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Abstract

Rough set theory models similarities and differences of objects based on the notions
of indiscernibility and discernibility. With respect to any subset of attributes, one
can define two pairs of dual relations: the strong indiscernibility and weak discerni-
bility relations, and the weak indiscernibility and strong discernibility relations. The
similarities of objects are examined by the indiscernibility relations, and the differ-
ence by the discernibility relations, respectively. Alternatively, one can construct
an indiscernibility matrix to represent the family of strong indiscernibility or weak
discernibility relations. One also can construct a discernibility matrix to represent
the family of strong discernibility or weak indiscernibility relations. The considera-
tion of the matrix-counterpart of relations, and the relation-counterpart of matrices,
brings more insights into rough set theory.

Based on indiscernibility and discernibility, three different types of reducts can
be constructed, keeping the indiscernibility, discernibility, and indiscernibility-and-
discernibility relations, respectively. Although the indiscernibility reducts have been
intensively studied in the literature, the other two types of reducts are relatively
new and require more attention. The existing methods for constructing the indis-
cernibility reducts also can be applied to construct the other two types of reducts.
An empirical experiment for letter recognition is reported for demonstrating the
usefulness of the discussed relations and reducts.
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1 Introduction

The dual notions of similarities and differences play a crucial role in fields
such as concept formation, machine learning, data mining, data analysis, clus-
ter analysis, and many more [25–27]. The similarities of objects lead naturally
to their grouping and integration, and the differences lead to group division
and decomposition. It is important to extract similarities of objects by ignor-
ing certain differences in order to form a useful cluster or a high-level concept,
and to identify differences among a set of similar objects in order to form
sub-concepts. A fundamental task of intelligent data analysis is to make ex-
plicit patterns and knowledge embedded in data through an investigation of
similarities and differences of data items.

One can study either the similarities or the differences among objects. By fo-
cusing on the similarities, one can differentiate or discern objects. By focusing
on the difference, one can summarize common properties and characters of
objects [18,25,29]. The study of similarity and difference can find many real-
life applications. For example, in social science or politics, one can emphasize
the differences between entities and thus virtually enlarge and aggravate the
conflicts and discordance; or, emphasize the commonness and therefore create
a concordant atmosphere for negotiation and communication [15].

The theory of rough sets, as a theory of data analysis, models similarities and
differences of objects based on the notions of indiscernibility and discernibil-
ity. There are two fundamental issues: representations of indiscernibility and
discernibility, and attribute reduction (information table simplification) based
on indiscernibility and discernibility.

1.1 Representations of indiscernibility and discernibility

Suppose a finite set of objects is described by a finite set of attributes. With
respect to any subset of attributes, one can define a pair of dual indiscerni-
bility and discernibility relations [12,13]. Two objects are considered to be
indiscernible or equivalent if and only if they have the same values for all at-
tributes in the set. In other words, in terms of the given set of attributes, it
is impossible to differentiate the two objects. As a dual relation to indiscerni-
bility, two objects are considered to be discernible if and only if they have
different values for at least one attribute. Since the pair of indiscernibility and
discernibility relations are defined with respect to the set of all attributes and
at least one attribute, respectively, they may be viewed as strong indiscernibil-
ity and weak discernibility. The strong indiscernibility is indeed the strongest
type of similarity between objects and is characterized by an equivalent rela-
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tion (i.e., reflexive, symmetric and transitive). For an easy discussion, we also
refer to a strong indiscernibility relation as an indiscernibility relation. The
weak discernibility can capture the weakest differences between objects. Their
duality suggests that two objects are either strongly indiscernible or weakly
discernible.

In contrast to strong indiscernibility and weak discernibility, we can define a
pair of dual weak indiscernibility and strong discernibility. Two objects are
weakly indiscernible if and only if they have the same value for at least one
attribute. They are strongly discernible if and only if they have different values
for all attributes. For simplicity, we also refer to a strong discernibility relation
as a discernibility relation. By their duality, a pair of objects is either weakly
indiscernible or strongly discernible. The weak indiscernibility relation is a
compatible or tolerance relation (i.e., reflexive and symmetric).

The pair of weak and strong indiscernibility relations represent the two ex-
treme cases of similarity, and the pair of weak and strong discernibility rela-
tions represent the two extreme cases of difference. They in fact reflect the
qualitative nature of data. There are two possible directions for generalizing
indiscernibility and discernibility into a quantitative framework. One direc-
tion deals with graded indiscernibility or discernibility, where one can count
the number of attributes on which two objects have the same values or differ-
ent values. In the other direction, instead of using the trivial quality relation,
one can use a distance or similarity function to quantify the closeness of two
attribute values. Examples of such studies include valued-similarity and tol-
erance [17,25,26,35], neighborhood systems [11,33,34], rough inclusion [16,20],
and many more.

