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Abstract. The main objective of this paper is to provide a granular computing
based interpretation of rules representing two levels of knowledge. This is done
by adopting and adapting the decision logic language for granular computing. The
language provides a formal method for describing and interpreting conditions in
rules as granules and rules as relationships between granules. An information
table is used to construct a concrete granular computing model. Two types of
granules are constructed from an information table. They lead to two types of
rules called low order and high order rules. As examples, we examine rules in the
standard rough set analysis and dominance-based rough set analysis.
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1 Introduction

Rules are a commonly used form for representing knowledge. Two levels of knowledge
may be expressed in terms of low and high order rules, respectively [16]. A low order
rule expresses connections between attribute values of the same object. Classification
rules are a typical example of low order rules. For example, a classification rule may
state that “if the Hair color is blond and Eye color is blue, then the Class is +.” A
high order rule expresses connections of different objects in terms of their attribute
values. Functional dependencies are a typical example of high order rules. For example,
a functional dependency rule may state that “if two persons have the same Hair color,
then they will have the same Eye color.” The notion of a high order rule is also related
to relational learning, in which a k-ary predicate is used to define a relation between k
objects [10]. For simplicity, in this paper we only consider binary relations.

In rough set analysis [6—8], a decision logic language DL is used to build conditions
in low order rules and to interpret these conditions as subsets (i.e., granules) of objects.
This language is referred to as Ly [16]. In order to describe high order rules, an ex-
tended language £ is introduced [16]. In £;, conditions are interpreted in terms of a
set of object pairs. The two languages share the same syntactic rules, with two seman-
tic interpretations. That is, their main differences lie in the different interpretations of
atomic formulas. It is therefore possible to introduce a common language.



In this paper, we propose a decision logic language £ for granular computing. In-
stead of expressing the atomic formulas by a particular concrete type of conditions, we
treat them as primitive notions that can be interpreted differently. This flexibility en-
ables us to describe different types of rules. The language is interpreted in the Tarski’s
style through the notion of a model and satisfiability. The model is a non-empty domain
consisting of a set of individuals. An individual satisfies a formula if the individual has
the properties as specified by the formula. A concept is therefore jointly defined by
a pair consisting of the intension of the concept, a formula of the language, and the
extension of the concept, a subset of the model.

As illustrative examples to show the usefulness of the proposed language, we an-
alyze rules in the standard rough set analysis [6—8] and dominance-based rough set
analysis [2—4, 11, 15].

2 A Decision Logic Language for Granular Computing

By extracting the high-level similarities of the decision logic languages DL, Ly, and
L1, we propose a logic language £ for granular computing.

The language L is constructed from a finite set of atomic formulas, denoted by A =
{p, g, -..}. Each atomic formula may be interpreted as representing one piece of basic
knowledge. The physical meaning of atomic formulas becomes clearer in a particular
application. In general, an atomic formula corresponds to one particular property of an
individual under discussion. The construction of atomic formulas is an essential step of
knowledge representation. The set of atomic formulas provides a basis on which more
complex knowledge can be represented. Compound formulas can be built recursively
from atomic formulas by using logic connectives. If ¢ and v are formulas, then so are
(=), (G A ). (6V ). (6 — ©). and (¢ < V).

The semantics of the language £ can be defined in the Tarski’s style through the
notion of a model and satisfiability. The model is a nonempty domain consisting of
a set of individuals, denoted by M = {x,y,...}. The meaning of formulas can be
given recursively. For an atomic formula p, we assume that an individual z € M either
satisfies p or does not satisfy p, but not both. For an individual x € M, if it satisfies an
atomic formula p, we write = |= p, otherwise, we write « ¥ p. The satisfiability of an
atomic formula by individuals of M is viewed to be the basic knowledge describable by
the language £. An individual satisfies a formula if the individual has the properties as
specified by the formula. Let ¢ and ¢ be two formulas, the satisfiability of compound
formulas is defined as follows:

(1. zE-9 iff 2 ¥ ¢,

(2) rEQANYy  iff z=g¢andz =1,

(3). TEOVY iff zE¢orz 1,

(4) rE¢—y iff xE-¢VY,

(5) ¢y iff aE¢—YandrEyY— o

In order to emphases the roles played by the set of atomic formulas A and the set of
individuals M, we also rewrite the language £ as £(.A, M).



