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Abstract Two complementary interval-valued probabilistic reasoning ap-
proaches, the incidence calculus proposed by Bundy and the cautious proba-
bilistic reasoning method suggested by Quinlan, are analyzed and compared
in this study. The correspondences are drawn between the sets of inference
axioms employed by each model. In incidence calculus, the set of inference
axioms produces the tightest probability bounds. In contrast, Quinlan’s ax-
ioms do not necessarily generate the tightest probability bounds. Based on
the results of such an comparison, Quinlan’s axioms may be refined to produce
tighter probability bounds.

1 Introduction

The well established probability theory has been a dominant tool for uncertainty
management. There are two fundamental issues involved, the representation of un-
certainty using probability functions and inference with such information. Tradition-
ally, a single probability function is used in which the uncertainty of a proposition is
expressed by a single number. There are a number of practical problems associated
with such an approach [12]. For example, it may be unrealistic to expect an expert



to provide precise and reliable probability values. The maintenance of consistency
using a single probability function may also be difficult. To resolve these problems,
various proposals have been suggested based on the notion of interval-valued prob-
ability [1, 5, 7, 11]. These proposals have resulted in many non-standard tools for
uncertainty management, such as the incidence calculus [2, 3|, the certainty factor
model of MYCIN [14], Quinlan’s method of cautious probabilistic reasoning [12], the
probabilistic logic proposed by Nilsson [10], and the theory of belief and plausibility
functions [8, 13, 15].

In interval-valued approaches, the probability of a proposition is not represented
by a single number but by an interval. Instead of providing the exact probability value,
one provides a range within which lies the true probability value of the proposition.
Uncertainty of a proposition is characterized by a family of probability functions
bounded by such probability intervals. Inference using interval-valued probability
may be carried out in different ways. For example, one may convert probability
intervals into a single probability function by using the maximum entropy principle [6].
Alternatively, one may consider probability intervals as constraints on the set of
probability functions representing the uncertainty of the propositions. A probabilistic
inference process is formulated as a constraint propagation [11]. An advantage of the
latter approach is that no ad hoc assumption is introduced.

In this paper, we present a critical and comparative study of two complementary
interval-valued probabilistic reasoning approaches. One is a non-numeric approach
called incidence calculus proposed by Bundy [2, 3], and the other is a numeric ap-
proach introduced by Quinlan [12]. Our analysis focuses on the inference axioms
employed by these two models. We will examine the similarities between these mod-
els and the limitations of each model. The results of such a comparative study clearly
indicate that on the one hand, these models are closely related to each other, al-
though each uses entirely different notations; on the other hand, each model captures



different aspects of interval-valued probabilistic reasoning. Probabilistic reasoning us-
ing incidence calculus corresponds to uncertain reasoning with belief and plausibility
functions which may be interpreted as a special type of interval-valued probabil-
ities [4, 16]. In this case, one can derive the tightest probability bounds using the
inference axioms of incidence calculus. In contrast, Quinlan’s methods can be applied
to perform more general type of interval-valued probabilistic reasoning. However, the
inference axioms used by Quinlan do not necessarily produce the tightest probability
bounds. By refining these axioms, it is possible to infer tighter probability bounds.

2 Non-numeric probabilistic reasoning

Let ® be a finite and non-empty set of propositions of interest. A propositional
language formed from ® is denoted by L(®). It is the smallest set containing the
truth values (true and false), and being closed under negation (—), conjunction (A),
disjunction (V), and implication (—). Let W be a non-empty set of possible worlds.
It represents the states or situations of the system being modeled. Each possible
world can be considered as a partial interpretation of some logical formulas in the
propositional language L(®). With respect to a possible world w € W, a proposition
¢ € L(P) is either true or false.

In incidence calculus, instead of using a numeric value, a subset i(¢) C W is
assigned to a given proposition ¢ € L(®) to indicate that ¢ is true for all w € i(¢),
and ¢ is false for all w & i(¢). The set i(¢) is referred to as the incidence set of ¢.
Bundy [2] suggested that an incidence mapping i : L(®) — 2" should satisfy the
following axioms:

(IC1) (=) =W —i(9),
(IC2) (¢ A1) = i(g) Ni(y).