Alternatively, indiscernibility and discernibility can be represented using ma-
trices. For discernibility, we have a discernibility matrix whose rows and columns
correspond to the set of objects [21]. The cell corresponding to a pair of objects
consists of all those attributes on which the two objects have different values.
One can easily establish a connection between the strong and weak discerni-
bility relations and the discernibility matrix. More specifically, two objects
are weakly discernible if their corresponding cell in the discernibility matrix
is non-empty. They are strongly discernible with respect to a set of attributes
if the set is a subset of the corresponding cell of the discernibility matrix.
For indiscernibility, we can have an indiscernibility matrix, with each cell con-
sists of all the attributes on which the two objects have the same values. One
can establish a connection between the strong and weak indiscernibility rela-
tions and the indiscernibility matrix. Two objects are weakly indiscernible if
their corresponding cell in the indiscernibility matrix is non-empty. They are
strongly indiscernible with respect to a set of attributes if the set is a subset
of the corresponding cell of the indiscernibility matrix.
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1.2 Attribute reduction

The concept of a reduct is a fundamental notion supporting rough set based
data analysis [2,8,13,14,19,21,23,30,31,36–38]. As the result of an attribute
reduction process, a reduct is a minimum set of attributes, which is as in-
formative as the original set of attributes. Specifically, a reduct is a subset
of attributes that is jointly sufficient and individually necessary for preserv-
ing the same information or property as that is provided by the entire set of
attributes. In this paper, we consider three types of reducts: indiscernibility
reducts that preserve indiscernibility, discernibility reducts that preserve dis-
cernibility, and indiscernibility-and-discernibility reducts that preserve both
indiscernibility and discernibility.

An indiscernibility reduct contains a minimum set of attributes such that
any two objects indiscernible with respect to the original set of attributes are
also indiscernible with respect to the reduct. By preserving the strong indis-
cernibility, we place emphasis on separating objects based on their differences.
A discernibility reduct also contains a minimum set of attributes such that
any two objects discernible with respect to the original set of attributes also
are discernible with respect to the reduct. Indiscernibility reduct construc-
tion methods can be formulated based on either the indiscernibility relation
or the weak discernibility relation. Discernibility reduct construction meth-
ods can be formulated based on either the discernibility relation or the weak
indiscernibility relation.

1.3 Overview of the paper

The existing study of reduct construction demonstrates two features. First,
there are two distinct groups characterized by applying two different sets of
notations. One group focuses on the indiscernibility relation in a universe that
captures the equivalence of objects [3,13,14,27,30]. The other group focuses
on the discernibility matrix that explores the differences of objects [21,22,31].
A discernibility function defined for a discernibility matrix reveals the weak
discernibility relation between two objects, i.e., we can distinguish two corre-
sponding objects by any one attribute in a matrix element. Since the notations
seem much different, the connection between these two groups is weak. Second,
since the indiscernibility and the weak discernibility are two dual relations, the
constructed results of both groups are the indiscernibility reducts of the entire
attribute set. The discernibility reducts, as well as the indiscernibility-and-
discernibility reducts are less studied.

Owe to these two features, the contribution of this paper is two-fold. First,
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we suggest that based on indiscernibility and discernibility, rough set based
data analysis can be unified into one model. That is, since these two pairs of
relations are complementary, they can be formulated based on the same notion.
Alternatively, the family of relations can be effectively expressed by a matrix.
Based on the two matrices, two dual matrix functions can be studied. Second,
three different kinds of reducts based on indiscernibility and discernibility are
explored. The complementary study brings new insights into data analysis
approaches, explores different aspects of data understanding, different angles
of data summarizations and descriptions, and different types of discovered
knowledge. The variety of views can thus satisfy a wider range of needs of
different users.

2 Indiscernibility and Discernibility Relations

Information tables, also known as information systems, data tables, attribute-
value systems, are investigated by many researchers of rough set theory [10,13,14,30].
It is assumed that data are represented in a table form, where a set of objects
(rows) are described by a finite set of attributes (columns).

Definition 1 An information table S is the tuple

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects called universe, At is a finite
nonempty set of attributes, Va is a nonempty set of values for an attribute
a ∈ At, and Ia : U −→ Va is an information function, such that for an object
x ∈ U , an attribute a ∈ At, and a value v ∈ Va, Ia(x) = v means that the
object x has the value v on the attribute a.

2.1 Qualitative indiscernibility and discernibility relations

Given a subset of attributes A ⊆ At, four binary relations between objects
can be differentiated in an information table.

