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This paper reviews and compares theories of fuzzy sets and rough sets.
Two approaches for the formulation of fuzzy sets are reviewed, one is
based on many-valued logic and the other is based on modal logic. Two
views of rough sets are presented, set-oriented view and operator-oriented
view. Rough sets under set-oriented view are closely related to fuzzy sets,
which leads to non-truth-functional fuzzy set operators. Both of them may
be considered as deviations of classical set algebra. In contrast, rough sets
under operator-oriented view are different from fuzzy sets, and may be
regarded as an extension of classical set algebra.
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1 INTRODUCTION

Theories of fuzzy sets and rough sets are generalizations of classical set theory
for modeling vagueness and uncertainty [19,33]. A fundamental question con-
cerning both theories is their connections and differences [20,35]. There have
been many studies on this topic. While some authors argued that one the-
ory is more general than the other [20,27], it is generally accepted that they
are related but distinct and complementary theories [2,5,7,13,26]. The two
theories model different types of uncertainty [7]. The rough set theory takes
into consideration the indiscernibility between objects. The indiscernibility is
typically characterized by an equivalence relation. Rough sets are the results
of approximating crisp sets using equivalence classes. The fuzzy set theory
deals with the ill-definition of the boundary of a class through a continuous
generalization of set characteristic functions. The indiscernibility between ob-
jects is not used in fuzzy set theory [2]. A fuzzy set may be viewed as a class
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with unsharp boundaries, whereas a rough set is a crisp set which is coarsely
described [35].

Klir [7] compared the roles played by non-classical logics, such as many-valued
logics and modal logics, for interpreting fuzzy sets and rough sets. According
to Haack [6], a non-classical logic is a deviation of classical two-valued logic,
i.e., a deviant logic, if the two logics have the same logical vocabulary but dif-
ferent axioms or rules. Many-valued logics may be viewed as deviant logics. A
non-classical logic is an extension, i.e., an extended logic, if it adds new vocab-
ulary along with new axioms or rules for the new vocabulary [6]. Modal logics
may be viewed as extended logics. Classical set-theoretic operators reflect the
corresponding logic connectives in classical two-valued logic [7]. Similar cor-
respondence may also be established between non-classical set-theoretic op-
erators and non-classical logic connectives [7]. Non-classical set theories may
therefore be similarly viewed as deviations and extensions of classical set the-
ory. From such a point of view, this paper presents a comparative study of
theories of fuzzy sets and rough sets.

As pointed out recently by Zadeh [34], fuzzy logic has many facets: the logical
facet, the set-theoretic facet, the relational facet, and the epistemic facet.
Each of these facets may be further divided. In the same way, there are many
different formulations and interpretations of the theory of rough sets [29]. It
is very important to realize that our comparisons of two theories are based on
very specific interpretations of each theory. Furthermore, many issues involved
in both theories are not taken into consideration. Although conclusions drawn
from such comparisons should be read cautiously, the examination may provide
more insights into both theories.

2 OVERVIEW OF FUZZY SETS AND ROUGH SETS

There are many formulations and interpretations of theories of fuzzy sets and
rough sets [9,21]. This section reviews some of the commonly used systems
that are closely related to classical set algebra.

2.1 FUZZY SETS

The notion of fuzzy sets provides a convenient tool for representing vague
concepts by allowing partial memberships. Among many formulations of fuzzy
sets, we choose two systems that are related to many-valued logic and modal
logic [7]. In both systems, a fuzzy set can be interpreted by a family of crisp
sets, and fuzzy set operators can be defined using standard set operators.
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Let U be a finite and non-empty set called universe. A fuzzy set A of U is
defined by a membership function:

µA : U −→ [0, 1]. (1)

The membership values may be interpreted in terms of truth values of certain
propositions, and fuzzy set operators in terms of logic connectives in many-
valued logic. This provides a formulation of fuzzy set theory based on many-
valued logic [7]. In the study of many-valued logic, there are many definitions
for logic connectives [24]. Similarly, there are many definitions for fuzzy set
complement, intersection, and union. With the min-max system proposed by
Zadeh [33], fuzzy set operators are defined component-wise as:

µ¬A(x) = 1 − µA(x),

µA∩B(x) = min[µA(x), µB(x)],

µA∪B(x) = max[µA(x), µB(x)]. (2)

