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Abstract

The notion of interval sets is introduced as a new

kind of sets, represented by a pair of sets, namely, the

lower and upper bounds. The interval-set algebra may

be regarded as a counterpart of the interval-number

algebra. It provides a useful tool to represent qualita-

tive information. Operations on interval sets are also

defined, based on the corresponding set-theoretic oper-

ations on their members. In addition, basic properties

of interval-set algebra are examined, and the relation-

ships between interval sets, rough sets and fuzzy sets

are analyzed.

1 Introduction

The contemporary concern about knowledge rep-
resentation and reasoning with uncertain information
has generated many extensions of classical mathemat-
ical tools. One class of these extensions is the use of
lower and upper bounds of the true value, and the
development of the corresponding mechanism for pro-
cessing such interval representations [7]. For example,
in the Dempster-Shafer theory [9], both a lower and
an upper bound are maintained regarding the uncer-
tainty of a proposition. The lower bound is charac-
terized by a belief function which represents the belief
one actually commits to the proposition. The upper
bound is defined by a plausibility function which rep-
resents the maximum belief one may commit to the
proposition. A pair of belief and plausibility functions
may be interpreted as bounds of a family of proba-
bility functions. Given this interpretation, belief and
plausibility functions may be considered as extensions
of probability functions.

Motivated by the need for error analysis in numeric
computation, Moore [5] proposed an interval-number
algebra by extending elementary arithmetic to interval
arithmetic. An interval number is defined by its lower
and upper bounds. Arithmetic operations on interval
numbers are carried out based on arithmetic opera-

tions on real numbers. The use of interval numbers
enables us to estimate the bounds for errors caused by
a computer’s incapability to represent precisely a real
number. Recently, a number of extensions to interval-
number algebra have been reported by Parsons [7], in
which a closed interval of an ordered set is used instead
of a closed interval of real numbers.

The notion of rough sets advocated by Pawlak [8]
provides another interesting research topic in interval
analysis. In this framework, a set is approximated by
a pair of lower and upper approximations. The lower
approximation consists of elements that definitely be-
long to the set, whereas the upper approximation con-
sists of elements that possibly belong to the set. In
other words, rough sets are bounds of an ordinary set.
Therefore, rough sets are used to approximate ordi-
nary sets in the same way that interval numbers are
used to approximate real numbers in interval-number
algebra. Farinas del Cerro and Prade [4] suggested
that it is useful to regard the lower and upper approx-
imations as a pair and to define operations on such
pairs. Similar ideas were also discussed in the study
of flou sets [6].

The main objective of this paper is to introduce
an interval-set algebra, the counterpart of interval-
number algebra, for representing qualitative informa-
tion. Interval-number algebra will be briefly reviewed
to establish the ground work of the study. The notion
of interval sets is defined as a natural consequence of
our inability to characterize a set precisely. The ba-
sic properties of interval sets are identified according
to their physical interpretations. Operations on in-
terval sets are defined in a manner parallel to that
used in defining operations on interval numbers. More
justifications for the proposed interval-set algebra are
provided by demonstrating its connections with rough
sets and fuzzy sets. Although the proposed interval-
set algebra is similar to the notion of flou sets [6], the
analysis of the relationships between interval-set al-
gebra, interval-number algebra, rough sets and fuzzy
sets is very important for qualitative knowledge rep-
resentation using interval sets.
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2 Interval-Number Algebra

For completeness, this section briefly reviews the
interval-number algebra proposed by Moore [1, 5].

An interval number is an ordered pair of real num-
bers, [a1, a2], with a1 ≤ a2. It is also a set of real
numbers defined by:

[a1, a2] = {x | a1 ≤ x ≤ a2}. (1)

The set of all interval numbers is denoted by I(<). De-
generate intervals of the form [a, a] are equivalent to
real numbers. Obviously, the notion of interval num-
bers provides a tool for representing a real number by
specifying its lower and upper endpoints. This repre-
sentation scheme is very useful in situations where we
are unable to obtain a precise measurement of a physi-
cal quantity (i.e., inexact experimental measurement),
or where we cannot store a real number with sufficient
precision in a computer due to space limitation (i.e.,
insufficient representation).