Definition 2 Given a subset of attributes A ⊆ At, four relations on U are
defined by:

IND(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)},
WIND(A) = {(x, y) ∈ U × U | ∃a ∈ A, Ia(x) = Ia(y)},

DIS(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) 6= Ia(y)},
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WDIS(A) = {(x, y) ∈ U × U | ∃a ∈ A, Ia(x) 6= Ia(y)}.

A strong indiscernibility relation with respect to A is denoted as IND(A).
Two objects in U satisfy IND(A) if and only if they have the same val-
ues on all attributes in A. It can be verified that an indiscernibility rela-
tion is reflexive, symmetric and transitive, namely, it is an equivalence rela-
tion. It partitions the universe U into a family of disjoint subsets, denoted as
U/IND(A) = {[x]IND(A) | x ∈ U}, where [x]IND(A) is the A-definable equiva-
lence class containing x, i.e.,

[x]IND(A) = {y ∈ U | (x, y) ∈ IND(A)}.

On the other extreme, a weak indiscernibility relation WIND(A) with respect
to A only requires that two objects have the same value on at least one at-
tribute in A. A weak indiscernibility relation is reflexive, symmetric, but not
necessarily transitive. Such a relation is known as a compatibility or a toler-
ance relation. The two types of relations are studied extensively in rough set
theory for different types of approximation spaces [4,5,17,26,27,29,30],

As the complement of a strong indiscernibility relation, a weak discernibility
relation WDIS(A) states that two objects are discernible if and only if they
have different values on at least one attribute in A. A weak discernibility
relation is irreflexive and symmetric, but not transitive. The complement of a
weak indiscernibility relation is a strong discernibility relation DIS(A), states
that two objects are strongly discernible with respect to A if they have different
values on all attributes in A. A strong discernibility relation is irreflexive and
symmetric, but not transitive. The strong and weak discernibility relations are
also called as the strong and weak diversity relations [12].

For a singleton attribute set {a}, the strong and weak indiscernibility relations
are the same, and the strong and weak discernibility relations are the same.
That is,

IND({a}) = WIND({a});
DIS({a}) = WDIS({a}).

For a subset of attributes, the indiscernibility and discernibility relations can
be conveniently expressed in terms of the corresponding relations defined by
singleton attribute subsets:

IND(A) =
⋂

a∈A

IND({a});
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WIND(A) =
⋃

a∈A

IND({a});

DIS(A) =
⋂

a∈A

DIS({a});

WDIS(A) =
⋃

a∈A

DIS({a}).

It immediately follows that the four relations are related together. First, the
weak and strong versions are related by a subset relationship:

(S1). IND(A) ⊆ WIND(A);
(S2). DIS(A) ⊆ WDIS(A).

This is, if two objects are strongly indiscernible/discernible, they are weakly
indiscernible/discernible. An indiscernibility relation is a subset of the weak
indiscernibility relation defined by the same attribute set. Similarly, a dis-
cernibility relation is a subset of the weak discernibility relation defined by
the same attribute set.

Second, the indiscernibility and discernibility relations are related by a com-
plementary relationship:

(C1). WDIS(A) = INDc(A);
(C2). WIND(A) = DISc(A),

where for a relation R ⊆ U × U , Rc = U × U − R denotes its comple-
ment. Therefore, we have two pairs of complementary relations, the pair
(IND(A), WDIS(A)) of the strong indiscernibility relation and the weak dis-
cernibility relation, and the pair (DIS(A), WIND(A)) of the strong discerni-
bility relation and the weak indiscernibility relation.

For two subsets of attributes B ⊆ A ⊆ At, their induced indiscernibility and
discernibility relations satisfy the following monotocity with respect to set
inclusion:

B ⊆ A =⇒ IND(A) ⊆ IND(B);
B ⊆ A =⇒ WIND(B) ⊆ WIND(A);
B ⊆ A =⇒ DIS(A) ⊆ DIS(B);
B ⊆ A =⇒ WDIS(B) ⊆ WDIS(A).

That is, the strong indiscernibility/discernibility relations are monotonically
decreasing, and the weak indiscernibility/discernibility relations are monoton-
ically increasing.
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2.2 Quantitative indiscernibility and discernibility relations

The strong and weak indiscernibility relations represent the two extreme points,
which bound many levels of indiscernibility. With respect to a non-empty set
of attributes A ⊆ At, a graded, or quantitative, indiscernibility relation is
defined as a mapping from U × U to the unit interval [0, 1].

Definition 3 Given a subset of attributes A ⊆ At and a pair of objects
(x, y) ∈ U × U , the quantitative indiscernibility relation ind(A)(x, y) is de-
fined by:

ind(A)(x, y) =
|{a ∈ A | Ia(x) = Ia(y)}|

|A| ,

where |.| denotes the cardinality of a set.

A quantitative indiscernibility relation satisfies the following properties:

(i1). ind(A)(x, x) = 1,
(i2). ind(A)(x, y) = ind(A)(y, x).