Let F(U) denote the set of all fuzzy sets, i.e., the set of all functions from U
to [0, 1]. The min-max fuzzy set algebra is a system (F(U), 1 − ·, min, max),
where 1 − ·, min, and max are defined component-wise by equation (2). It
can be algebraically characterized by a completely distributive lattice [17].
In general, fuzzy set intersection and union may be defined in terms of t-
norms and t-conorms [9]. By choosing different pairs of t-norms and t-conorms,
one can derive distinct fuzzy set systems. The mathematical structures of
the corresponding fuzzy set algebras are not entirely clear. In many fuzzy
set systems, membership functions of complement, intersection, and union
of fuzzy sets are defined based solely on membership functions of the fuzzy
sets involved. In fact, studies on fuzzy sets have been focused mainly on such
truth-functional fuzzy set operators.

A crisp set can be regarded as a degenerated fuzzy set in which the membership
function is restricted to the extreme points {0, 1} of [0, 1]. In this case, the
membership function is also referred to as a characteristic function. A fuzzy
set can be related to a family of crisp sets through the notions of α-level sets.
Given a number α ∈ [0, 1], an α-cut, or α-level set, of a fuzzy set is defined
by:

Aα = {x ∈ U | µA(x) ≥ α}, (3)

which is a subset of U . A strong α-cut is defined by:

Aα+ = {x ∈ U | µA(x) > α}. (4)
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Using either α-cuts or strong α-cuts, a fuzzy set determines a family of nested
subsets of U . Conversely, a fuzzy set A can be reconstructed from its α-level
sets as follows:

µA(x) = sup{α | x ∈ Aα}. (5)

This observation is commonly summarized by a representation theorem of
fuzzy sets, which states that there is an one-to-one relationship between a
fuzzy set and a family of crisp sets satisfying certain conditions [9,13,17,18].
Therefore, one can use either definition of fuzzy sets. Each of the two methods,
i.e., functional approach using membership functions and set-based approach
using families of α-level sets, has its advantages in the study of fuzzy sets. One
of the main advantages of the set based representation is that it explicitly
establishes a connection between fuzzy sets and crisp sets. Such a linkage
shows the inherent structure of a fuzzy set.

An implication of the min-max system is that fuzzy set operators can be
defined by set operators on α-level sets. They can be expressed by:

(¬A)α =¬A(1−α)+ ,

(A ∩ B)α =Aα ∩ Bα,

(A ∪ B)α =Aα ∪ Bα. (6)

The α-level sets of fuzzy sets for intersection and union are obtained from the
same α-level sets of the fuzzy sets involved. When an arbitrary pair of t-norm
and t-conorm is used, it may be difficult to define such operators using set
operators on α-level sets of fuzzy sets.

Klir [7] proposed another formulation of fuzzy sets based on modal logic. A
slightly different development is presented below by clearly identifying the un-
derlying system being adopted. In this model, a vague concept is characterized
by some, possibly different, crisp sets. Let W = {w1, . . . , wn} denote a set of n
possible worlds or states. With respect to W , a vague concept is represented
by n crisp sets:

A = (Aw1
, . . . , Awn

). (7)

In each world wi, the vague concept is described precisely by a crisp set Awi
.

The vagueness is captured by distinct representations of the same concept in
different worlds. A similar approach was also used by Kruse, Schwecke, and
Heinsohn [11], in which each possible world is referred to as a context in a
framework consisting of layered contexts. The set all families of n crisp sets is
given by the n-fold Cartesian product of 2U , namely,

∏

n 2U = 2U × . . .×2U (n
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repetitions). We can define set-theoretic operators on
∏

n 2U component-wise
as follows: for A = (Aw1

, . . . , Awn
) and B = (Bw1

, . . . , Bwn
),

¬A = (¬Aw1
, . . . ,¬Awn

),

A ∩ B = (Aw1
∩ Bw1

, . . . , Awn
∩ Bwn

),

A ∪ B = (Aw1
∪ Bw1

, . . . , Awn
∪ Bwn

). (8)

The system (
∏

n 2U ,¬,∩,∪) may be interpreted as the n-fold product of clas-
sical set algebra (2U ,¬,∩,∪). It corresponds to the n-fold product of classical
two-valued logic discussed by Rescher [24]. From this system, one can develop
a constructive method for defining a fuzzy set using a family of crisp sets and
a weighting function.

