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Abstract. A database may be considered as a statistical population, and an at-
tribute as a statistical variable taking values from its domain. One can carry out
statistical and information-theoretic analysis on a database. Based on the attribute
values, a database can be partitioned into smaller populations. An attribute is
deemed important if it partitions the database such that previously unknown reg-
ularities and patterns are observable. Many information-theoretic measures have
been proposed and applied to quantify the importance of attributes and relation-
ships between attributes in various fields. In the context of knowledge discovery
and data mining (KDD), we present a critical review and analysis of information-
theoretic measures of attribute importance and attribute association, with emphasis
on their interpretations and connections.

1 Introduction

Information-theoretic measures have been used in many fields for measur-
ing importance of attributes and relationships between attributes [10,14,55],
such as pattern recognition [6], multi-attribute decision making [19,67], ma-
chine learning [42], information retrieval [45,59,52], and data mining [60,64].
Watanabe [56] suggested that pattern recognition is essentially a conceptual
adaptation to the empirical data in order to see a form in them. The form is
interpreted as a structure which always entails a small entropy value. Many
algorithms in pattern recognition may be characterized as efforts to minimize
entropy [54,56]. The philosophy of entropy minimization for pattern recog-
nition can be applied to related fields, such as classification, data analysis,
machine learning, and data mining, where one of the tasks is to discover pat-
terns or regularities in a large data set. Regularities and structuredness are
characterized by small entropy values, whereas randomness is characterized
by large entropy values.

A database consists of a set of objects represented by their values on a set
of attributes. Each attribute describes an object by using a value from an asso-
ciated set called the domain of the attribute [35]. Statistical and information-
theoretic analysis for knowledge discovery and data mining (KDD) treats a
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database as a statistical population, and an attribute as a statistical variable
taking values from its domain [18,35]. Some fundamental tasks of KDD in-
volve the discovery of relationships between attributes. For this purpose, one
can immediately use information-theoretic measures. Lee [28] and Malves-
tuto [35] provided a systematic information-theoretic analysis of databases.
They investigated the issues of correlation and interdependency among at-
tributes. The notions such as functional, multi-valued, hierarchical, and join
dependencies are stated in terms of various entropy functions. A related par-
tition model of databases was studied by Spyratos [51].

A database can be partitioned into smaller populations based on the val-
ues of an attribute. An attribute is deemed important for data mining if reg-
ularities are observable in smaller populations, while being unobservable in
a larger population. Regularities are expressed by lower entropy values. This
suggests that if an attribute is useful for data mining, then the attribute
should lead to entropy reduction. The well known ID3 inductive learning
algorithm uses exactly such a measure for attribute selection in a learning
process [42]. The entropy reduction is the difference between the entropy of
the decision attribute and the conditional entropy of the decision attribute
given a particular attribute. It is in fact the mutual information between the
decision attribute and the given attribute. Other entropy-related measures
have also been proposed and studied [25,34,53].

Potential success of information-theoretic analysis for KDD depends on,
to a large extent, the interpretations of different information-theoretic mea-
sures and their connections. Based on the philosophy of entropy minimiza-
tion and our earlier investigations on the topic [60,64], we review and exam-
ine information-theoretic measures for evaluating attribute importance and
attribute association. The objective is to provide a systematic analysis of
information-theoretic measures in the setting of KDD. Measures that have
been used successfully in related fields, but have not been used in KDD, are
discussed. Four classes of measures are identified. They are measures of at-
tribute importance, measures of one-way attribute association, measures of
two-way attribute association, and measures of dissimilarity and similarity of
populations. Each type of measures captures a particular aspect of attribute
importance for KDD. Different types of measures can be combined or used
in various stages in a data mining process.

The rest of the article is organized as follows. Section 2 provides an
overview of some basic issues of KDD using the notion of information ta-
bles [62]. A database is viewed as an information table. Section 3 is a brief
review of information-theoretic measures for information tables. We focus
on two special forms of entropy related measures. One is expressed in terms
of Kullback-Leibler divergence measure [27], and the other is expressed in
terms of expected values [10,11,14,48]. They offer useful interpretations of
information-theoretic measures for KDD. Section 4 examines and classifies
various information-theoretic measures used in KDD and related fields.
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2 Analysis of Information Tables

In many information processing systems, a set of objects are typically rep-
resented by their values on a finite set of attributes. Such information may
be conveniently described in a tabular form. Each column corresponds to an
attribute and each row corresponds to an object. A cell, defined by a pair of
object and attribute, gives the value of the object on the attribute. Formally,
an information table is defined by a quadruple:

T = (U, At, {VX | X ∈ At}, {IX | X ∈ At}), (1)

where

U is a finite and nonempty set of objects,

At is a finite and nonempty set of attributes,

VX is a nonempty set of values for each attribute X ∈ At,

IX : U −→ VX is an information function for each attribute X ∈ At.