The construction of the set of atomic formulas and the model M depends on a
particular application. For modeling different problems, we may choose different sets
of atomic formulas and models. The language £ therefore is flexible and enables us to
describe a variety of problems.

With the notion of satisfiability, one can introduce a set-theoretic interpretation of
formulas of the language L. If ¢ is a formula, the meaning of ¢ in the model M is the
set of individuals defined by [7]:

m(¢) ={x € M|z = ¢} (1

That is, m(¢) is the set of individuals satisfying a formula ¢. This enables us to establish
a correspondence between logic connectives and set-theoretic operators. Specifically,
the following properties hold:

(C1).  m(=¢) = —m(¢),

(C2).  m(oAy)=m(p) Nm(s)

(C3).  mlo V) =m(o)Um(y),

(C4).  m(¢ — ) = —m(d) Um(y),

(C5).  m(¢ =) = (m(¢) Nm(¥)) U (=m(¢) N —m(y)),

where —m(¢) = M — m(¢) denotes the set complement of m(¢).

In the study of concepts, many interpretations have been proposed and examined.
The classical view regards a concept as a unit of thought consisting of two parts, i.e.,
the intension and extension of the concept [1, 13]. By using the language £, we obtain
a simple and precise representation of a concept in terms of its intension and extension.
That is, a concept is defined by a pair (m(¢), ). The formula ¢ is the description of
properties shared by individuals in m(¢), and m(¢) is the set of individuals satisfying ¢.
A concept is thus described jointly by its intension and extension. This formulation en-
ables us to study concepts in a logic setting in terms of intensions and in a set-theoretic
setting in terms of extensions.

The language £ provides a formal method for describing granules. Elements of a
granule may be interpreted as instances of a concept, i.e., the extension of the concept.
The formula is a formal description of the granule. In this way, the language £ only
enables us to define certain subsets of M. For an arbitrary subset of M, we may not
be able to construct a formula for it. In other words, depending on the set of atomic
formulas, the language £ can only describe a restricted family of subsets of M.

3 Interpretation of Low and High Order Rules Using the
Language £

We interpret different types of rules of an information table as concrete applications to
show the usefulness of the language L.



3.1 Information Table

An information table provides a convenient way to describe a finite set of objects by a
finite set of attributes [7]. Formally, an information table can be expressed as:

S =(U,At{V, | a € At},{{Ru} | a € At}, {1, | a € At}),
where

U is a finite nonempty set of objects called universe,
At is a finite nonempty set of attributes,

V, is a nonempty set of values for a € At,

{R,} is a family of binary relations on Vj,

I, : U — V, is an information function.

Each information function I, maps an object in U to a value of V, for an attribute
a € At.

Our definition of an information table considers more knowledge and information
about relationships between values of attributes. Each relation R, can represent simi-
larity, dissimilarity, or ordering of values in V, [1]. The equality relation = is only a
special case of R,. The rough set theory and the DL language use the trivial equality
relation on attribute values [7].

Pawlak and Skowron [8] consider a more generalized notion of an information table.
For each attribute ¢ € At, a relational structure &, over V, is introduced. Furthermore,
a language can be defined based on the relational structures. A binary relation is a
special case of relational structures. Thus, the discussion of this paper may be viewed
as a special case of Pawlak and Skowron’s formulation.