Suppose Ω : W −→ [0, 1] is a weighting function satisfying the condition:

n
∑

i=1

Ω(wi) =
n

∑

i=1

ωi = 1, (9)

where the simplified notation ωi = Ω(wi) is used. For an element of
∏

n 2U

representing a vague concept, a fuzzy set can be defined by:

µA(x) =
n

∑

i=1

ωiµAwi
(x), (10)

where µAwi
is the characteristic function of Awi

. If each crisp set Awi
rep-

resents one view of the vague concept, a fuzzy set may be interpreted as a
weighted combined view. Fuzzy sets corresponding to complement, intersec-
tion, and union can be constructed from ¬A, A∩B, and A∪B by combining
equations (8) and (10). They may be regarded to be the results of fuzzy
set complement, intersection, and union. An important feature of the con-
structive formulation of fuzzy sets is that operators ∩ and ∪ are no longer
truth-functional. They obey the following properties:

(f1) µ¬A(x) = 1 − µA(x),

(f2) µA∪B(x) = µA(x) + µB(x) − µA∩B(x),

(f3) max(0, µA(x) + µB(x) − 1) ≤ µA∩B(x) ≤ min(µA(x), µB(x)),

(f4) max(µA(x), µB(x)) ≤ µA∪B(x) ≤ min(1, µA(x) + µB(x)).

Property (f2) links together fuzzy set intersection and union. Properties (f3)
and (f4) provide the ranges of membership values of intersection and union,
based on membership values of the two component fuzzy sets.
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For a given fuzzy set A in F(U), there exists at least a set of possible worlds,
a weighting function, and a family of crisp sets, from which the fuzzy set can
be obtained. Consider a set of possible worlds with |U | elements, where | · |
denotes the cardinality of a set. With each possible world wi, one associates
a unique singleton subset {xi} of U . Let the weight function be defined by
ωi = µA(xi), where µA(xi) is the membership value of xi. It can be easily seen
that they produce the fuzzy set A. For a fixed set of possible worlds and a
weighting function, one can define at most 2n|U | distinct fuzzy sets. Each of
them corresponds to a distinct family of n crisp sets. For an arbitrary fuzzy
set in F(U), if the set of possible worlds and the weighting function are fixed,
it may not be possible to find a family of n crisp sets that produces the given
fuzzy set. Furthermore, each family of n crisp sets corresponds to a fuzzy set
in F(U), but the converse is not necessarily true. It may happen that a fuzzy
set of F(U) is produced by two different elements of

∏

n 2U .

2.2 ROUGH SETS

The theory of rough sets is motivated by practical needs to interpret, char-
acterize, represent, and process indiscernibility of individuals. For example, if
a group of patients are described by using several symptoms, many patients
would share the same symptoms, and hence are indistinguishable. This forces
us to think a subset of the patients as one unit, instead of many individuals.
Rough set theory provides a systematic method for representing and process-
ing vague concepts caused by indiscernibility in situations with incomplete
information or a lack of knowledge. At least two views can be used to inter-
pret this theory, operator-oriented view and set-oriented view [29].

Formally, indiscernibility may be described by an equivalence relation < ⊆
U ×U on a finite and non-empty universe U , namely, < is reflexive, symmetric
and transitive. The relation < partitions U into a family of disjoint subsets
U/< called a quotient set of U . For two elements x, y ∈ U , if x<y we say
that x and y are indistinguishable. Elements of U/< are called elementary or
atomic sets. The empty set and the union of one or more elementary sets are
called composed or definable sets.