The properties (i1) and (i2) reflect that a quantitative indiscernibility relation
is reflexive and symmetric.

The quantitative indiscernibility relations are connected to the strong and
weak indiscernibility relations as follows:

xIND(A)y ⇐⇒ ind(A)(x, y) = 1,

xWIND(A)y ⇐⇒ ind(A)(x, y) > 0.

The quantitative indiscernibility relation can be regarded as a fuzzy relation,
thus the strong and weak indiscernibility relations are in fact the core and the
support of the fuzzy relation. In general, we can apply the notion of α-cut
of fuzzy sets to obtain different quantitative indiscernibility relations. An α-
cut quantitative indiscernibility relation indα(A) is a binary relations between
objects, defined by:

indα(A) = {(x, y) ∈ U × U | ind(A)(x, y) ≥ α}.

If the object pair (x, y) satisfies indα(A), then x and y are indiscernible with re-
spect to α. The relation indα(A) induces a covering of the universe U , denoted
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as U/indα(A) = {(x)indα(A) | x ∈ U}, where (x)indα(A) is the quasi-equivalence
class containing x, i.e.,

(x)indα(A) = {y ∈ U | (x, y) ∈ indα(A)}.

The quasi-equivalence classes are flexible granules. They possibly overlap each
other. The research on quantitative indiscernibility relations has led to the
study based on blocks [4,5], templates [1,9], rough inclusion [16,20], and tol-
erance, similarity or neighborhood relations [11,33,34]

Definition 4 Given a subset of attribute A ⊆ At and a pair of objects (x, y) ∈
U × U , the quantitative discernibility relation dis(A)(x, y) is defined as the
complement of a quantitative indiscernibility relation:

dis(A)(x, y) = 1− ind(A)(x, y)

=
|{a ∈ A | Ia(x) 6= Ia(y)}|

|A| .

A quantitative indiscernibility relation satisfies the following properties:

(d1). dis(A)(x, x) = 0,
(d2). dis(A)(x, y) = dis(A)(y, x).

The properties (d1) and (d2) show that a quantitative discernibility relation
is irreflexive and symmetric.

The qualitative discernibility relations are the two extremes of quantitative
relations, namely,

xDIS(A)y ⇐⇒ dis(A)(x, y) = 1,

xWDIS(A)y ⇐⇒ dis(A)(x, y) > 0.

In general, we also can apply the notion of α-cut of fuzzy sets to obtain differ-
ent quantitative discernibility relations. An α-cut quantitative discernibility
relation disα(A) also is a binary relations between objects, defined by:

disα(A) = {(x, y) ∈ U × U | dis(A)(x, y) ≥ α}.
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Table 1
An information table.

U At

a b c d e f

o1 1 1 1 1 1 1

o2 1 0 1 0 1 1

o3 0 0 1 1 0 0

o4 1 1 1 0 0 1

o5 1 0 1 0 1 1

o6 0 0 0 1 1 0

o7 1 0 1 1 1 1

o8 0 0 0 0 1 1

o9 1 0 0 1 0 0

If the object pair (x, y) satisfies disα(A), then x and y are discernible with
respect to α.

Example 1 Table 1 is an information table with nine objects and six at-
tributes. We will use this table for the rest of the paper.

For the information Table 1, we have, for example, the following partitions
defined by attribute sets {a}, {b} and {a, b}, respectively:

U/IND({a}) = {{o1, o2, o4, o5, o7, o9}, {o3, o6, o8}};
U/IND({b}) = {{o1, o4}, {o2, o3, o5, o6, o7, o8, o9}};
U/IND({a, b}) = {{o1, o4}, {o2, o5, o7, o9}, {o3, o6, o8}.

Examples of the strong and weak indiscernibility/discernibility relations defined
by the three attribute sets are illustrated in Figure 1, where 1 means that the
two corresponding objects are related according to the relation.

Given an information table, we can obtain both the indiscernibility and dis-
cernibility relations with respect to a subset of attributes. On the other hand,
given all the indiscernibility and discernibility relations, we cannot recover the
original information table. A relation only tells whether two objects are dis-
cernible or indiscernible with respect to the attribute set, but does not keep
the attribute values.
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IND({a})= 