3.2 Low Order Rules

For interpreting low order rules, we construct a language by using U as the model M.
That is, individuals of M are objects in the universe U. The set of atomic formulas
are constructed as follows. With respect to an attribute a € At and an attribute value
v € V,, an atomic formula of the language L is denoted by (a, R4, v). An object z € U
satisfies an atomic formula (a, R,, v) if the value of = on attribute a is R,-related to the
value v, that is I, (z) R, v, we write:

x = (a, Ry, v) iff I, (z) Ry v.
We denote the language for interpreting low order rules as L£({(a, Ry, v)},U). The
granule corresponding to the atomic formula (a, R,,v), namely, its meaning set, is
defined as:
m(a, Ry, v) = {x € U | I,(x)R,v}.

Granules corresponding to compound formulas are defined by Equation (1).



A low order rule can be derived according to the relationships between these gran-
ules. We can express rules in the form ¢ = v by using formulas of the language L.
For easy understanding, we reexpress the formula (a, R,, v) in another form based on
the definition of satisfiability of the atomic formulas. An example of a low order rule is
given as:

Low Order rule: /\(Iai () R, vq;) =
i=1 j

~

(Idj ((E) Rdj Vd, )7

1

where x € U, va, € Vo, va; € Vy;, a; € At, and d; € At. For simplicity, we only use
conjunction A in the rule.

3.3 High Order Rules

For interpreting high order rules, we construct a language by using U x U as the model
M. That is, individuals of M are object pairs in U x U. The set of atomic formulas are
constructed as follows. With respect to an attribute a € At, an atomic formula of the
language L is denoted by (a, R,). A pair of objects (x,y) € U x U satisfies an atomic
formula (a, R,) if the value of x is R,-related to the value of y on the attribute a, that
is, Io(z) Ry I,(y). We write:

(z,y) E (a,Ry) iff I,(z) R, I,(y).

For clarity, we denote the language as £({(a, R4)}, U x U). The granule corresponding
to the atomic formula (a, R, ), i.e., the meaning set, is defined as:

m(a, Rq) = {(z,y) € U XU | Lo(x)Rala(y)}-

Granules corresponding to the compound formulas are defined by Equation (1).
A high order rule expresses the relationships between these granules. An example
of a high order rule is given as:

n m

High Order rule: /\ (Ia,(x) Ra, 1a,(y)) = /\ (I, (%) Ra, 14,(y)),

i=1 j=1

where (z,y) € U x U, a; € At, d; € At.

3.4 Quantitative Measures of Rules

The meanings and interpretations of a rule ¢ = v can be further clarified by using the
extensions m(¢) and m(1)) of the two concepts. More specifically, we can define quan-
titative measures indicating the strength of a rule. A systematic analysis of probabilistic
quantitative measures can be found in [14]. Two examples of probabilistic quantitative
measures are [12]:

_ mlond) | _Im(@AY) |

accuracy(p = ) = W, coverage(¢ = ) = W, 2)



Table 1. Rough Set Approaches for Studying Low and High Order Rules

Relation Low Order Rule High Order Rule Method
Generalized
R Io(z)Rave = Ia(x)Rava | la(x)Rala(y) = la(z)Rala(y) |Rough Set Analysis
Standard

= I (z) = va = Ia(z) = vq | Ia(z) = Ia(y) = Ia(z) = Is(y) |Rough Set Analysis

Dominance-based
Io(2) =a va = Ia(2) =a va|la(x) o Ia(y) = Ia(z) >=a La(y)|Rough Set Analysis

1Y

where | - | denotes the cardinality of a set. The two measures are applicable to both low
and high order rules. This demonstrates the flexibility and power of the language L.

While the accuracy reflects the correctness of the rule, the coverage reflects the ap-
plicability of the rule. If accuracy(¢ = 1) = 1, we have a strong association between
¢ and 1. A smaller value of accuracy indicates a weak association. A higher coverage
suggests that the relationships of more individuals can be derived from the rule. The
accuracy and coverage are not independent of each other, one may observe a trade-off
between accuracy and coverage. A rule with higher coverage may have a lower accu-
racy, while a rule with higher accuracy may have a lower coverage.