The underlying system for constructing rough sets is the set algebra (2U ,¬,
∩,∪). An element A of 2U represents a non-vague concept. When such a non-
vague concept is viewed with respect to elements of the quotient set U/<,
i.e., the equivalence classes of <, it becomes vague and uncertain. Consider
two elements x, y ∈ U and a subset A ⊆ U with x<y, x ∈ A, and y 6∈
A. The information given by the equivalence relation suggests that they are
indistinguishable. On the other hand, only one of them belongs to A. From
the point view of A, x and y are distinguishable. This inconsistency causes
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the non-vague concept to be vague and uncertain. For a subset A ⊆ U , one
may describe it by a pair of lower and upper approximations:

apr(A) = {x ∈ U | [x]< ⊆ A},

=
⋃

{[x]< ∈ U/< | [x]< ⊆ A},

apr(A) = {x ∈ U | [x]< ∩ A 6= ∅},

=
⋃

{[x]< ∈ U/< | [x]< ∩ A 6= ∅}, (11)

where

[x]< = {y | x<y}, (12)

is the equivalence class containing x. The lower approximation apr(A) is the
union of elementary sets which are subsets of A, and the upper approximation
apr(A) is the union of elementary sets which have a non-empty intersection
with A. That is, apr(A) is the greatest definable set contained by A, while
apr(A) is the least definable set containing A.

The lower and upper approximations can be understood as a pair of addi-
tional unary set-theoretic operators apr, apr : 2U −→ 2U , called approxima-
tion operators. They play a similar role as that of set complement [15,30].
By combining them with other set-theoretic operators, we have a system
(2U ,¬,∩,∪, apr, apr), where (2U ,¬,∩,∪) is the classical set algebra. Oper-
ators apr and apr obey the following properties: for any subsets A, B ⊆ U ,

(R0) apr(A) = ¬apr(¬A),

apr(A) = ¬apr(¬A),

(R1) apr(A) ⊆ A ⊆ apr(A),

(R2) apr(∅) = apr(∅) = ∅,

(R3) apr(U) = apr(U) = U,

(R4) apr(A ∩ B) = apr(A) ∩ apr(B),

apr(A ∩ B) ⊆ apr(A) ∩ apr(B),

(R5) apr(A ∪ B) ⊇ apr(A) ∪ apr(B),

apr(A ∪ B) = apr(A) ∪ apr(B),

(R6) apr(A) = apr(apr(A)) = apr(apr(A)),

apr(A) = apr(apr(A)) = apr(apr(A)).

Property (R0) shows that apr and apr are dual operators with respect to set
complement ¬. Property (R1) says that the two operators produce a range in
which lies the given set. Properties (R2) and (R3) are the boundary conditions
that the operators must meet at the two extreme points of 2U , the minimum
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element ∅ and the maximum element U . Properties (R4) and (R5) may be
viewed as weak distributivity and distributivity of operators apr and apr over
set intersection and union. Property (R6) indicates that the result of iterative
applications of approximation operators is the same as that of the last one.

The above formulation is referred to as the operator-oriented view of rough
sets. Another interpretation, called set-oriented view, can be developed based
on the notion of rough membership functions [22,26,29]. For a subset A ⊆ U ,
we define a rough set characterized by the membership function:

µA(x) =
|A ∩ [x]<|

|[x]<|
, (13)

which represents a vague concept. One can easily see the similarity between
rough membership functions and conditional probabilities. The rough mem-
bership value µA(x) may be interpreted as the probability that an arbitrary
element of [x]< belongs to A.

There does not exist an one-to-one relationships between rough sets and sub-
sets of U . Two distinct subsets of U may define the same rough membership
function. Consequently, rough set operators cannot be defined directly using
rough membership functions. Membership functions of rough sets correspond-
ing to ¬A, A ∩ B, and A ∪ B must be computed using set operators and
equation (13). By laws of probability, intersection and union of rough sets are
not truth-functional. Nevertheless, we have:

(m0) y ∈ [x]< =⇒ µA(x) = µA(y),

(m1) µ¬A(x) = 1 − µA(x),

(m2) µA∪B(x) = µA(x) + µB(x) − µA∩B(x),

(m3) max(0, µA(x) + µB(x) − 1) ≤ µA∩B(x) ≤ min(µA(x), µB(x)),

(m4) max(µA(x), µB(x)) ≤ µA∪B(x) ≤ min(1, µA(x) + µB(x)).

Property (m0) states that elements in the same equivalence class have the same
degree of membership. Properties (m1)-(m4) are similar to properties (f1)-(f4)
of fuzzy sets formulated based on modal logic.