An information table represents all available information and knowledge
about the objects under consideration. Objects are perceived, observed, or
measured based on only a finite number of properties. For simplicity, we as-
sume that the domain of each attribute is finite. An information function IX

is a total function that maps an object t of U to one value in VX . For an
object t ∈ U , IX(t) is the value of t on the attribute X . A database may
be viewed as an example of information tables. Additional information and
applications of information tables can be found in [38,62,65].

One can extend information functions to subsets of attributes. For Y ⊆
At, its domain VY is the Cartesian product of the domains of all individ-
ual attributes in the set. The symbol IY (t) is the value of t on a set of
attributes Y , which is a vector of individual attribute values. A single at-
tribute is equivalent to a singleton subset of At. In subsequent discussions,
we will use X, Y, . . . to denote sets of attributes, and x, y, . . . to denote the
values in the domain of X, Y, . . .. We will also use “an attribute” and “a set
of attributes” interchangeably.

With respect to the notion of information tables, there are extensive stud-
ies on the relationships between values of different attributes and relation-
ships between values of the same attribute. Studies of the two kinds of re-
lationships correspond to the horizontal analysis and the vertical analysis of
an information table [62].

Analysis of horizontal relationships reveals the similarity, association, and
dependency of different attributes [64]. The notion of similarity may be easily
explained for binary attributes. Similarities of attributes indicate the close-
ness of attributes reflected by their values on a set of objects. Two attributes
are similar to each other if an arbitrary object is likely to have the same
value for both attributes. Associations (dependencies) show the connections
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between attributes. They are normally characterized by the problem of deter-
mining the values of one set of attributes based on the values of another set
of attributes. Associations can be classified into two types. They are one-way
and two-way associations [64]. A one-way association reflects that the val-
ues of one set of attributes determine the values of another set of attributes,
but does not say anything of the reverse. A two-way association is a combi-
nation of two one-way associations, representing two different directions of
associations. Two levels of associations, referred to as the local and global

associations, may be observed. A local association shows the relationship be-
tween one specific combination of values on one set of attributes and one

specific combination of values on another set of attributes. That is, a local
association deals with a particular pair of attribute values (x, y). A global as-
sociation shows the relationships between all combinations of values on one
set of attributes and all combinations of values on another set of attributes.
That is, a global association considers a pair of attributes (X, Y ) by taking
into consideration all pairs of attribute values (x, y)’s.

Finding local one-way association is one of the main tasks of machine
learning and data mining [36,38,41,42]. The well known association rules [1],
which state the presence of one set of items implies the presence of another
set of items, may be considered as a special kind of local one-way associa-
tions. Functional dependency in relational databases is a typical example of
global one-way association [2,4]. Attribute (data) dependency studied in the
theory of rough sets is another example of global one-way association [38].
There are differences between functional dependency in relational database
and data dependency in rough set theory. The functional dependency states
the semantics constraints on objects in taking their attribute values. The
data dependency summarizes the dependency of attributes with respect to a
particular information table. Similarity between attributes may be considered
as a global two-way association.

Analysis of vertical relationships deals with semantic closeness of val-
ues of an attribute. Examples of vertical analysis include the discretization
of real-valued attributes, and the use of binary relations, order relations,
concept hierarchies, neighborhood systems, fuzzy binary relations, similarity
measures or distance functions on attribute values [15,22,61,62,65]. Using the
vertical relationships between attribute values, one may study relationships
between objects. Objects may be clustered and classified based on their at-
tribute values. The semantic closeness of attribute values also offers a basis
for approximate retrieval [62].

The horizontal and vertical analyses of information tables focus on differ-
ent aspects of an information table. It may be potentially useful to combine
the two analyses. One may introduce more flexibility in horizontal analysis
by taking into consideration vertical analysis. For example, attribute val-
ues can be clustered to obtain more generalized decision rules in machine
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learning [31,41]. The use of concept hierarchies in data mining can produce
multi-level association rules [15].

Each type of relationships between attributes captures a specific type of
knowledge derivable from a data set. Some authors have proposed methods
that generalize a particular type of relationships, in order to take into con-
sideration of others [37,49]. There is a need for systematic studies on the
characterization, classification, and interpretations of various types of rela-
tionships between attributes, as well as their connections to each other [64].
We address these issues from an information-theoretic point of view [64].

3 A Review of Information-Theoretic Measures

For an attribute X , its values divides the set of objects U into a family of
disjoint subsets. The subset defined by the value x ∈ VX is given by:

m(X = x) = m(x) = {t ∈ U | IX(t) = x}. (2)

It consists of all objects whose value on X is x. An information table can be
viewed as a statistical population and X a statistical variable. We associate
X with a probability distribution defined by:

P (X = x) = P (x) = |m(x)|/|U |, x ∈ VX , (3)

where | · | denotes the cardinality of a set. Other related probability distri-
butions can be similarly defined. In particular, P (X, Y ) is the joint proba-
bility distribution of X and Y , and P (X |Y ) is the conditional probability
distribution of X given Y . The set of objects m(y) may be considered as a
subpopulation of U . The conditional probability distribution P (X |y) is the
probability distribution associated with X in the subpopulation m(y).