WIND({a}) 

o1 o2 o3 o4 o5 o6 o7 o8 o9 DIS({a})= 

WDIS({a})

o1 o2 o3 o4 o5 o6 o7 o8 o9

o1 1 1  1 1  1  1 o1   1   1  1  

o2 1 1  1 1  1  1 o2   1   1  1  

o3   1   1   1 o3 1 1  1 1  1 1  

o4 1 1  1 1  1  1 o4   1   1  1  

o5 1 1  1 1  1  1 o5   1   1  1  

o6   1   1  1  o6 1 1  1 1  1  1 

o7 1 1  1 1  1  1 o7   1   1  1  

o8      1  1  o8 1 1 1 1 1  1  1 

o9 1 1 1 1 1  1  1 o9      1  1  

IND({b})= 

WIND({b}) 

o1 o2 o3 o4 o5 o6 o7 o8 o9 DIS({b})= 

WDIS({b})

o1 o2 o3 o4 o5 o6 o7 o8 o9

o1 1   1      o1  1 1  1 1 1 1 1 

o2  1 1  1 1 1 1 1 o2 1   1      

o3  1 1  1 1 1 1 1 o3 1   1      

o4 1   1      o4  1 1  1 1 1 1 1 

o5  1 1  1 1 1 1 1 o5 1   1      

o6  1 1  1 1 1 1 1 o6 1   1      

o7  1 1  1 1 1 1 1 o7 1   1      

o8  1 1  1 1 1 1 1 o8 1   1      

o9  1 1  1 1 1 1 1 o9 1   1      

IND({a,b}) o1 o2 o3 o4 o5 o6 o7 o8 o9 DIS({a,b}) o1 o2 o3 o4 o5 o6 o7 o8 o9

o1 1   1      o1   1   1  1  

o2  1   1  1  1 o2          

o3   1   1  1  o3 1   1      

o4 1   1      o4   1   1  1  

o5  1   1  1  1 o5          

o6   1   1  1  o6 1   1      

o7  1   1  1  1 o7          

o8   1   1  1  o8 1   1      

o9  1   1  1  1 o9          

WIND({a,b}) o1 o2 o3 o4 o5 o6 o7 o8 o9 WDIS({a,b}) o1 o2 o3 o4 o5 o6 o7 o8 o9

o1 1 1  1 1  1  1 o1  1 1  1 1 1 1 1 

o2 1 1 1 1 1 1 1 1 1 o2 1  1 1  1  1  

o3  1 1  1 1 1 1 1 o3 1 1  1 1  1  1 

o4 1 1  1 1  1  1 o4  1 1  1 1 1 1 1 

o5 1 1 1 1 1 1 1 1 1 o5 1  1 1  1  1  

o6  1 1  1 1 1 1 1 o6 1 1  1 1  1  1 

o7 1 1 1 1 1 1 1 1 1 o7 1  1 1  1  1  

o8  1 1  1 1 1 1 1 o8 1 1  1 1  1  1 

o9 1 1 1 1 1 1 1 1 1 o9 1  1 1  1  1  

Fig. 1. Examples of the indiscernibility and discernibility relations

It should be noted that the four qualitative relations and the two quantitative
relations defined in this section are based on the information function Ia and
a simple assumption that each object x has one and only one value on the
attribute a. In real world cases, data are generally imprecise, tend to be noisy,
and values for attributes are often missing [22]. For example, we may have some
objects that have missing values on some attributes, or have multiple values
on some other attributes. In these uncertain cases, different generalizations
need to be considered [5,19].
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3 Indiscernibility and Discernibility Matrices

The relationships between objects can be alternatively expressed as matrices.
For example, an indiscernibility matrix can be defined as follows.

Definition 5 Given an information table S, its indiscernibility matrix im is
a |U | × |U | matrix with each element im(x, y) defined as:

im(x, y) = {a ∈ At | Ia(x) = Ia(y), x, y ∈ U}.

Each cell of an indiscernibility matrix stores the attributes on which the cor-
responding two objects have the same values. The indiscernibility matrix im
is symmetric, i.e., im(x, y) = im(y, x), and im(x, x) = At.

In contrast to an indiscernibility matrix, a discernibility matrix can be defined
as follows [21].

Definition 6 Given an information table S, its discernibility matrix dm is a
|U | × |U | matrix with each element dm(x, y) defined as:

dm(x, y) = {a ∈ At | Ia(x) 6= Ia(y), x, y ∈ U}.

Each element of a discernibility matrix stores the attributes on which the
corresponding two objects have distinct values. The discernibility matrix dm
is symmetric, i.e., dm(x, y) = dm(y, x), and dm(x, x) = ∅. By definition,
the two matrices are complementary, i.e., for any object pair (x, y) ∈ U × U ,
im(x, y) = (dm(x, y))c = At− dm(x, y).

Similar to the case of relations, given an information table, we can obtain its
indiscernibility matrix and discernibility matrix. Conversely, given an indis-
cernibility matrix or a discernibility matrix, we cannot recover its information
table. Each element of a matrix keeps only the names of attributes whose
values are the same, or different, for two objects, but not the values of those
attributes.

There is a close connection between a matrix and its corresponding strong and
weak relations.