We can perform arithmetic with interval numbers
(i.e., sets of real numbers) through the arithmetic op-
erations on their members. Let I and J be two interval
numbers, and let ∗ denote an arithmetic operation +,
−, · or / on pairs of real numbers. Then an arithmetic
operation ∗ may be extended to pairs of interval num-
bers I, J by

I ∗ J = {x ∗ y | x ∈ I, y ∈ J}. (2)

The result I ∗ J is again a closed bounded interval
unless 0 ∈ J and the operation ∗ is division (in which
case, I ∗ J is undefined). In fact, we can derive the
following formulas for I ∗ J :

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2],

[a1, a2] − [b1, b2] = [a1 − b2, a2 − b1],

[a1, a2] · [b1, b2] = [min(a1b1, a1b2, a2b1, a2b2),

max(a1b1, a1b2, a2b1, a2b2)],

[a1, a2] / [b1, b2] = [a1, a2] · [1/b2, 1/b1] for

0 6∈ [b1, b2]. (3)

The arithmetic system defined above is called interval

arithmetic or interval-number algebra. Many proper-
ties of the arithmetic operations on pairs of real num-
bers can be carried over to the new arithmetic opera-
tions on pairs of interval numbers. For example, the
addition operation + on interval numbers is also as-
sociative and commutative. A more complete list of
such properties can be found in Moore [5], and Alefeld
and Herzberger [1].

3 Interval-Set Algebra

This section introduces the notion of interval sets in
parallel to that of interval numbers. The operations on
interval sets are defined as extensions of the ordinary
set-theoretic operations on their members.

Let U be a finite set, called the universe or the
reference set, and 2U be its power set. A subset of 2U

of the form

A = [A1, A2] = {A ∈ 2U | A1 ⊆ A ⊆ A2} (4)

is called a closed interval set, where it is assumed A1 ⊆
A2. The set of all closed interval sets is denoted by
I(2U ). Degenerate interval sets of the form [A, A] are
equivalent to ordinary sets. Thus, interval sets may
be considered as an extension of elementary sets.

Let ∩,∪ and − be the usual set intersection, union
and difference defined on 2U , respectively. We define
the following binary operations on I(2U ): for two in-
terval sets A = [A1, A2] and B = [B1, B2],

A u B = {A ∩ B | A ∈ A, B ∈ B},

A t B = {A ∪ B | A ∈ A, B ∈ B},

A \ B = {A − B | A ∈ A, B ∈ B}. (5)

These operations are referred to as interval-set inter-
section, union and difference. They are closed on
I(2U ), namely, A u B, A t B and A \ B are inter-
val sets. In fact, these interval sets can be explicitly
computed by using the following formulas:

A u B = [A1 ∩ B1, A2 ∩ B2],

A t B = [A1 ∪ B1, A2 ∪ B2],

A \ B = [A1 − B2, A2 − B1]. (6)

Similarly, the interval-set complement ¬[A1, A2] of
[A1, A2] is defined as [U, U ] \[A1, A2]. This is equiva-
lent to [U −A2, U −A1] = [Ac

2
, Ac

1
], where Ac = U −A

denote the usual set complement operation. Clearly,
we have ¬[∅, ∅] = [U, U ] and ¬[U, U ] = [∅, ∅].

With the above definition operations u,t and ¬,
I(2U ) is a completely distributive lattice [6]. Both
u and t are idempotent, commutative, associative,
absorptive and distributive. For interval-set comple-
ment, De Morgan’s laws and Double negation law
hold. Moreover, [U, U ] and [∅, ∅] are the unique iden-
tities for interval-set intersection and union. These
properties may be regarded as the counterparts of the
properties of their corresponding set-theoretic opera-
tions. Unlike elementary set theory, for an interval
set A, A u ¬A is not necessarily equal to [∅, ∅], and
At¬A is not necessarily equal to [U, U ]. In addition,
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A \ A is not necessarily equal to [∅, ∅]. Nevertheless,
∅ ∈ A u ¬A, U ∈ A t ¬A, and ∅ ∈ A \ A.