The theory of rough sets can be easily generalized by using an arbitrary binary
relation, instead of an equivalence relation. Let < be any binary relation on the
universe U . The relation < may be more conveniently represented by <-related
elements through a mapping <s : U −→ 2U :

<s(x) = {y ∈ U | x<y}. (14)

The set <s(x) may be viewed as a neighborhood of x defined by the binary
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relation < [14,30]. For a subset A of the universe, a pair of approximation
operators can be defined by substituting [x]< with <s(x) in equation (11) as
follows [29,30]:

apr(A) = {x | <s(x) ⊆ A},

apr(A) = {x | <s(x) ∩ A 6= ∅}. (15)

They can be equivalently defined by:

apr(A) = {x | ∀y ∈ U [y ∈ <s(x) =⇒ y ∈ A]},

apr(A) = {x | ∃y ∈ U [y ∈ <s(x), y ∈ A]}, (16)

which relates approximation operators to necessity and possibility operators
of modal logics. Approximation operators do not satisfy all properties (R0)-
(R6). By imposing additional constraints on the binary relation, one can obtain
approximation operators that satisfying each of these properties [30].

3 COMPARISONS OF FUZZY SETS AND ROUGH SETS

This section compares theories of fuzzy sets and rough sets based on the models
presented earlier. The set-oriented view of rough sets is related to fuzzy sets
and offers an deviation of classical set theory. In contrast, operator-oriented
view of rough sets is complementary to fuzzy sets and offers an extension of
classical set theory. The arguments may be extended to other models of these
theories.

3.1 FUZZY SETS, SET-ORIENTED VIEW OF ROUGH SETS: DEVIA-

TIONS OF CLASSICAL SET THEORY

A fuzzy set is defined by a membership function from a universe U to the unit
interval [0, 1]. This introduces generalized notions of sets and members of sets,
compared with classical sets. In order to accommodate these notions, mean-
ings of classical sets and set-theoretic operators have to be modified. Many
proposals have been made for defining fuzzy set operators [4,25]. Typically, no
new set-theoretic operators are introduced, although set complement may be
extended into several forms [1]. From this observation, the theory of fuzzy sets
may be viewed as being a deviation of classical set theory. Both theories share
the same vocabulary, but have different interpretations for the vocabulary.
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A fundamental difficulty with fuzzy set theory is the semantical interpreta-
tions of the degrees of membership, similar to difficulties in the semantical
interpretations of truth values in many-valued logics [24]. This in turn leads
to difficulties in the semantical interpretations of set-theoretic operators. Al-
though one can define fuzzy set operators in the min-max system using set
operators through α-level sets, it is mainly a technical result rather than a
semantical interpretation. In the context of many-valued logics, Rescher [24]
reviewed a number of solutions to these difficulties. One solution is the use
of product logic which interprets a many-valued logic based on the seman-
tics of lesser-valued systems. Another solution is the probabilistic approach to
many-valued logic. Within the framework of fuzzy sets, the model proposed
by Klir [7] corresponds to the former solution, while the set-oriented view of
rough set corresponds to the latter solution.

In developing modal logic based fuzzy sets, we start from the product sys-
tem (

∏

n 2U ,¬,∩,∪). The system can be explained by using the semantical
interpretation of classical set theory. With respect to a specific possible word,
every vague concept is represented by a crisp subset of U . The interpretations
of membership and set-theoretic operators are exactly the same as that of clas-
sical set theory. The vagueness is described by differences in representations of
the same vague concept in various possible worlds. A fuzzy set is a weighted
combination. This model captures one possible source of vagueness, and pro-
vides a semantical interpretation of fuzzy set theory based on the semantical
interpretations of classical set theory.

The set-oriented view of rough sets starts from classical set algebra (2U ,¬,∩,
∪), and associates a fuzzy set with each subset of the universe. Vagueness
in concept formation and representation comes from our inability to describe
a precisely defined concept in situations with incomplete information, where
a group of individuals cannot be distinguished. This model captures another
source of vagueness. Rough membership functions may be interpreted as a
special type of fuzzy membership functions, which can be interpreted in terms
of probabilities defined simply by cardinalities of sets [22,26]. In general, one
may use a probability function on U to define rough membership functions [32].
With this view, rough set theory may be regarded as being a deviation of
classical set theory, in the same way that fuzzy set theory is viewed. Using
terminologies of fuzzy sets, lower and upper approximations are the core and
support of fuzzy set µA:

core(µA) = {x | µA(x) = 1} = apr(A),

support(µA) = {x | µA(x) > 0} = apr(A). (17)