4 Rough Set Approaches on Rules

In this section, we use two rough set approaches [2-4,6-8, 11, 15] as examples to illus-
trate the usefulness of the language L. The basic results are summarized in Table 1. For
comparison, we also include the results of generalized rough set analysis based on an
arbitrary binary relation R, on attribute values.

4.1 Standard Rough Set Analysis

The standard rough set analysis is based on the trivial equality relation on attribute val-
ues [6-8]. It is used for the extraction of rules for classification and attribute dependency
analysis. By using the language £, the standard rough set approach can be formulated
as follows.

For low order rules, the language is given by L£({(a, =, v)}, U) with atomic formu-
las of the form of (a, =, v). An object z € U satisfies an atomic formula (a, =, v) if the
value of z on attribute a is v, that is, I,(z) = v. We write:

z | (a,=,v) iff I,(z) = v.
The granule corresponding to the atomic formula (a, =, v) is:
m(a,=,v) = {x €U |L(z)= v}

The granule m(a,=,v) is also referred to as the block defined by the attribute-value
pair (a,v) [5]. Blocks correspond to the atomic formulas and are used to construct



Table 2. An Information Table

Object|Height| Hair | Eyes |Class
o1 | short [blond| blue | +
02 short |blond|brown| -
03 tall | red | blue | +
04 tall | dark | blue -
05 tall | dark | blue | -
06 tall |blond| blue | +
or tall | dark |brown| -
og | short |blond|brown| -

rules. Low order rules can be expressed based on the equality relation =. An example
of a low order rule is:

~-

/\(Iai(x) = Uai) =

i=1 i

(Idj (.’I}) = Udj)v

where z € U, vo, € V4, va; € Vy;, a; € At, and d; € At.

For high order rules, the language is given by £({(a, =)}, U x U) with atomic for-
mulas of the form of (a, =). A pair of objects (x,y) € U xU satisfies an atomic formula
(a, =) if the value of = equals to the value of y on attribute a, that is, I,(z) = I.(y).
We write:

(#,9) = (a,=) iff Lo(x) = La(y)-
The granule corresponding to the atomic formula (a, =) is:
m(a,=) = {(z,y) e U x U | I,(z) = 1.(y)}.

High order rules can be expressed by using the equality relation =. An example of a
high order rule is:

A (@) = L,(y) = N\ U, (2) = 14,(),

i=1 j=1

where (z,y) € U x U, a; € At, d; € At.

n m

Example 1. Table 2 is an information table taken from [9]. Each object is described by
four attributes. The column labeled by “Class” denotes an expert’s classification of the
objects.

An example of a low order rule in this information table is:

LR1 : (Itair(z) = blond) A (Igyes(z) = blue) = (Iciass(z) = +).

That is, if an object has blond hair and blue eyes, then it belongs to class +. An example
of a high order rule is:

HRl : (IHeight(:C) = [Height(y)) A (IEyes(:C) = IEyeS(y)) = ([Class(x) = IClass(y))'



That is, if two objects have the same height and the same eye color, then they belong to
the same class. By using the probabilistic quantitative measures, we have:

accuracy(LR1) =1,  coverage(LR;) = 2/3.

The association between (Hair, =, blond) A (Eyes, =, blue) and (Class, =, +) reaches
the maximum value 1, and the applicability of the rule is also high. For rule HR;, we
have:

accuracy(HRy) = 7/11,  coverage(HRq) = 7/17.

In this case, (Height, =) A (Eyes, =) does not tell us too much information about the
overall objects classification in terms of both accuracy and coverage.

4.2 Dominance-based Rough Set Analysis

The dominance-based rough set analysis proposed by Greco, Matarazzo and Slowin-
ski [2-4] is based on preference relations on attribute values. It is used for the extraction
of rules for ranking and attribute dependency analysis. Several different types of rules
are introduced in dominance-based rough set analysis. In what follows, we interpret two
types of such rules by using the language £, as demonstrated in [11, 15, 16].

For low order rules, the language is given by £({(a, =4,v)},U). The granule cor-
responding to the atomic formula (a, =, v) is defined as:

m(a, =q,v) = {x €U | I,(x) =4 v}.