Interval sets are subsets of the power set 2U . The
symbols ∈,⊆, =,∩,∪ may be used, in their usual set-
theoretic sense, to represent relationships between ele-
ments of 2U and an interval set, and between different
interval sets. Thus, A ∈ [A1, A2] means that A is
a subset of U such that A1 ⊆ A ⊆ A2. We write
[A1, A2] ⊆ [B1, B2] if the interval set [A1, A2] as an
ordinary set is contained in [B1, B2] as an ordinary
set. In other words, by [A1, A2] ⊆ [B1, B2] we mean
that B1 ⊆ A1 ⊆ A2 ⊆ B2. Similarly, two interval
sets are equal, written A = B, if they are equal in set-
theoretic sense, that is A = B if and only if A1 = B1

and A2 = B2.
The proposed operations u, t, \, and ¬ are not

the same as the usual set-theoretic operations. The
following relationship holds between the ordinary set
and the interval-set intersections:

[A1, A2] ∩ [B1, B2] ⊆ [A1, A2] u [B1, B2]. (7)

However, there do not exist similar relationships be-
tween other set and interval-set operations. When
only degenerate interval sets are used, the interval-set
operations u, t and \ reduce to the usual set intersec-
tion, union and difference.

The inclusion of interval sets may be defined by:

[A1, A2] v [B1, B2] ⇐⇒ (A1 ⊆ B1, A2 ⊆ B2). (8)

Based on this definition, for two interval sets A and
B, A = B if and only if A v B and B v A. For
A,B, C,D ∈ I(2U ), the following properties hold for
the v relation:

(I1) A v B ⇐⇒ Au B = A,

A v B ⇐⇒ At B = B;

(I2) A v B and C v D =⇒ Au C v B uD,

A v B and C v D =⇒ At C v B tD;

(I3) Au B v A, Au B v B,

A v At B, B v A t B.

Like its counterpart in elementary set theory, the re-
lation v on I(2U ) is a reflexive and transitive relation.
On the other hand, for two interval sets A and B with
A v B, the difference A \ B is not necessarily equal to
[∅, ∅]. In this case, we only have A v B =⇒ ∅ ∈ A \ B.

In contrast to interval-number algebra, interval-set
algebra puts forward a useful mechanism for represent-
ing uncertain qualitative information. An immediate
application of interval-set algebra is qualitative rea-
soning in artificial intelligence. Bundy [2] provided
a good example of such qualitative reasoning mecha-
nisms in incidence calculus.

4 Interpretations of Interval Sets

This section compares the proposed interval-set al-
gebra with rough sets and fuzzy sets, two complemen-
tary extensions of ordinary set theory [3]. The con-
nections between these theories suggest methods for
constructing interval sets, provide plausible interpre-
tations of interval sets, and give further support to
interval-set algebra.

4.1 Rough sets

The notion of rough sets was proposed by
Pawlak [8] to describe an ordinary set by its lower
and upper approximations.

Let RE ⊆ U × U be an equivalence (indiscernibil-
ity) relation on the universe U , i.e., RE is reflexive,
symmetric and transitive. The pair Apr = (U, RE)
is called an approximation space. The equivalence
relation RE partitions the set U into disjoint sub-
sets. Such a partition of the universe is denoted by
U/RE = {E1, E2, ..., En}, where Ei is an equivalence
class of RE . If two elements a, b in U belong to the
same equivalence class E ∈ U/RE, we say that a and
b are indistinguishable.