In fact, lower approximation is the 1-level set, while upper approximation is
the strong 0-level set.
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The formulation and interpretation of fuzzy sets and set-theoretic operators
are inseparable parts of theories of modal logic based fuzzy sets and rough sets.
In the former model, fuzzy sets and set-theoretic operators are based on repre-
sentations of vague concepts in various worlds. In the latter model, rough sets
and set-theoretic operators must be computed based on the sets involved and
their interaction with equivalence classes. Fuzzy set operators defined in both
models satisfy similar properties as shown by (f1)-(f4) and (m1)-(m4), in spite
of the fact that two entirely different interpretations are used. The representa-
tions of vague concepts in a set of possible worlds, or the equivalence relation
<, may be referred to as the context that provides semantical interpretations
for membership functions of, and operators on, fuzzy sets. In many studies,
the formulation and interpretation of fuzzy sets and set-theoretic operators
are not incorporated into the theory. This may be one of the main causes for
difficulties in semantical interpretations of fuzzy set theory. From the above
discussions, one may say that a plausible solution to these difficulties is to
design a theory that incorporates semantics information about the fuzzy con-
cepts being modeled. One may formulate various sub-theories of the general
theory of fuzzy sets, each of them is intended for specific situations with differ-
ent semantics of membership values and set-theoretic operators. Modal logic
based fuzzy sets and rough sets may be considered as two such sub-theories.

Modal logic based fuzzy set model and rough set model provide constructive

approaches for the development of fuzzy set theory, in which both fuzzy sets
and set-theoretic operators are constructed based on well-known concepts.
This avoids the difficulties in the semantical interpretations of the theory.
However, they can deal with only a subset of the set of all fuzzy sets F(U).
One may say that they are more restrictive than the general fuzzy set theory.
It should be taken as an advantage, rather than a limitation, of the theory.
By explicitly stating the underlying assumptions and interpretations, one may
provide guidelines regarding the correct uses of the theory. Fuzzy set systems,
such as the min-max system, are more general. Unfortunately, they do not
provide such guidelines. It might be more fruitful to examine sub-theories of
fuzzy sets, each has its own clearly stated assumptions and intended domain
of applications. In the development of fuzzy set theory, truth-functional opera-
tors have been studied and applied extensively, although non-truth-functional
systems have been studied in many-valued logics [24]. Klir [7] pointed out
that it is important to study non-truth-functional fuzzy set operators. With
regard to this, both modal logic based fuzzy sets and rough sets use non-truth-
functional operators.

There are additional features of rough set theory. In the theory of fuzzy sets,
the membership value of an element does not depend on other elements. In
contrast, with respect to an equivalence relation, the membership value of
an element depends on other elements in the theory of rough sets [2]. Prop-
erty (m0) reflects this observation. Such a property does not have a counterpart
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in the modal logic based fuzzy sets. In the study of fuzzy sets, many types
of fuzzy set membership functions have been proposed and applied [9]. They
implicitly specify the membership value of one element with respect to other
elements. For example, the membership value of a 20 years old person being
young is related to the membership values of 19 and 21 years old persons.
Semantics constraints on fuzzy membership functions should be explicitly and
formally stated and incorporated into fuzzy set theory. There may be other
interpretations of rough membership functions. In relation to a three-valued
logic and the corresponding three-valued fuzzy sets, one can define a rough
membership function:

µA(x) =



























1, [x]< ⊆ A,

1/2, [x]< ∩ A 6= ∅ and [x]< 6⊆ A,

0, [x]< ∩ A = ∅.

(18)

Set-theoretic operators can be similarly defined and interpreted. The choice
of 1/2 is arbitrary. One may in fact choose any value other than 0 and 1 as
the third value. The resulting three-valued logic is not truth-functional.

3.2 OPERATOR-ORIENTED VIEW OF ROUGH SETS: EXTENSION OF

CLASSICAL SET THEORY

Under operator-oriented view of rough sets, we start from a binary rela-
tion and construct a pair of approximation operators. The result is a system
RS = (2U ,¬,∩,∪, apr, apr), called a rough set algebra. Alternatively, we may
define a rough set algebra by specifying two operators apr, apr : 2U −→ 2U

and axioms that must be satisfied by the operators [15,29]. In a rough set
algebra (2U ,¬,∩,∪, apr, apr), ¬, ∩, and ∪ are standard set operators. Op-
erators apr and apr are two additional unary set-theoretic operators. They
are non-truth-functional operators, and cannot be defined by standard set-
theoretic operators. The theory of rough sets introduces new vocabulary to
classical set theory and additional rules for the vocabulary. Unlike fuzzy sets
and set-oriented view, operator-oriented view may be regarded as being an
extension of classical set algebra with a pair of additional operators [15,30].

Approximation operators apr and apr may be related to operators in other
mathematical structures. A Pawlak rough set algebras built from an equiv-
alence relation is related to a special topological space in which an open set
is closed and vice versa [19]. If a reflexive and transitive binary relation is
used, lower and upper approximations defined by equation (15) are exactly
interior and closure operators satisfying Kuratowski axioms for topological
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spaces [10,15,29]. There are other ways for defining approximation operators
if a non-equivalence relation is used [15,29]. However, exact mathematical
structures of the corresponding rough set algebras are not entirely clear.

Rough set theory extends set theory in the same way that modal logic extends
classical logic. Algebraically speaking, both rough set algebra and propo-
sitional modal logic can be related to Boolean algebra with added opera-
tors [3,12]. A Pawlak rough set can be algebraically characterized by a special
class of topological Boolean algebra in which an open element is closed and
vice versa [3,23]. The relationships between Boolean algebra with added op-
erators, rough set algebras, and propositional modal logics imply that every
theorem in any one of these theories has a counterpart in the other theory.
They enable us to cover all these theories by developing one of them [7].

4 COMBINATION OF FUZZY SETS AND ROUGH SETS

Two views of rough set theory provide distinct generalizations of classical set
theory, namely, deviation and extension. In the study of non-classical logic,
systems have been studied which are both deviation and extension of classical
logic [7]. In set-theoretic framework, this may be achieved by the combination
of fuzzy sets and rough sets, or the combination of two views of rough sets [28].
By using an equivalence relation on U , one can introduce lower and upper
approximations in fuzzy set theory to obtain an extended notion called rough
fuzzy sets [5,13,28]. Alternatively, a fuzzy similarity relation can be used to
replace an equivalence relation, the result is a deviation of rough set theory
called fuzzy rough sets [5,16]. A more general framework can be obtained which
involves the approximation of fuzzy sets based on fuzzy similarity relations.
The results may have several interpretations [28]. Based on our comparisons
of two theories, further results on this topic can be obtained.

Klir [7] suggested that one may use necessity and possibility modal operators
to define and interpret interval fuzzy sets. This is related to the notions of
lower and upper approximations in operator-oriented view of rough sets, but
the formulation is different. Let < be a binary relation on the set of possible
worlds W = {w1, . . . , wn}. For any world wi, the set of <-related worlds is
given by:

<s(wi) = {wj | wi<wj}. (19)

A vague concept is represented by three elements of
∏

n 2U as follows:
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A= (Aw1
, . . . , Awn

),

2A= (Aw1
, . . . , Awn

),

3A= (Aw1
, . . . , Awn

). (20)

The families 2A and 3A of n crisp subsets of U are defined from A by:

Awi
= {x ∈ U | ∀ wj ∈ W [wj ∈ <s(wi) =⇒ x ∈ Awj

]},

Awi
= {x ∈ U | ∃wj ∈ W [wj ∈ <s(wi), x ∈ Awj

]}. (21)

Similarly, 2 and 3 may be understood as being a pair of unary operators on
the product system

∏

n 2U . They are derived from a binary relation on W ,
instead of a binary relation on

∏

n 2U or a binary relation on U . From 2A
and 3A, one can define two fuzzy membership functions in a way similar to
equation (10). They define an interval fuzzy set. This model of interval fuzzy
sets is an extension of fuzzy set theory.

In Klir’s definition of interval fuzzy sets, operators 2 and 3 are not defined
using operators on 2U , which is different from the definition of operators ¬,
∩, ∪. A solution to this problem can be obtained by considering the n-fold
product system

∏

n RS = RS× . . .×RS (n repetitions) of a rough set algebra
RS = (2U ,¬,∩,∪, apr, apr). In this case, similar to the definition given by
equation (8), a pair of lower and upper approximations are defined component-
wise by:

apr(A)= (apr(Aw1
), . . . , apr(Awn

)),

apr(A)= (apr(Aw1
), . . . , apr(Awn

)). (22)

The product system (
∏

n RS,¬,∩,∪, apr, apr) can be explained using the se-
mantical interpretations of rough set algebras. By combining equations (22)
and (10), we have another definition of interval fuzzy sets. This notion of in-
terval fuzzy sets is the result of combining modal logic based fuzzy sets and
rough sets. In general, one may consider a product system in which different
rough set algebras are used for different possible worlds.

In the set-oriented view of rough sets, lower and upper approximations are
not used. One may in fact use them to define interval fuzzy sets as follows:

µapr(A)(x)=
|apr(A) ∩ <s(x)|

|<s(x)|
,

µapr(A)(x)=
|apr(A) ∩ <s(x)|

|<s(x)|
. (23)

If < is an equivalence relation, the results are not so interesting, as they are
in fact the characteristic functions of apr(A) and apr(A). If < is only a serial
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relation (< is serial if for all x ∈ U , <s(x) 6= ∅), µapr(A) and µapr(A) can be
interpreted using belief and plausibility functions [31]. If < is transitive and
connected (< is connected is for all x, y ∈ U , either x<y or y<x), they can be
interpreted using necessity and possibility functions [8].

5 CONCLUSION

In this paper, we have examined relationships and differences between theories
of fuzzy sets and rough sets with respect to two formulations of fuzzy sets and
two views of rough sets. A fuzzy set is defined by a membership function from
a universe U to the unit interval [0, 1]. Fuzzy set intersection and union are
typically defined using t-norms and t-conorms, which are generalizations of set
intersection and union [9]. Such a fuzzy set theory is based on many-valued
logic and may be considered as a deviation of classical set theory. Klir [7] used
modal logic as a basis for the development of fuzzy set theory. The possible-
world semantics is used to construct fuzzy sets and operators on fuzzy sets,
rather than introducing new set-theoretic operators. The resulting fuzzy set
theory is also a deviation of classical set theory. The investigation of fuzzy
sets based on modal logic suggests an important research direction, in which
fuzzy sets with non-truth-functional set-theoretic operators are studied.

There are at least two views for interpreting the theory of rough sets [29].
Depending on the views adopted, one may regard rough set theory as either a
deviation or an extension of classical set theory. In set-oriented view, a rough
set is defined by using a rough membership function [22]. One may treat rough
sets as a special class of fuzzy sets, in which membership functions are inter-
preted in terms of conditional probabilities [26]. This view of rough sets can
be related to a special many-valued logic known as probabilistic logic [24]. In
this case, no additional operators are introduced and classical set-theoretic
operators are used to define rough set operators. Like fuzzy set theory, rough
set theory under set-oriented view is a deviation of classical set theory. Similar
to the modal logic based fuzzy sets, it may be considered to be a more concrete
sub-theory of fuzzy sets. A salient feature of both models is that the formu-
lation and interpretation of membership functions and set-theoretic operators
are embodied in the theory. Furthermore, rough set operators are no longer
truth-functional. In operator-oriented view, a set is approximated by a pair of
sets called lower and upper approximations. They can be understood through
two unary set-theoretic operators [15]. This view is related to modal logic [30].
Since rough set theory under this view only introduces two additional oper-
ators and does not change the meaning of other set-theoretic operators, one
may consider it as an extension of classical set theory. It is different from, and
complementary to, fuzzy set theory.
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Many attempts have been made to combine theories of fuzzy sets and rough
sets in order to have an algebra which is both an extension and a deviation of
classical set algebra [5,16]. One may introduce additional set-theoretic opera-
tors in the theory of fuzzy sets, or use graded binary relations in the theory of
rough sets [28]. Our comparisons of fuzzy sets and rough sets lead to further
interesting results. The notion of interval fuzzy sets have been introduced for
both modal logic based fuzzy sets and set-oriented view of rough sets.
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