Low order rules can be expressed by using preference relations. An example of a low
order rule is:

>3

(Ig;(x) =a; va,),

/\(Iai(x) ~a; Va;) = /

i=1 J

1

where x € U, vo, € Vi, va; € Va,, a; € At, and d; € At.
For high order rules, the language is given by L({(a,>4)},U x U). The granule
corresponding to the atomic formula (a, =) is defined as:

m(a,=a) = {(z,y) €U XU | la(z) =a La(y)}-

High order rules can also be expressed by using the preference relations. An example
of a high order rule is:

where (z,y) € U x U, a; € At, d; € At.



Table 3. An Information Table with Preference Relations

Objects|| Size |Warranty|Price| Weight |Overall
p1 ||middle| 3 years |$200| heavy 1
P2 large | 3 years |$300|very heavy
D3 small | 3 years [$300| light
Da small | 3 years [$250| very light
D5 small | 2 years |$200| very light

W N W W

Example 2. Table 3, taken from [11], is an information table with preference relations
on attribute values. It is a group of five products by five manufactures, each product is
described by four attributes. The final ranking labeled by Overall may be determined
by their market share of the products. The preference relations induce the following
orderings:

> Size! small >gj,e middle >g;,e large,

>_\7\7a1r1ra1r1ty: 3 years >"Warranty 2 years,

>~ Price’ $200 >price $250 > Pprice $300a

> Weight very light > Weight light >~ Weight heavy > Weight VEIY heavy,
> Overall* 1 > Overall 2 > Overall 3.

An example of a low order rule in this information table is:
LRy : (Isize(z) = middle) A (Iwarranty () = 3 years) = Ioyeran(x) = 2.
That is, if a product’s size is greater than or equal to middle and warranty is greater

than or equal to 3 years, then its overall ranking will be greater than or equal to 2. An
example of a high order rule is:

HRQ : (ISize(I) i ISize(y)) A (IPrice(I) i IPrice(y)) = IOverall(x) i [Overall(y)-
That is, if one product’s size is smaller than or the same as another product and the
price is not higher, then this product’s overall ranking will be greater than or equal to
the other product. By using the quantitative measures, we have:

accuracy(LR2) =2/3,  coverage(LRg) = 1.

There exists a strong association between the two concepts, and applicability of the rule
reaches the highest level. Similarly, for rule HR», we have:

accuracy(HRp) = 11/13,  coverage(HRy) = 11/18.

The concept (Size, =) A (Price, =) reflects the overall objects ranking positively in
terms of both accuracy and coverage.



5 Conclusion

A granular computing based interpretation is presented in this paper. By extracting the
high-level similarity from existing decision logic languages [7, 16], we introduce a more
general language £ for granular computing. Two basic features of the language L are
the set of atomic formulas .A and a model M consisting of individuals. For each for-
mula, the collection of all individuals satisfying the formula form a granule, called the
meaning of the formula. A rule is therefore expressed as connection between two for-
mulas and interpreted based on the corresponding granules of the two formulas.

Depending on particular applications, we can construct concrete languages by us-
ing different types of atomic formulas and the associated models. This flexibility of the
language £ is demonstrated by considering two rough set approaches, namely, the stan-
dard rough set analysis and dominance-based rough set analysis. The main differences
of the two approaches are their respective treatments of atomic formulas and models. An
information table is used to construct a concrete granular computing model. For stan-
dard rough set analysis, two types of granules are constructed based on two families of
atomic formulas. One consists of a set of objects that share the same attribute value.
The other consists of object pairs that cannot be distinguished based on the values of an
attribute. Low and high order rules are defined to describe relationships between these
two types of granules. For dominance-based rough set analysis, similar interpretations
can be obtained by using two different families of atomic formulas.

The results of the paper suggest that one may study rule mining at a more abstract
level. Algorithms and evaluation measures can indeed be designed uniformly for both
low and high order rules.
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