Shannon’s entropy function H is defined over P as:

H(P (X)) = EP (X)[− log P (X)]

= −
∑

x∈VX

P (x) log P (x), (4)

where EP (X)[·] denotes the expected value with respect to the probability
distribution of X and P (x) log P (x) = 0 if P (x) = 0. We also say that the
entropy is over X and write H(P (X)) as H(X) when the distribution P over
X is understood. The entropy is a nonnegative function, i.e., H(X) ≥ 0.
It may be interpreted as a measure of the information content of, or the
uncertainty about, the attribute X . Entropy reaches the maximum value
log |VX | when P is the uniform distribution, i.e., P (x) = 1/|VX |, x ∈ VX . The
minimum value 0 is obtained when the distribution P focuses on a particular
value x0, i.e., P (x0) = 1 and P (x) = 0, x 6= x0. Entropy depends on the
probabilities, and does not depend on the actual values taken by attribute
X .
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One may interpret the entropy value as representing the degree of struc-
turedness or diversity of a probability distribution [43,56]. A lower entropy
value indicates a higher degree of structuredness. This may be seen from
the notion of relative entropy or Kullback-Leibler divergence measure [27].
Consider two probability distributions P (X) and Q(X). Suppose P is abso-
lutely continuous with respect to Q, namely, P (x) → 0 if Q(x) → 0. The
Kullback-Leibler divergence measure D(P ||Q), also known as I-divergence
measure [20,27], is defined by:

D(P ||Q) = EP (X)

[

P (X)

Q(X)

]

=
∑

x∈VX

P (x) log
P (x)

Q(x)
. (5)

It measures the degree of deviation of the probability distribution P (X)
from another distribution Q(X). The divergence measure is nonnegative, i.e.,
D(P ||Q) ≥ 0. It becomes minimum 0 if P (x) = Q(x) for all x ∈ VX . The
maximum value of D(P ||Q) is realized when P (x) = 1 for a particular x for
which Q(x) is the smallest [56]. The divergence measure is non-symmetric,
i.e., in general, D(P ||Q) 6= D(Q||D). A symmetric measure of mutual devia-
tion between two distributions P (X) and Q(X) is defined by [56]:

J(P, Q) = D(P ||Q) + D(Q||P ), (6)

which is known as the J-divergence measure [6,20,27].

As a special case, one can compute the degree of deviation of a probability
distribution P from the uniform distribution Q(x) = 1/|VX |, x ∈ VX . We
obtain [10,56]:

D(P ||Q) =
∑

x∈VX

P (x) log
P (x)

1/|VX |

= log |VX | +
∑

x∈VX

P (x) log P (x)

= log |VX | − H(X). (7)

The uniform distribution represents a maximum state of unstructuredness.
A larger deviation from the uniform distribution implies a higher degree of
structuredness. Thus, entropy may be a good measure of structuredness and
evenness.

The divergence measure may be used to compute the degree of indepen-
dence of two attributes X and Y . By taking Q(X, Y ) = P (X) × P (Y ), i.e.,
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the independence distribution formed by the same marginals, we have:

D(P (X, Y )||Q(X, Y )) = D(P (X, Y )||P (X) × P (Y ))

= EP (X,Y )

[

log
P (x, y)

P (x)P (y)

]

=
∑

x∈VX

∑

y∈VY

P (x, y) log
P (x, y)

P (x)P (y)

= I(X ; Y ). (8)

The measure of deviation of the joint distribution from the independence
distribution is in fact the mutual information I(X ; Y ) between the two at-
tributes X and Y . It is non-negative and symmetric, i.e., I(X ; Y ) ≥ 0 and
I(X ; Y ) = I(Y ; X). Mutual information can also be expressed in terms of
divergence between conditional and marginal probability distributions as fol-
lows [50]:

I(X ; Y ) =
∑

x∈VX

∑

y∈VY

P (x, y) log
P (x, y)

P (x)P (y)

=
∑

y∈VY

P (y)
∑

x∈VX

P (x|y) log
P (x|y)

P (x)

=
∑

y∈VY

P (y)D(P (X |y)||P (X))

= EP (Y )[D(P (X |Y )||P (X)]. (9)

The quantity D(P (X |y)||P (X)) shows the degree of deviation of the con-
ditional probability distribution P (X |y) from the unconditional distribution
P (X). The distribution P (X) is characterized by the partition of the entire
database by values of X , while P (X |y) is characterized by the partition of
the subpopulation m(y). A larger divergence implies that the characteristics
of subpopulation m(y) is very different from that of the entire population. It
may happen that there is a regularity in the subpopulation which may not be
present in the entire population. The mutual information is the expectation
of divergence.