These axioms directly follow from the semantics of propositional logic. Axiom (IC1)
says that for any situation w € W, if ¢ is true, then —¢ is false. Axiom (IC2)
states that for any situation w € W, if both ¢ and v are true, then ¢ A ¢ is true. A
mapping i : L(®) — 2" satisfying axioms (IC1) and (IC2) is also called an incidence
structure [16]. An incidence structure has the following additional properties:

(IC3) i(true) =W,
(IC4) i(false) =0,
(IC5) (¢ V) =i(g) Uiy).

In fact, an incidence structure can be equivalently defined by another set of axioms
consisting of (IC1) and (IC5). It should be noted that axioms (IC1), (IC2) and (IC5)
suggest that, with an incidence structure, logic connectives =, A and V are interpreted
in terms of set-theoretic operations on the possible worlds. Moreover, an incidence
structure is truth-functional.

In practice, it may be difficult to specify precisely the incidence set of a proposition.
One may be able to provide only lower and upper bounds of the incidence sets of
certain propositions. In the absence of any information about a proposition, one may
use the trivial lower bound @) and the trivial upper bound W. The assignment of
incidence bounds can be formally described by two mappings i, : L(®) — 2" and
i* . L(®) — 2. They specify an interval set [i,(¢),i*(¢)] within which lies the true
incidence set of the proposition [17]. A set of lower and upper bounds is said to be
consistent if there exists an incidence structure ¢ such that for all ¢ € L(®),

ix(¢) S i(@) S i°(). (1)

On the other hand, if an incidence structure ¢ satisfies equation (1), we say that ¢ is
bounded by the pair (i,,7*) [16]. A consistent set of lower and upper bounds (i, ")



can be interpreted as constraints on incidence structures. In fact, they define the
following maximal family of incidence structures:

= {i |i.(6) C i) Ci*(9) for every ¢ € L(D)}. (2)

For the set Z, a pair of bounds g, : L(®) — 2V and i¢* : L(®) — 2" is called the
tightest bounds if every incidence structure ¢ € Z is bounded by (i, ") and there
does not exist another pair of bounds inside (ig,,io*) having this property. If a pair
of lower and upper bounds is consistent, the tightest bounds are unique.

In many situations, incidence bounds of some propositions are not known and are
represented by the trivial bounds [(), W]. The initial pair (i,,7*) may not necessarily
be the tightest bounds. Even worse, the initial pair may be inconsistent. The main
tasks of reasoning with incidence calculus are to infer information about propositions
whose incidence bounds are not given, to sharpen the initial bounds, and to resolve
inconsistency.

Given the set of incidence structures Z derived from the initial bounds ¢, and *,
the tightest bounds are given by:

io«(9) = ﬂzi(cb),
io"(¢) = UIZ’(@- (3)

However, they do not directly offer an efficient algorithm for the construction of the
tightest bounds. Bundy [2, 3] introduced a set of inference axioms for resolving this
problem. The following list is a modified version of these axioms:

1) (@) «—i(@) U (W =" (=9));
(12) (@) " (¢) N (W — iu(=9));



For simplicity, we only consider the primitive connectives — (negation) and A (con-
junction). A proposition expressed by the non-primitive connectives such as V (dis-
junction), — (implication), < (equivalence), and the logical constants, true and false,
can be reexpressed by a normal form containing only = and A. The symbol «— is an
assignment operator which assigns a new value to a lower or an upper bound based
on its old value. It is interesting to note that inference rules (I1)-(I6) may also be
obtained from the set-theoretic operations of the interval-set model [17]. Obviously,
rules (I1)-(I6) will increase lower bounds and decrease upper bounds. These Infer-
ence rules are applied repeatedly until the values of 7, and ¢* are unchanged. Wong,
Wang and Yao [16] have shown that these axioms indeed produce the tightest bounds.
Moreover, the tightest bounds satisfy the following important properties:

(pAD) = ix(d) Nin(¥),
FOVE) = (6)Ui(w), (1)
That is, the tightest bounds form an interval structure [16].
Probabilistic reasoning with incidence calculus is carried out using a probability

function on W. Let Py denote a probability function defined on W. The probability
of a proposition ¢ is defined using its incidence set by:

P(¢) = Pw(i(¢)). ()

If only lower and upper bounds of the incidence sets are given and refined used
using inference rules (I1)-(I6), the corresponding lower and upper probabilities of a



proposition are defined by:

P(é) = Pwl(i
P (¢) = Pw(i*(¢)). (6)

Using properties given in equation (4), Wong, Wang and Yao [16] have shown that
the lower and upper probabilities define a pair of belief and plausibility functions [13].
Thus, the interval-valued probabilistic reasoning using incidence calculus is similar
to evidential reasoning using belief functions [4, 16]. However, it is also important to
point out that the interval-valued probabilistic interpretation of belief and plausibility
functions is only one of the several views, and such an interpretation may not be
accepted by some authors [13, 15].

3 Numeric probabilistic reasoning

Interval-based probabilistic reasoning methods have also been proposed based on a
direct assignment of probability bounds and the manipulation of such bounds [1, 11].
In the light of the incidence calculus, this section examines a modified and simpler
version of the approach proposed by Quinlan [12]. Our analysis suggests that the
inference axioms can be refined to produce tighter probability bounds.

Suppose a pair of lower and upper probabilities P*(¢) and P,(¢) is associated
with a proposition ¢ to indicate the bounds of its true probability, i.e., P(¢) €
[P.(¢), P*(¢)]. We refer to [Pi(¢), P*(¢)] as interval-valued probability of ¢ and
P(¢) as point-valued probability of ¢. If one is totally ignorant of the probability of
a proposition, the trivial bounds [0, 1] can be used. The lower and upper bounds can
be described by two mappings P, : L(®) — [0,1] and P* : L(®) — [0,1]. A pair
of probability bounds (P,, P*) is said to be consistent if there exists a probability



function P such that for all ¢ € L(®),

P.(¢) < P(¢) < P(9). (7)

A consistent pair of lower and upper bounds (P, P*) can be interpreted as constraints
on probability functions. They characterize the maximal family of probability func-
tions:

P = {P| P.(¢) < P(6) < P*(9) for cvery ¢ € L(®)}. (®)
This set can be equivalently defined by the pair of tightest bounds:

Py (¢) = inf P(9),

PEP
Fy*(¢) = sup P(¢). (9)
PeP
The main task of probabilistic inference is to propagate, under the constraint set P,
the probability bounds of certain propositions to other propositions whose probabili-
ties are not available.
Quinlan analyzed several types of relationships between propositions and proposed
the corresponding inference axioms [12]. A subset of inference axioms related to the
primitive connectives = and A is summarized below:

) Pu¢) — max{P.(¢),1 - P*(=¢)};
) PH¢) e min{P"(¢),1 - Pi(=9)};
) PdoA) e max{P, (¢M/)), (@) + Pu(i) — 1}
P4y PY (o AY) «— min{P"(¢ AY), P*(9), P () };
)
)

I
ww

(¢) «— max{P.(9), P.(¢ A)};
(@) —— min{P"(¢), P*(p A1) + (1 = Pu(¢))}-

|



They can be easily extended to more than two propositions as in Quinlan’s original
rules. Inference rules similar to (P1)-(P6) have been used in other interval-valued
probabilistic reasoning approaches [1, 8.