Given a subset A ⊆ U , one can describe it using
a pair of lower and upper approximations induced by
the equivalence classes of U/RE as follows:

Apr(A) =
⋃

Ei⊆A

Ei,

Apr(A) =
⋃

Ei∩A6=∅

Ei. (9)

The lower approximation Apr(A) is the union of all
the equivalence classes which are subsets of A, and
the upper approximation Apr(A) is the union of all
the equivalence classes which have a non-empty inter-
section with A. The pair (Apr(A), Apr(A)) is called
the rough set of A, which defines the bounds of the
set A.

The following list summarizes properties of the
rough-set approximations [8]. For any subsets A, B ⊆
U :

(R0) Apr(A) ⊆ Apr(A),

(R1) Apr(A ∩ B) = Apr(A) ∩ Apr(B),

Apr(A ∩ B) ⊆ Apr(A) ∩ Apr(B),

(R2) Apr(A ∪ B) ⊇ Apr(A) ∪ Apr(B),

Apr(A ∪ B) = Apr(A) ∪ Apr(B),

(R3) Apr(A − B) = Apr(A) − Apr(B),
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Apr(A − B) ⊆ Apr(A) − Apr(B),

(R4) A ⊆ B =⇒ Apr(A) ⊆ Apr(B),

A ⊆ B =⇒ Apr(A) ⊆ Apr(B).

According to property (R0), Apr(A) ⊆ Apr(A), a

rough set (Apr(A), Apr(A)) forms an interval set

[Apr(A), Apr(A)]. Moreover, properties (R1)-(R3)
conform to the definition of operations on inter-
val sets. For instance, suppose [Apr(A), Apr(A)]

and [Apr(B), Apr(B)] are the interval sets gener-
ated by the rough sets of A and B, namely, A lies
in [Apr(A), Apr(A)] and B lies in [Apr(B), Apr(B)].
Property (R1) suggests that A ∩ B lies in [Apr(A) ∩

Apr(B), Apr(A) ∩ Apr(B)], which is consistent with
the interval-set intersection. Similarly, Property (R4)
supports the definition of interval-set inclusion.

From the above discussion, it is evident that the
rough-set model provides a method for constructing
an interval set and justifies the use of interval-set op-
erations. Although the notion of interval sets is closely
related to rough sets, they are not the same concept.
It is true that the rough-set model provides one way to
construct interval sets. It is equally important to rec-
ognize that the rough-set model is not the only way to
achieve this goal. For example, Bundy [2] used inter-
val sets to represent incidences of various propositions
in incidence calculus. Thus, rough-set model might be
interpreted as a special case of interval-set algebra. In
fact, as shown in the next section, interval sets may
also be constructed using the fuzzy-set model.

4.2 Fuzzy sets

An ordinary set of objects can be defined in terms
of a characteristic (membership) function that maps
the objects to the two-point set {0, 1}. By extending
this notion, Zadeh [11] introduced the concept of fuzzy
sets, in which membership functions are defined in the
unit interval [0, 1]. That is, a fuzzy set Ã is defined by
a membership function µÃ : U −→ [0, 1].

Many definitions of fuzzy-set intersection and
union have been proposed. The following discussion
adopts the classical definition proposed by Zadeh [11],
namely, for all a ∈ U ,

µÃ⊗B̃(a) = min(µÃ(a), µB̃(a)),

µÃ⊕B̃(a) = max(µÃ(a), µB̃(a)), (10)

where ⊗ and ⊕ denote the fuzzy-set intersection and
union, respectively. A fuzzy set Ã is a subset of a
fuzzy set B̃, written Ã ⊆ B̃, if µÃ(a) ≤ µB̃(a) for all
a ∈ U .

Given a fuzzy set Ã, the core and support of Ã are
defined by:

Ãc = {a ∈ U | µÃ(a) = 1},

Ãs = {a ∈ U | µÃ(a) > 0}, (11)

which provide useful qualitative information about
a fuzzy set. According to this definition, we have
Ãc, Ãs ∈ 2U and Ãc ⊆ Ãs. Thus, [Ãc, Ãs] is an in-
terval set. The cores and supports of fuzzy sets Ã⊗ B̃
and Ã ⊕ B̃ may be constructed as follows:

(Ã ⊗ B̃)c = Ãc ∩ B̃c, (Ã ⊗ B̃)s = Ãs ∩ B̃s,

(Ã ⊕ B̃)c = Ãc ∪ B̃c, (Ã ⊕ B̃)s = Ãs ∪ B̃s.(12)

These definitions are consistent with the interval-set
operations in the interval-set algebra.

In comparing rough sets and fuzzy sets, Dubois and
Prade [3] drew the correspondences between the lower
approximation of a rough set and the core of a fuzzy
set, and between the upper approximation of a rough
set and the support of a fuzzy set. Yao and Wong [10]
extended the concepts of core and support, using the
notion of α-cut. Given a real number α ∈ (0, 1], the
strong α-cut or α-level set of a fuzzy set Ã is defined
by

Ãα = {a ∈ U | µÃ(a) ≥ α}, (13)

which is a subset of U . Similarly, given a real number
α ∈ [0, 1), the α-cut of a fuzzy set Ã is defined by

Ãα = {a ∈ U | µÃ(a) > α}, (14)

which is also a subset of U . These notations give Ãc =
Ã

1
and Ãs = Ã0. For two real numbers α, β ∈ [0, 1]

with α ≥ β, we may form an interval set [Ãα, Ãβ ] as an
approximation of a fuzzy set. Such an approximation
of a fuzzy set can be regarded as generalized core and
support. For clarity, we only consider interval sets
generated by α-level sets. Interval sets generated by
α-cuts or a mixture of α-cuts and α-level sets may be
studied in the same manner.

For two real numbers α, β ∈ [0, 1] with α ≥ β,
the generalized core and support satisfy the following
properties:

(F0) Ãα ⊆ Ã
β
,

(F1) (Ã ⊗ B̃)α = Ãα ∩ B̃α,

(F2) (Ã ⊕ B̃)α = Ãα ∪ B̃α,

(F3) Ã ⊆ B̃ =⇒ Ãα ⊆ B̃α.

Obviously, property (F0) suggests that [Ãα, Ã
β
] is an

interval set which approximates a fuzzy set Ã. Prop-
erties (F1) and (F2) are consistent with the definition
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of interval-set operations. If [Ãα, Ã
β
] is an approxima-

tion of Ã and [B̃α, B̃
β
] an approximation of B̃, then

the interval set defined by

[Ãα, Ã
β
] u [B̃α, B̃

β
] = [Ãα ∩ B̃α, Ã

β
∩ B̃

β
] (15)

is an approximation of fuzzy set Ã⊗ B̃. A similar ob-
servation is also true for the interval-set union opera-
tion. Thus, the approximation of fuzzy sets by interval
sets also supports the proposed interval-set algebra.

5 Conclusion

This paper proposes that an interval-set algebra is
a complement to existing interval analysis methods.
The concept of interval sets represents a new kind of
sets, represented by a pair of sets known as lower and
upper bounds. The introduction of this new notion
comes naturally from our inability to characterize a
set precisely. The basic properties of interval sets are
examined, and operations on interval sets are defined
in a manner parallel to that used in defining operations
on interval numbers. Those operations are justified by
the physical meaning of interval sets. More support to
the proposed operations is also provided by the con-
nections between interval sets, rough sets and fuzzy
sets. In addition, interval sets may be constructed in
both rough-set and fuzzy-set models.

The present study immediately suggests two re-
search topics. The basic operations on interval sets
provide necessary tools for reasoning with interval
sets. It might be useful to pursue research along
this line. The notion of interval numbers provides a
useful tool for representing quantitative information,
whereas the notion of interval sets for qualitative in-
formation. It will be interesting to examine how to
combine these two methods in uncertainty manage-
ment.
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