For two attributes X and Y , their joint entropy is defined by:

H(X, Y ) = EP (X,Y )[− log P (X, Y )]

= −
∑

x∈VX

∑

y∈VY

p(x, y) log p(x, y). (10)

The conditional entropy H(X |Y ) is defined as the expected value of subpop-
ulation entropies H(X |y) with respect to the probability distribution P (Y ):

H(X |Y ) =
∑

y∈VY

P (y)H(X |y)
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= −
∑

y∈VY

P (y)
∑

x∈VX

P (x|y) log P (x|y)

= −
∑

x∈VX

∑

y∈VY

P (x, y) log P (x|y)

= EP (X,Y )[− log P (X |Y )]. (11)

Conditional entropy is nonnegative and non-symmetric, namely, H(X |Y ) ≥ 0
and in general H(X |Y ) 6= H(Y |X). Conditional entropy can also be ex-
pressed by:

H(X |Y ) = H(X, Y ) − H(Y ). (12)

It measures the additional amount of information provided by X if Y is
already known.

Mutual information can be equivalently expressed by using entropy and
conditional entropy:

I(X ; Y ) = H(X) − H(X |Y )

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X, Y ). (13)

Accordingly, mutual information measures the decrease of uncertainty about
X caused by the knowledge of Y , which is the same as the decrease of un-
certainty about Y caused by the knowledge of X . It measures the amount
of information about X contained in Y , or the amount of information about
Y contained in X . The amount of information contained in X about itself is
obviously H(X), namely, I(X ; X) = H(X).

Let P (X) and Q(X) be two probability distributions representing infor-
mation about two related populations. Entropy related functions can be used
to measure the similarity of two populations [43,58,66]. Suppose λ1, λ2 ∈ [0, 1]
is a pair of real numbers with λ1 +λ2 = 1. One may form a composite distri-
bution λ1P + λ2Q. If P and Q are similar, then both of them are similar to
the composite distribution. We would expect a small increase of entropy for
the composite distribution. The following entropy difference may be used as
a dissimilarity measure of two distributions [30,43,58]:

β(P, Q : λ1, λ2) = H(λ1P + λ2Q) − [λ1H(P ) + λ2H(Q)]. (14)

The measure β is a nonnegative function, i.e., β(P, Q : λ1, λ2) ≥ 0. The
function reaches the minimum value 0 when the two probability distributions
P and Q are identical, and reaches the maximum value H(λ) = −(λ1 log λ1 +
λ2 log λ2) when P and Q are totally different, i.e., P (x) = 0 whenever Q(x) 6=
0 and Q(x) = 0 whenever P (x) 6= 0.

There exists a close relationship between the divergence measure D(P ||Q)
and the entropy increase β(P, Q : λ1, λ2):

β(P, Q : λ1, λ2) = λ1D(P ||λ1P + λ2Q) + λ2D(Q||λ1P + λ2Q). (15)
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The measure β can be viewed as the expected divergence, if (λ1, λ2) is con-
sidered to be the distribution of a binary random variable. In general, given
a set of n populations with probability distributions P1(X), . . . , Pn(X) and
a set of real numbers λ1, . . . , λn with

∑n

i=1 λi = 1, we have:

β((Pi)1≤i≤n : (λi)1≤i≤n) = H(

n
∑

i=1

λiPi) −

n
∑

i=1

λiH(Pi)

=
n

∑

i=1

λiD(Pi||
n

∑

i=1

λiPi) (16)

Similar to conditional entropy and mutual information, the measure β in-
volves comparisons of probability distributions of various populations. The
difference is that β starts with a set of populations and construct a compos-
ite population, while conditional entropy and mutual information divide a
population into subpopulations based on attribute values.

With respect to an information table, the measure β is the same as mutual
information. Let X, Y be two attributes. Based on the values of Y , one can
divide a population into |VY | subpopulations. Let λy = P (y), y ∈ VY and
Py(X) = P (X |y). It follows:

P (X) =
∑

y∈VY

P (y)P (X |y) =
∑

y∈VY

λyPy(X). (17)

We have:

β((Py)y∈VY
: (λy)y∈VY

) =
∑

y∈VY

P (y)D(P (X |y)||P (X))

= I(X ; Y ). (18)

This provides another interpretation of mutual information. One would ex-
pect a large mutual information between X and Y , if Y divides the universe
into very different subpopulations as expressed in terms of the values of X .

Two important features of the information-theoretic measures need to be
emphasized. All measures are related to the divergence D. If a pattern or
a regularity is interpreted as the deviation from some standard probability
distribution, those measures are potentially useful. All measures can be ex-
pressed in a form of expectation, they thus measure global association by
considering some kind of average.

4 Information-theoretic Measures of Attribute

Importance

Some tasks of KDD are to find important pattern, regularity, and relationship
or association, between attributes. In statistical terms, two attributes are as-
sociated if they are not independent [29]. Two attributes are independent if
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the changes in the value of one do not affect the values of the other. From
this standpoint, information-theoretic measures may be used to evaluate the
importance of attributes. The structuredness induced by an attribute may
be measured by the entropy of the attribute. One-way and two-way associa-
tions of two attributes may be measured by conditional entropy and mutual
information.

4.1 Measures of structuredness

For an attribute X , its entropy H(X) is related to the deviation of the prob-
ability distribution of X from the uniform distribution. A lower entropy sug-
gests that the distribution is uneven, and consequently one may have a bet-
ter prediction using the value of X . The attribute entropy H(X) serves as a
measure of diversity or unstructuredness. It is determined by the probability
distribution of the attribute in the entire population, and does not depend
on any other attributes.

An attribute with a larger domain normally divides the database into
more smaller classes than an attribute with a smaller domain, and hence
may have a higher entropy value. In fact, the maximum value of attribute
entropy is log |VX |, which depends on the size of VX . A regularity found
in a very small portion of database may not necessarily be useful. On the
other hand, an attribute with smaller domain, i.e., a lower entropy value,
usually divides the database into a few larger classes. One may not be able
to find regularities in such large subsets of the database. Attribute entropy
values may be used to control the selection of attributes. It is expected that
an attribute with middle range entropy values may be useful. Similar ideas
have been used successfully in information retrieval [45,59]. A high frequency
term tends to have a large entropy value, and a low frequency term tends to
have a small entropy value. Both may not be a good index term. The middle
frequency terms are useful in describing documents in a collection.

The divergence between probability distribution P (X) and the uniform
distribution as defined by equation (7) immediately offers a measure of struc-
turedness, namely,

W1(X) = log |VX | − H(X). (19)

A normalized measure is given by [59,66]:

W2(X) = 1 −
H(X)

log |VX |
, (20)

which satisfies the condition 0 ≤ W2(X) ≤ 1. The ratio H(X)/log |VX | is
referred to as the relative entropy by Shannon [46]. A measure similar to W2

was used in information theory to estimate the redundancy of a language
or an information source [14,46]. Such a measure was also used to assess
the usefulness of an attribute in multi-attributes decision making [19,67],
information retrieval [59], and data mining [66]. Instead of using log |VX |,
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one may use the maximum value of all attribute entropies. Let Hmax =
max{H(X) | X ∈ At}, we have:

W3(X) = Hmax − H(X), (21)

W4(X) = 1 −
H(X)

Hmax
. (22)

It may be interpreted as a relative measure by comparing the attribute X and
an attribute with maximum entropy value. For an attribute with a smaller
domain, we may have log |VX | < Hmax. Measures W3 and W4 may favor an
attribute with smaller domain in comparison with W1 and W2.

Measures W1 and W2 reach the minimum value 0 if the distribution P (X)
is a uniform distribution, while W3 and W4 may not reach 0. In the con-
text of KDD, an attribute with uniform distribution may not necessarily be
unimportant. Thus, measures W3 and W4 seem to be reasonable, as they
take into consideration of entropy values of other attributes. All four mea-
sures reach their maximum values when the distribution P (X) focuses on a
particular value of VX , namely, all objects have the same value on X . Al-
though no uncertainty is involved with the attribute, it is not necessarily a
useful attribute. One may use measures of structuredness to control the se-
lection of attributes, in the same manner that attribute entropy is used. More
specifically, attributes with middle range degrees of structuredness may be
potentially useful.

4.2 Measures of one-way association

The notion of association rules has been proposed and studied extensively in
mining transaction data [1]. The interpretation of association rules is essen-
tially is the same as that of decision rules studied in machine learning [36].
Association rules concern the relationships between particular combinations
of attribute values [1]. For a pair of values x and y of two attributes X and
Y , an association rule, x ⇐ y, states that the occurrence of y warrants the
occurrence of x. The confidence of an association rule is defined by:

conf(x ⇐ y) = P (x|y). (23)

It measures the local one-way association of x on y, and does not say anything
about x supports y. Many different measures have also been proposed and
studied. A review and analysis of commonly used measures can be found in
a recent paper by Yao and Zhong [63].

The negative logarithm of P (x|y), i.e., − log P (x|y), is a monotonic de-
creasing transformation of P (x|y). Conditional entropy H(X |Y ) is the ex-
pected value of − logP (x|y). It may be viewed as an inverse measure of
global one-way association of two attributes, namely,

IC1(X ⇐ Y ) = H(X |Y ). (24)
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A normalized version is given by [39]:

IC2(X ⇐ Y ) =
H(X |Y )

log |VX |
. (25)

Conditional entropy H(X |Y ) is non-symmetric. The measures of one-way as-
sociation are also non-symmetric, which is consistent with the interpretation
one-way association.

For an attribute X , conditional entropy can be used to select important
attributes for discovering one-way association X ⇐ Y . Measures IC1 and
IC2 can be used to rank attributes in increasing order. If one prefers to rank
attributes in decreasing order, the following corresponding direct measures
of one-way association can be used:

C1(X ⇐ Y ) = log |VX | − H(X |Y ), (26)

C2(X ⇐ Y ) = 1 −
H(X |Y )

log |VX |
. (27)

In these measures, attribute entropy H(X) may be used in place of log |VX |.
We obtain the following measures [26,35]:

C3(X ⇐ Y ) = H(X) − H(X |Y ) = I(X ; Y ), (28)

C4(X ⇐ Y ) = 1 −
H(X |Y )

H(X)
=

I(X ; Y )

H(X)
. (29)

Measure C3 is in fact the mutual information between X and Y . It is com-
monly referred to as information gain and is widely used in machine learn-
ing [42].

For a fixed X , measures of one-way association X ⇐ Y show the rela-
tive importance of Y . An attribute with a larger domain may possibly divide
a database into many small populations. Within a small population, there
are not many choices for the values of X , and hence the conditional entropy
value H(X |y) might be low. Such an attribute may be perceived to be im-
portant based on the entropy related measures discussed so far. A measure
that corrects such a bias is given by [42]:

C5(X ⇐ Y ) =
C3(X ⇐ Y )

H(Y )
=

H(X) − H(X |Y )

H(Y )
=

I(X ; Y )

H(Y )
. (30)

Similarly, one may use log |VY | to replace H(Y ) and obtain the measure [25]:

C6(X ⇐ Y ) =
C3(X ⇐ Y )

log |VY |
=

I(X ; Y )

log |VY |
. (31)

The discussion on measures of structuredness is also relevant to mining one-
way association. One may first use the attribute entropy to select a subset of
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attributes with middle range entropy values without considering their rela-
tionships to X . Measures of one-way association, concerning dependency of
X on other attributes, may then be used to fine tune the mining process.

In pattern recognition, a special attribute X may be viewed a label of
patterns, and other attributes are features used for describing patterns. The
process of feature selection may be viewed as mining one-way association,
namely, the association of patterns on various features. Information-theoretic
measures such as IC1 and C3 have been used for feature selection. A discus-
sion on this topic and many relevant references can be found in the book by
Chen [6] and a recent book by Liu and Motoda [33].

By examining two extreme cases of associations, one may provide further
support for conditional entropy and mutual information as measures of one-
way association. A functional dependency Y → X of a relational database
holds if the value of Y determines the value of X , namely, P (x|y) is either
1 or 0 for all x ∈ VX and y ∈ VY . If Y → X , the partition of the database
by X and Y is the same as the one produced by Y alone. In other words,
the partition produced by Y is finer than the partition produced by X in the
sense that for every y ∈ VY there is a value x ∈ VX such that m(y) ⊆ m(x).
In terms of information-theoretic measures, Y → X holds if and only if the
following equivalent conditions hold [28,35]:

(i1) H(X |Y ) = 0,

(i2) H(X, Y ) = H(Y ),

(i3) I(X ; Y ) = H(X).

Functional dependency may by considered as the strongest one-way associa-
tion. Conditional entropy obtains the minimum value 0 when X functionally
depends on Y . The mutual information I(X ; Y ) = H(X) reaches its maxi-
mum value, provided that X is fixed. If X and Y are probabilistically inde-
pendent, we cannot use the value of Y to predict the value of X , and vice
versa. In other words, knowing the values of Y does not reduce our uncer-
tainty about X , and vice versa. In this case, we have the following equivalent
conditions:

(ii1) H(X |Y ) = H(X),

(ii2) H(Y |X) = H(Y ),

(ii3) H(X, Y ) = H(X) + H(Y ),

(ii4) I(X ; Y ) = 0.

Two attributes are associated if they are not independent [29]. Independence
of two attributes may be viewed as the weakest one-way (or two-way) associ-
ation. In this case, conditional entropy H(X |Y ) reaches the maximum value
and mutual information reaches the minimum value. Condition (ii3) states
that if X and Y are independent, the uncertainty about (X, Y ) is the sum
of uncertainties about X and Y . This implies that X and Y do not have any
correlations.
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4.3 Measures of two-way association

In data mining, the quantity:

i(x, y) =
P (x, y)

P (x)P (y)
(32)

has been widely used as a measure of local two-way association [3,7,13,49,63].
The logarithm of i(x, y) is the mutual information of x and y, I(x; y) =
log[P (x, y)/(P (x)P (y))], which is a monotonic transformation of i(x, y). The
quantity I(x; y) is also a measure of local two-way association of x and y. Mu-
tual information I(X ; Y ) is the expected value of such local associations for
all attribute value pairs. We obtain a measure of global two-way association:

M1(X ⇔ Y ) = I(X ; Y ). (33)

From I(X ; Y ) ≤ min(H(X), H(Y )) ≤ H(X, Y ), we obtain the normalized
versions [26,35]:

M2(X ⇔ Y ) =
I(X ; Y )

min(H(X), H(Y ))
, (34)

M3(X ⇔ Y ) =
I(X ; Y )

H(X, Y )
. (35)

Two-way association as measured by mutual information is the degree of
deviation of a joint distribution from the independence distribution. With a
fixed X , the use of I(X ; Y ) for finding a two-way association is in fact the
same as using H(X |Y ) for finding a one-way association [34,53].

Mutual information has been used in pattern recognition and information
retrieval for finding association between attributes [6,52]. A dependence tree
consisting of pairs of most dependent attributes can be constructed by using
mutual information as a measure of dependency between two attributes [8].
Mutual information and related dependence trees and generalized dependence
graphs have been used in probabilistic networks and expert systems [9,40].

Conditional entropy H(X |Y ) is an inverse measure of the one-way asso-
ciation in one direction, and H(Y |X) the one-way association in the other
direction. Inverse measures of two-way association can be obtained by com-
bining two one-way associations [34,44,53]:

IM1(X ⇔ Y ) = H(X |Y ) + H(Y |X)

= 2H(X, Y ) − [H(X) + H(Y )]

= H(X) + H(Y ) − 2I(X ; Y )

= H(X, Y ) − I(X ; Y ), (36)
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IM2(X ⇔ Y ) =
IM1(X ⇔ Y )

H(X, Y )

= 2 −
H(X) + H(Y )

H(X, Y )

= 1 −
I(X : Y )

H(X, Y )
. (37)

where IM2(X ⇔ Y ) = 0 if H(X, Y ) = 0. From the various forms of these
measures, one may associate different information-theoretic interpretations.
Measures IM1 and IM2 are pseudo-metrics between two random variables of
the two attributes [11,16,44,47]. They have been used as measures of corre-
lation and applied to machine learning [34,53]. A more generalized measure
may be defined by [53]:

IM4(X ⇔ Y ) = λ1H(X |Y ) + λ2H(Y |X), (38)

where λ1 + λ2 = 1. It is a non-symmetric measure unless λ1 = λ2 = 1/2.

4.4 Measures of similarity of populations

In some data mining problems, one may be interested in similarity or dissim-
ilarity of different populations [66]. Similarity is closely related to two-way
association [64]. For example, one may analyze local two-way association of
a pair of attribute value x and y by examining the similarity of two sub-
populations m(x) and m(y) with respect to another attribute Z. Divergence
measure can be used for such a purpose.

Let P1(X) and P2(X) be probability distributions of X in two popula-
tions. A non-symmetric dissimilarity measure of the two populations is given
by the Kullback-Leibler divergence measure D(P1||P2). A symmetric dissim-
ilarity measure is given by D(P1||P2) + D(P2||P1). A difficulty with such
measures is the requirement that one distribution must be absolutely con-
tinuous with respect to the other. The related measure β(P1, P2 : λ1, λ2)
does not suffer from this problem. A similarity measure corresponding to β
is defined by [58]:

S(P1, P2 : λ1, λ2) = 1 −
β(P1, P2 : λ1, λ2)

H(λ)
, (39)

where H(λ) = −(λ1 log λ1 + λ2 log λ2). The values of λ1 and λ2 may be
interpreted as the importance associated with P1 and P2, or the sizes of the
two populations.

Measures β and S have been used in pattern recognition [57] and infor-
mation retrieval [58]. It is recently used for mining market value functions
for targeted marketing [66].
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4.5 Discussions

Attribute entropy shows the structuredness induced by the attribute, and
hence can be used to design measures of attribute importance. Conditional
entropy and mutual information serve as the basic quantities for measur-
ing attribute association. By combination and normalization, one can obtain
various information-theoretic measures of attribute importance and attribute
association.

Table 1 is a summary of the well known measures. Some references are
also given, where more information or applications about the measure can
be found. The first group consists of measures of structuredness induced by
an attribute. The middle two groups are measures of attribute association.
Measures of one-way association are non-symmetric. They can be expressed,
in a general form, as different normalizations of conditional entropy. Measures
of two-way association are symmetric. Two subclasses can be observed, one
class consists of different normalizations of mutual information [26], the other
class consists of the combination of two conditional entropies. For a fixed
X , some measures of one-way and two-way associations produce the same
result, if they are used to rank other attributes Y ’s. They may be viewed as
measuring the relative importance of other attributes with reference to X .
The last group consists of measures of dissimilarity of populations. From the
relationship between entropy, conditional entropy and mutual information, a
measure can be expressed in many different forms.

Entropy and mutual information can be explained in terms of Kullback-
Leibler divergence measure. Entropy shows the divergence from the uniform
distribution, while mutual information shows the divergence from the inde-
pendence distribution. Uniform distribution and independence distribution
are perceived as uninteresting. Application of information-theoretic measures
for KDD is therefore intended to discover regularities and patterns revealing
large divergence from unimportant or uninteresting distributions.

All measures are based on some kind of average which is suitable for
global association. In some situations, the best average might not be a good
choice. For example, Cendrowska [5] presented a learning algorithm that is
different from ID3. Instead of using every attribute value of an attribute to
decide if the attribute should be selected, only certain values are considered.
Populations constrained by some values reveal stronger regularities, although
on average populations by all attribute values reveal weaker regularities.

In studying main problem types for KDD, Klösgen [23] discussed the
following two types of problems. The classification and predication problem
deals with the discovery of a set of rules or similar patterns for predicting the
values of a dependent variable. The ID3 algorithm [42] and the mining of as-
sociate rules [1] are examples for solving this type of problems. The summary

and description problem deals with the discovery of dominant structure that
derives a dependency. Kamber and Shinghal [21] referred to these problems
as the discovery of discriminant and characteristic rules, respectively. Differ-
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References Measures

Measures of structuredness of an attribute X:

Shannon [46], Watanabe [56] H(X)

Hwang and Yoon [19],
Shannon [46], Wong and Yao [59],

Yao and Zhong [66], Zeleny [67] 1 − H(X)
log |VX |

Measures of one-way association X ⇐ Y :

Lee [28], Malvestuto [35],
Pawlak et al. [39] H(X|Y )

Kv̊alseth [26], Malvestuto [35],

Quinlan [42] I(X;Y )
H(Y )

Measures of two-way association X ⇔ Y :

Knobbe and Adriaans [24],
Linfoot [32], Quinlan [42] I(X;Y )

Malvestuto [35] I(X;Y )
H(X,Y )

Horibe [17], Kv̊alseth [26] I(X;Y )
max(H(X),H(Y ))

Kv̊alseth [26] I(X;Y )
min(H(X),H(Y ))

Kv̊alseth [26] 2I(X;Y )
H(X)+H(Y )

López de Mántaras [34],
Shannon [47], Wan and Wong [53] H(X|Y ) + H(Y |X)

López de Mántaras [34], Rajski [44] H(X|Y )+H(Y |X)
H(X,Y )

Measures of dissimilarity of populations P1 and P2

Chen [6], Kullback and Leibler [27] D(P1||P2)

Kullback and Leibler [27],
Watanabe [56] D(P1||P2) + D(P2||P1)

Lin and Wong [30], Rao [43],
Wong and Yao [58],
Wong and You [57] H(λ1P1 + λ2P2) − [λ1H(P1) + λ2H(P2)]

Table 1. Information-theoretic Measures
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ent measures should be used for selecting attributes for distinct problems. A
non-symmetric measure of one-way association may be suitable for the first
type, while a symmetric measure of two-way association may be appropriate
for the second type.

In the study of association of random variables using statistical measures,
Liebetrau [29] pointed out that many symmetric measures do not tell us
anything about causality. When two attributes are shown to be correlated, it
is very tempting to infer a cause-and-effect relationship between them. It is
very important to realize that the mere identification of association does not
provide grounds to establish causality. Garner and McGill [12] showed that
information-theoretic analysis is very similar to analysis of variance. One may
extend the argument of Liebetrau [29] to information-theoretic measures. In
order to establish causality, we need additional techniques in data mining.

5 Conclusion

Many different forms of knowledge and information can be derived from a
large data set. Relationships between attributes represent an important class.
An analysis of possible relationships between attributes and their connec-
tions may play an important role in data mining. Starting with the Shannon
entropy function and the Kullback-Leibler divergence measure, we present
an overview and analysis of information-theoretic measures of attribute im-
portance and attribute association in the setting of KDD. Four classes of
measures are discussed. Attribute entropy shows the structuredness induced
by the attribute, and is used to design measures of attribute importance.
Conditional entropy is used to define non-symmetric measures of one-way
association. Conditional entropy and mutual information are used to define
symmetric measures of two-way association. They can be used to measure
the relative importance of other attributes with respect to a fixed attribute.
Measures of dissimilarity and similarity of populations are also discussed.

This article is mainly a critical analysis of existing results in using infor-
mation theory in KDD and related fields. Our preliminary study shows that
information theory might be used to establish a formal theory for KDD. The
systematic analysis of information-theoretic measures may serve as a starting
point for further studies on this topic.
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