The application of inference rules (P1)-(P6) will increase lower bounds and de-
crease upper bounds. However, they do not necessarily produce the tightest bounds.
This may stem from the fact that they are derived from the following inequality:

P(¢) + P(¢) —1 < P(¢ Ap) <min{P(¢), P(¢)}, (10)

which is an expression of bounds for P(¢ A 1)) based on point-valued probabilities of
¢ and 9. In the case where interval-valued probabilities of ¢ and v are given, these
rules can be refined to produce tighter bounds. For any two propositions ¢ and 1,
the following equality holds:

P(pAp) = P(¢) + P(¢) = P(¢ V1) (11)

If the interval-valued probabilities are given instead of point-valued probabilities, one
can express the right hand side of equation (11) in an interval form:

[Pi(9), P™(9)] + [Pu(), P* ()] = [Pu(@ V 9), P (¢ V ). (12)

The symbols + and — in the above equation are interpreted as interval arithmetic
operations introduced by Moore [9]:

[ahaz] + [51, 52] = [a1 + by, a0 + bz],
[a17a2] - [bla bz] = [al — by, as — bl], (13)

where [ay,as] and [by, bs] are two interval numbers. Therefore, the value of equa-
tion (12) can be simplified into:

[Pi(¢) + Pu(¢) = P*(¢V ), P*(¢) + P*(¢) — P9V 9)], (14)



which gives the bounds of the probability P(¢ A ). Incorporating this information
into the inference rules (P3) and (P4), we obtain the following refined rules:

(P3)  PuloA) «— max{P(o A1), (@) + Pu(h) — P* (o V) };
(P4) P Atp) «— min{P*(¢ A ), P (), P (¥), P*(¢) + P*(v)) — P(6 V 1))}

In general, P*(¢ V 1) < 1, hence:

Pu(¢) + P(¢) =1 < Pu(¢) + Pu(¢) — PH(o V ¢). (15)

This implies that inference rule (P3’) may produce a larger lower bound compared
with the original rule (P3). By definition, rule (P4’) may produce a smaller upper
bound. Using the same technique, we obtain the refined rules corresponding to (P5)

and (P6):

(P5)  Pu(¢) «— max{P.(¢), P(d A1), P(d Ab) + Pl V) — PH() };
(P6")  P*(¢) «— min{P"(¢), P*(¢ Ab) + P*(¢ vV ¢) — P.(¢)}.

Clearly, (P5’) may produce a larger lower bound compared with rule (P5). From
P*(¢ v ) <1 for any ¢,1 € L(P), one can conclude that:

P oNnp)+1—=P(v) = P(oA)+ P (¢ Vi) — B(¥). (16)

This implies that (P6’) may produce a smaller upper bound than rule (P6). In
summary, the refined rules (P3')-(P6’) may produce tighter probability bounds. These
rules can also be extended to more than two propositions. However, it will be much
difficult to compute. In other words, the gain in accuracy is obtained from a higher
computational cost.



4 Comparison of the two reasoning methods

The incidence calculus of Bundy and cautious probabilistic reasoning method of Quin-
lan represent two complementary approaches of interval-valued probabilistic reason-
ing. One is a non-numeric method using the notion of incidence sets to assign proba-
bility bounds indirectly, while the other is a numeric approach dealing with the direct
assignment of probability bounds. Each model captures certain important aspects of
probabilistic reasoning. The discussion of the last two sections clearly shows that the
inference paradigms by Bundy and Quinlan are significantly similar.

Both approaches are based on the same assumption that one may not use a single
value to represent the uncertainty about a proposition, but can use an interval to
specify certain range. In incidence calculus, incidence bounds are interpreted as con-
straints defining a family of incidence structures. In a similar way, probability bounds
are regarded to as constraints characterizing a family of probability functions in Quin-
lan’s model. It is assumed that incidence or probability bounds are provided only for
a subset of propositions in L(®). It is also assumed that experts underestimate lower
bounds and overestimate upper bounds. Consequently, two sets of inference rules
(I1)-(I6) and (P1)-(P6) are used to refine the initial expert assignments, and to infer
information about other propositions. More specifically, the inference rules increase
lower bounds and decrease upper bounds. The inferred new bounds are consistent
with the initial bounds. The process of such inference can be interpreted as the prop-
agation of uncertainty under the constraints given by the initial bounds. That is,
the inference patterns in both models conform to a more general paradigm known as
constraint propagation [11].