Theorem 1 Suppose A is a subset of attributes. The indiscernibility and dis-
cernibility relations and the indiscernibility and discernibility matrices can be
defined by each other as follows:
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IND(A) = {(x, y) ∈ U × U | A ⊆ im(x, y)},
= {(x, y) ∈ U × U | A ∩ dm(x, y) 6= ∅};

WIND(A) = {(x, y) ∈ U × U | A ∩ im(x, y) 6= ∅},
= {(x, y) ∈ U × U | A * dm(x, y)};

DIS(A) = {(x, y) ∈ U × U | A ⊆ dm(x, y)},
= {(x, y) ∈ U × U | A ∩ im(x, y) 6= ∅};

WDIS(A) = {(x, y) ∈ U × U | A ∩ dm(x, y) 6= ∅},
= {(x, y) ∈ U × U | A * im(x, y)},

and

im(x, y) = {a ∈ At | xIND({a})y, (x, y) ∈ U × U};
dm(x, y) = {a ∈ At | xDIS({a})y, (x, y) ∈ U × U}.

The theorem can be easily proved by the definitions of the corresponding
relations and matrices. From an indiscernibility or a discernibility matrix,
we can easily obtain the indiscernibility and discernibility relations defined
by any subset of attributes. On the other hand, from the family of all the
strong indiscernibility or the strong discernibility relations defined by singleton
subsets, we can obtain the indiscernibility or discernibility matrix.

Example 2 The indiscernibility and discernibility matrices of the informa-
tion Table 1 are illustrated in Tables 2 and 3. In the tables, for simplicity, we
write a set of attributes, for example, {a, b, c} as abc. Since both matrices are
symmetric, we only list the elements in the upper right half.

4 Attribute Reduction

An important application of the notions of indiscernibility/discernibility rela-
tions and matrices is the simplification of an information table. The problem
of attribute reduction is the column-wise simplification of the table. Although
the reduced table has less number of attributes, it preserves certain informa-
tion of the original table.
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Table 2
The indiscernibility matrix of the information Table 1.

o1 o2 o3 o4 o5 o6 o7 o8 o9

o1 At acef cd abcf acef de acdef ef ad

o2 At bc acdf At be abcef bdef ab

o3 At ce bc abdf bcd ab bdef

o4 At acdf ∅ acf df ae

o5 At be abcef bdef ab

o6 At bde abce bcdf

o7 At bef abd

o8 At bc

o9 At

Table 3
The discernibility matrix of the information Table 1.

o1 o2 o3 o4 o5 o6 o7 o8 o9

o1 ∅ bd abef de bd abcf b abcd bcef

o2 ∅ adef be ∅ acdf d ac cdef

o3 ∅ abdf adef ce aef cdef ac

o4 ∅ be At bde abce bcdf

o5 ∅ acdf d ac cdef

o6 ∅ acf df ae

o7 ∅ acd cef

o8 ∅ adef

o9 ∅

4.1 Indiscernibility and discernibility reducts

A general definition of a reduct consists of two conditions. The first one ensures
that a certain property is preserved by a set of attributes. Therefore, the
attribute set as a whole is sufficient for preserving the property. The second
condition ensures that the constructed attribute set is the minimum, i.e., each
attribute of it is necessary for reserving the property.

Definition 7 For an information table S = (U,At, {Va}, {Ia}), an attribute
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set P ⊆ At is a reduct if it meets the following two conditions:

(1.) R(P ) = R(At);
(2.) For any proper subset P ′ ⊂ P , R(P ′) 6= R(At),

where R ∈ {IND, DIS}. When R represents IND, the corresponding reducts
are called indiscernibility reducts, and R = DIS induces discernibility reducts.

The interpretation of these two reducts can be explained as follows:

• An indiscernibility reduct is a minimum attribute set that retains the strong
indiscernibility relation defined by the entire attribute set. According to the
condition (1.), an attribute set P might be an indiscernibility reduct if it
satisfies the following condition:

∀(x, y) ∈ U × U, (x, y) ∈ IND(At) ⇔ (x, y) ∈ IND(P ).

It means that if an object pair is strongly indiscernible regarding At, it is
also strongly indiscernible regarding P , and vice versa. An attribute set P is
not an indiscernibility reduct if it meets any of the following two conditions:
∃(x, y) ∈ U × U if (x, y) ∈ IND(At) then (x, y) ∈ WDIS(P ) or

if (x, y) ∈ WDIS(At) then (x, y) ∈ IND(P ).
It means that an object pair is strongly indiscernible regarding At but
weakly discernible regarding P , or the object pair is weakly discernible
regarding At but strongly indiscernible regarding P . According to the con-
dition (2.), none subset P ′ ⊂ P can retain the strong indiscernibility relation
defined by the entire attribute set.

• A discernibility reduct is a minimum attribute set that retains the strong
discernibility relation defined by the entire attribute set. According to the
condition (1.), an attribute set P might be a discernibility reduct if it sat-
isfies the following condition:

∀(x, y) ∈ U × U, (x, y) ∈ DIS(At) ⇔ (x, y) ∈ DIS(P ).

It means that if an object pair is strongly discernible regarding At, it is also
strongly discernible regarding P , and vice versa. An attribute set P is not
a reduct if it meets any of the following two conditions:
∃(x, y) ∈ U × U if (x, y) ∈ DIS(At) then (x, y) ∈ WIND(P ) or

if (x, y) ∈ WIND(At) then (x, y) ∈ DIS(P ).
It means that an object pair is strongly discernible regarding At but weakly
indiscernible regarding P , or the object pair is weakly indiscernible regard-
ing At but strongly discernible regarding P . According to the condition (2.),
none subset P ′ ⊂ P can retain the strong discernibility relation defined by
the entire attribute set.

Definition 8 For an information table S = (U,At, {Va}, {Ia}), an attribute
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set P ⊆ At is an indiscernibility-and-discernibility reduct if it meets following
three conditions:

(1.) IND(P ) = IND(At);
(2.) DIS(P ) = DIS(At);
(3.) For any proper subset P ′ ⊂ P , either IND(P ′) 6= IND(At) or DIS(P ′) 6=
DIS(At).

An indiscernibility-and-discernibility reduct is a minimum attribute set that
keeps both the indiscernibility and the discernibility relations of the original
table.

Obviously, the three reducts are defined by the strong relations. Alternatively,
reducts can be defined by the weak relation counterparts and corresponding
matrices. Theorem 2 derived from Theorem 1 establishes some connections
between reducts and the properties of relations and matrices.

Theorem 2 Let S = (U,At, {Va}, {Ia}) be an information table. For a strong
relation R ∈ {IND, DIS}, its complement relation (in the weak form) and the
other pair of relations are denoted as WRc, Rc and WR, respectively. mR and
mRc are two complement matrices. The following conditions are equivalent:
For any reduct P ,

(i.) R(P ) = R(At);
(ii.) WRc(P ) = WRc(At);
(iii.) for all mRc 6= ∅, P ∩mRc 6= ∅;
(iv.) for all mR 6= At, P *mR.

According to Theorem 2, Definition 7 can be redefined in the other three ways.

The family of all indiscernibility reducts of the information table S is denoted
as REDIND(S), and the family of all discernibility reducts as REDDIS(S).
The intersection of all indiscernibility reducts is called the IND core, and the
intersection of all discernibility reducts is called the DIS core.

4.2 Indiscernibility and discernibility matrix functions

Skowron and Rauszer [21] define a discernibility function for a discernibility
matrix dm:

fDIS(dm) =
∧{∨ dm(x, y) | x, y ∈ U, dm(x, y) 6= ∅},

where
∨

dm(x, y) represents the logical disjunction of all the attributes in
an element dm(x, y), which means that x and y are discernible regarding
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any attribute in dm(x, y). A discernibility function is the conjunction of all
the logical disjunction of matrix elements; it keeps all the weak discernibility
relations in the given universe.

Similar to the discernibility function, we can define an indiscernibility function
for an indiscernibility matrix im:

fIND(im) =
∧{∨ im(x, y) | x, y ∈ U, im(x, y) 6= At},

where
∨

im(x, y) is the logical disjunction of all the attributes in an element
im(x, y), which means that x and y are indiscernible regarding any attribute
in im(x, y). An indiscernibility function is the conjunction of all the logical
disjunction of matrix elements; it keeps all the weak indiscernibility relations
in the given universe.

Theorem 3 The problem for constructing the family of reducts REDR(S),
where R ∈ {IND, DIS}, is equivalent to the problem of transforming any con-
junctive form of a matrix function fR to a reduced disjunctive form.

Proof. After transforming a matrix function fR to a disjunctive form by
applying multiplication and absorption laws whenever possible, we get the
reduced disjunctive form of fR. A disjunct of a matrix function fR in a reduced
disjunctive form is called a prime implicant [21], which possesses the following
properties:

(i.) for each prime implicant, there exists a reduct, such that the conjunction
of all the attributes forming that reduct is equivalent to the prime implicant,
and
(ii.) for each reduct, there exists a prime implicant, which is obtained by
taking the conjunction of all the attributes forming that reduct. 2

Skowron and Rauszer explicitly state the strong connection between the no-
tions of a reduct in an information table and a prime implicant of the matrix
function [21]. Here, we put it more clearly, an indiscernibility reduct and a
disjunct of fDIS(dm) have a strong connection, namely, we have the following
equivalence:

P ∈ REDIND(S) iff
∧

P is a prime implicant of fDIS(dm).

Similarly, we can conclude that a discernibility reduct and a disjunct of fIND(im)
have a strong connection, namely:

P ∈ REDDIS(S) iff
∧

P is a prime implicant of fIND(im).

Example 3 Based on the discernibility matrix in Table 3, we can construct
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the following discernibility function:

fDIS (dm) = b ∧ d ∧ (a ∨ c) ∧ (a ∨ e) ∧ (b ∨ d) ∧ (b ∨ e) ∧ (c ∨ e) ∧ (d ∨ e)∧
(d ∨ f) ∧ (a ∨ c ∨ d) ∧ (a ∨ c ∨ f) ∧ (a ∨ e ∨ f) ∧ (b ∨ d ∨ e) ∧ (c ∨ e ∨ f)∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ e) ∧ (a ∨ b ∨ c ∨ f) ∧ (a ∨ b ∨ d ∨ f)∧
(a ∨ b ∨ e ∨ f) ∧ (a ∨ c ∨ d ∨ f) ∧ (a ∨ d ∨ e ∨ f) ∧ (b ∨ c ∨ d ∨ f)∧
(b ∨ c ∨ e ∨ f) ∧ (c ∨ d ∨ e ∨ f) ∧ (a ∨ b ∨ c ∨ d ∨ e ∨ f)

= b ∧ d ∧ (a ∨ c) ∧ (a ∨ e) ∧ (c ∨ e)
= (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ d ∧ e) ∨ (b ∧ c ∧ d ∧ e).

Based on the indiscernibility matrix in Table 2, we can construct the following
indiscernibility function:

fIND (im) = (a ∨ b) ∧ (a ∨ d) ∧ (a ∨ e) ∧ (b ∨ c) ∧ (b ∨ e) ∧ (c ∨ d) ∧ (c ∨ e)∧
(d ∨ e) ∧ (d ∨ f) ∧ (e ∨ f) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ f) ∧ (b ∨ c ∨ d)∧
(b ∨ d ∨ e) ∧ (b ∨ e ∨ f) ∧ (a ∨ b ∨ c ∨ e) ∧ (a ∨ b ∨ c ∨ f) ∧ (a ∨ b ∨ d ∨ f)∧
(a ∨ c ∨ d ∨ f) ∧ (a ∨ c ∨ e ∨ f) ∧ (b ∨ c ∨ d ∨ f) ∧ (b ∨ d ∨ e ∨ f)∧
(a ∨ b ∨ c ∨ e ∨ f) ∧ (a ∨ c ∨ d ∨ e ∨ f)

= (a ∨ b) ∧ (a ∨ d) ∧ (a ∨ e) ∧ (b ∨ c) ∧ (b ∨ e) ∧ (c ∨ d) ∧ (c ∨ e) ∧ (d ∨ e)∧
(d ∨ f) ∧ (e ∨ f) ∧ (a ∨ c ∨ f)

= (a ∧ b ∧ d ∧ e) ∨ (a ∧ c ∧ d ∧ e) ∨ (a ∧ c ∧ e ∧ f) ∨ (b ∧ c ∧ d ∧ e)∨
(b ∧ d ∧ e ∧ f) ∨ (a ∧ b ∧ c ∧ d ∧ f).

It means that we obtain three indiscernibility reducts ({a, b, c, d}, {a, b, d, e}
and {b, c, d, e}) and six discernibility reduces ({a, b, d, e}, {a, c, d, e}, {a, c, e, f},
{b, c, d, e}, {b, d, e, f}, and {a, b, c, d, f}) of the information Table 1.

According to Definition 8 of an indiscernibility-and-discernibility reduct, we
can define an indiscernibility-and-discernibility function as follows:

fIND−DIS(im−dm) = fIND

∧
fDIS.

The problem for constructing the family of indiscernibility-and-discernibility
reducts REDIND−DIS(S) is equivalent to the problem of transforming the con-
junctive form of two matrix functions fIND and fDIS to a reduced disjunctive
form.

Example 4 Based on the results of our previous example,
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fIND−DIS (im−dm) = fIND
∧

fDIS

= ((a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ d ∧ e) ∨ (b ∧ c ∧ d ∧ e))
∧

((a ∧ b ∧ d ∧ e) ∨ (a ∧ c ∧ d ∧ e) ∨ (a ∧ c ∧ e ∧ f) ∨ (b ∧ c ∧ d ∧ e)

∨(b ∧ d ∧ e ∧ f) ∨ (a ∧ b ∧ c ∧ d ∧ f))

= (a ∧ b ∧ d ∧ e) ∨ (b ∧ c ∧ d ∧ e) ∨ (a ