∩ Y = Y , or X ∩ Y = ∅. We

can select a subset of G to form a partition of the universe. The set of all partitions

constructed from elements of G is denoted by P (G), and the corresponding set of

equivalence relations is denoted by E(G). By assumption, I, U × U ∈ E(G). The

family of equivalence relations E(G) is closed under set intersection and union. For

any two equivalence relations E1, E2 ∈ E(G), we have E1 ∩ E2, E1 ∪ E2 ∈ E(G).

In general, the union of two arbitrary equivalence relations is not necessarily an

equivalence relation. For our case, the special properties of elements of G guarantee

that E(G) is closed under set union. The set E(G) is a bounded lattice whose order

relation is the standard set inclusion, and whose meet and join are set intersection

and union.

If the granulation structure induced by E(G) is used, we obtain stratified rough set

approximations. They carry over the structure of E(G). In other words, the stratified

rough set approximations form a lattice. For any pair of equivalence relations in E(G),

the following properties hold:

apr
E1∪E2

(X) ⊆
apr

E1

(X)

apr
E2

(X)
⊆ apr

E1∩E2

(X) ⊆ X ⊆

aprE1∩E2
(X) ⊆

aprE1
(X)

aprE2
(X)

⊆ aprE1∪E2
(X).

One can apply the same argument to more than two equivalence relations from E(G).

The induced approximations also produce a lattice with the standard set inclusion as

its order relation.

Example 4 Consider the 4-level hierarchy for the universe U = {a, b, c, d, e, f} given

by Figure 1. For element a, the family of granules is given by:

{a} = F2(a) ⊂ {a, b, c, d} = F3(a) ⊂ U = F4(a).
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Similarly, we can find the nested sequences for all other elements. Thus, we have a

family of 4-level partitions:

4 : {{a, b, c, d, e, f}},
3 : {{a, b, c, d}, {e, f}},
2 : {{a}, {b, c}, {d}, {e}, {f}},
1 : {{a}, {b}, {c}, {d}, {e}, {f}}.

From the layered granulations of the universe, one can obtain a nested sequence of

rough set approximations.

From the hierarchy, the set of granules is given by:

G = {{a}, {b}, {c}, {d}, {e}, {f}, {b, c}, {e, f}, {a, b, c, d}, U}.

From G, we can construct the set of all possible partitions:

π1 : {U},
π2 : {{a, b, c, d}, {e, f}},
π3 : {{a, b, c, d}, {e}, {f}},
π4 : {{a}, {b, c}, {d}, {e, f}},
π5 : {{a}, {b, c}, {d}, {e}, {f}},
π6 : {{a}, {b}, {c}, {d}, {e, f}},
π7 : {{a}, {b}, {c}, {d}, {e}, {f}}.

Figure 2 shows the relationships between these partitions, the structure of granula-

tions using the family of equivalence relations, and the stratified rough set approxi-

mations of set {a, b, e}. 2

In a hierarchy, one typically associates a name with a cluster such that elements

of the cluster are instances of the named category or concept [3, 8]. Suppose U

is the domain of an attribute in a database. A hierarchical clustering of attribute

values produces a concept hierarchy [2]. A name given to a cluster in a higher level

is more general than a name given to a cluster in a lower level, while the latter is

more specific than the former. The notion of concept hierarchy has been used in

data mining for discovering various levels of association rules [2]. Partitions in higher

levels of the partition lattice may be viewed as generalization of partitions in lower

levels, while partitions in lower levels as specialization of partitions in higher levels.

A similar structure was discussed by Hadjimichael and Wasilewska [1] for the study of

a hierarchical model for information generalization. Conceptually, some data mining

methods may be viewed as a searching process in the lattice of partitions induced by

a hierarchy [1, 2].

15

Yao, Y.Y., Information granulation and rough set approximation, 
International Journal of Intelligent Systems, Vol. 16, No. 1, 87-104, 2001.



π2 (∅, U)

(e, abcde) π3 π4 (a, abcef)

(ae, abce) π5 π6 (ab, abef)

π7 (abe, abe)

π1 (∅, U)

�
�

��
�

�@
@

@@
@

@

�
�

�
�

���
�

�
�

��

�
�

��
�

�@
@

@@
@

@

Figure 2: A lattice granulation structure and the corresponding stratified rough set
approximations (the set {a, b, e} is simply written as abe.)

3.3 Stratified rough set approximations induced by neigh-

borhood systems

The concept of neighborhood systems was originally introduced by Sierpiński and

Krieger [23] for the study of Féchet (V)spaces. Lin [6, 7] adopted the notion for

describing similarities between objects in database systems. Yao [30] used the no-

tion for granular computing by focusing on the granulation structures induced by

neighborhood systems.

For an element x of a finite universe U , one associates with it a subset n(x) ⊆

U called the neighborhood of x. Intuitively speaking, elements in a neighborhood

of an element are somewhat indiscernible or at least not noticeably distinguishable

from x. A neighborhood of x may or may not contain x. A neighborhood of x

containing x is called a reflexive neighborhood. We are only interested in reflexive

neighborhoods of x to accommodate the intuitive interpretation of neighborhoods. A

neighborhood system NS(x) of x is a nonempty family of neighborhoods of x. Distinct

neighborhoods of x consist of elements having different types of, or various degrees

of, similarity to x. A neighborhood system is reflexive, if every neighborhood in it is

reflexive. Let NS(U) denote the collection of neighborhood systems for all elements

in U . It determines a Féchet (V)space, written (U, NS(U)). There is no additional
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requirements on neighborhood systems.

Neighborhood systems can be used to describe more general types of similarities

between elements of a universe [7, 30]. All previously used similarities can be ex-

plained in terms of neighborhood systems. A binary relation can be interpreted in

terms of 1-neighborhood systems, in which each neighborhood system contains only

one neighborhood [29]. More precisely, the neighborhood system of x is given by

NS(x) = {(x)R}. If R is a reflexive relation, one obtains a reflexive neighborhood

system which is the covering U/R. If R is an equivalence relation, the successor neigh-

borhood (x)R is the equivalence class containing x, and the neighborhood system is

the partition U/R. A family of nested sequence of m binary relations defined a nested

neighborhood system {(x)Ri
| 1 ≤ i ≤ m}. In a hierarchy, all clusters containing x

may be used to form a nested neighborhood system of x.

In a neighborhood system, different neighborhoods represent different types or de-

grees of similarity. Such information should be taken into consideration. By extend-

ing the method for building a partition lattice from a hierarchy, we can constructed a

family of coverings from a neighborhood system of the universe. Instead of using all

neighborhoods, each covering is obtained by selecting one particular neighborhood

for each element, i.e.,

C = (n(x), n(y), . . . , n(z)), (15)

where n(x) ∈ NS(x), n(y) ∈ NS(y), . . . , n(z) ∈ NS(z) for x, . . . , y, z ∈ U . In this way,

we transform a neighborhood system into a family of 1-neighborhood systems FC(U).

An order relation � on FC(U) can be defined as follows, for C1, C2 ∈ FC(U),

C1 � C2 ⇐⇒ nC1
(x) ⊆ nC2

(x), for all x ∈ U. (16)

The covering C1 is finer than C2, or C2 is coarser than C1. For each granule in C2

produced by x, the granule in C1 produced by x is at least as small as the former. It

can be verified that � is reflexive, transitive, and anti-symmetric. In other words, �

is a partial order, and the set FC(U) is a poset. It is not necessarily a lattice. Thus,

we have obtained a family of multi-level coverings, which in turn produces multi-level

granulations of the universe.

For each covering C ∈ FC(U), we can define three pairs of lower and upper

approximations by using equations (9), (10), and (11). With respect to the poset

FC(U), we obtain multi-level approximations. For reflexive neighborhood system,
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approximations in various levels satisfy the conditions:

C1 � C2 =⇒ apr′′
C2

(X) ⊆ apr′′
C1

(X) ⊆ X ⊆ apr′′C1
(X) ⊆ apr′′C2

(X),

C1 � C2 =⇒ apr
C2

(X) ⊆ apr
C1

(X) ⊆ X ⊆ aprC1
(X) ⊆ aprC2

(X). (17)

A finer covering C1 produces a better approximation than a coarser covering C2. In

other words, both approximations (apr′′, apr′′) and (apr, apr) define approximation

structures characterized by posets. On the other hand, the approximation (apr′, apr′)

does not induce such a structure.

Example 5 Consider the neighborhood systems on a universe U = {a, b, c, d}:

NS(a) = {{a}, {a, b}},

NS(b) = {{a, b}, {a, b, c}},

NS(c) = {{c}},

NS(d) = {{c, d}, {b, d}}.

From these neighborhood systems, we obtain eight coverings:

C1 : ({a}, {a, b}, {c}, {c, d}),

C2 : ({a, b}, {a, b}, {c}, {c, d}),

C3 : ({a}, {a, b, c}, {c}, {c, d}),

C4 : ({a, b}, {a, b, c}, {c}, {c, d}),

C5 : ({a}, {a, b}, {c}, {b, d}),

C6 : ({a, b}, {a, b}, {c}, {b, d}),

C7 : ({a}, {a, b, c}, {c}, {b, d}),

C8 : ({a, b}, {a, b, c}, {c}, {b, d}).

Figure 3 shows the granulation structure and the stratified rough set approximation

for the subset {a, b, d}. 2

4 Conclusion

In this paper, we investigate some fundamental issues of granulation and approxi-

mation in the context of rough set theory. Our discussion is based on the notion of

similarity that represents relationships between elements of a universe. Depending
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Figure 3: A poset granulation structure and the corresponding stratified rough set
approximations (the set {a, b, d} is simply written as abd.)

on the various interpretations of similarity, different granulation structures are ex-

amined. We start from two simple granulation structures. One structure is defined

by an equivalence relation, which lead to a partition of the universe. In this case,

the standard rough set approximation is used. The other structure is defined by a

reflexive binary relation that induces a covering of the universe. Three generalized

rough set approximations are proposed. From the two simple one-level granulation

structures, we can study more general granulation structures characterized by many

levels of simple granulation structures. In particular, we analyze multi-level granu-

lation structures induced by hierarchies of the universe and neighborhood systems.

The former leads to partition based granulation structures, and the latter leads to

covering based granulation structures. With the multi-level structure, we examine

stratified rough set approximations.

Granulation structures and the corresponding approximation structures intro-

duced in this paper provide a starting point for further study of granulation and

approximation. Investigations in this direction may produce interesting and useful

results.
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