Wong, Wang and Yao [16] have shown the correspondences between incidence
structures and probability functions, and between interval structures (i.e., the tight-
est incidence bounds) and belief and plausibility functions. By applying a similar



argument, one can show that there is a close relationship between inference rules
(I1)-(I6) and (P1)-(P6). Let Py be a probability function on W. It may be applied
to inference rule (I1)-(I6) in the same way as defined by equation (6). For example,
if Py is appled to the right hand side of rule (I3), from the properties of probability
function, we have:

Py (i (9 A ) U (ix(9) N ()
< max{Pw(ix(¢ A ), Pw(ix(¢) Ni(¥))}
= max{Pw(i(¢ A V), P (ix(9)) + P (i (¢)) — P (0:(¢) Uis(9)) }
< max{ Py (i.(¢ A ), Pw(ix(¢)) + Pw(ix(¢))) — 1};

= max{P.(¢ A ), Pu(¢) + Pu(¢p) — 1} (17)

This is exactly the right hand side of inference rule (P3). Thus, rule (I3) may be con-
sidered as the non-numeric counterpart of rule (P3). However, it should be empha-
sized that such a correspondence is established based on a very restrictive assumption
Py (i.(¢) Ui.(¢p)) = 1. This is not surprising as similar kind of assumption is indeed
used in the derivation of inference rules (P1)-(P6). The same argument can be used
to show the correspondences between other inference rules. One may therefore say
that the inference rules adopted by both approaches are consistent and compatible
with each other.

There are differences between two approaches. An incidence structure is truth-
functional with respect to logical connectives =, A and V, i.e., the incidence set of
a composite expression can be evaluated solely from the incidence sets of its compo-
nents. The use of truth-functional inference rules (I1)-(I6) seems to be appropriate.
In fact, because of the truth-functionality of incidence structure, inference rules (I1)-
(I6) are not only correct and but also deduce the tightest bounds. On the other hand,
a probability function is not truth-functional. The adoption of truth-functional infer-
ence rules (P1)-(P6) for probability bounds may not be suitable. It is not surprising



that they do not infer the tightest bounds. Nevertheless, inference rules (P1)-(P6) are
useful by virtue of its low computational cost. The refined inference rules (P3')-(P6’),
which may produce tighter bounds, are not truth-functional. They seem more appro-
priate for interval-valued probabilistic reasoning. The main problem with inference
rules (P3')-(P6’) is their computational complexity. The inference rules can easily
become complicated with more than two propositions. It is also not clear if they will
produce the tightest bounds.

Given a set of possible worlds W and a probability function Py, on W, an incidence
structure ¢ determines a unique probability function P on L(®). Conversely, given a
probability function, it may be converted into different incidence structures [2]. That
is, incidence sets of propositions incorporate more dependence information about
the individual propositions than probabilities. Probabilistic reasoning with incidence
calculus is therefore not equivalent to direct probabilistic reasoning. In fact, as men-
tioned in Section 2, interval-valued probabilistic reasoning using incidence calculus
leads to evidential reasoning with belief and plausibility functions. In contrast, di-
rect assignment of probability is less restrictive, which only leads to lower and upper
probabilities. This makes the task of finding the tightest bounds much more difficult.

5 Conclusion

In this paper, we have analyzed and compared two complementary interval-valued
probabilistic reasoning approaches, the incidence calculus proposed by Bundy and
the cautious probabilistic reasoning method introduced by Quinlan. Our analysis
has shown that each of these approaches captures different aspects of interval-valued
probabilistic reasoning. The formulation of incidence calculus is limited to a spe-
cial class of interval-valued probabilities known as belief and plausibility functions.
Quinlan’s method, although computational efficient, fails to obtain the tightest prob-



ability bounds based on the available information. Using interval arithmetic, we have
refined these inference rules. The new set of rules is theoretical more appropriate for
reasoning about interval-valued probabilities, and can in fact produce tighter bounds.
However, it may be difficult to use in practice because of its computational complexity.

In the studies of Bundy and Quinlan, the notions of conditional information and
inconsistency have been considered. It may be useful to extend the present study
along this line and to establish a unified framework for the study of interval-valued
probabilistic reasoning.
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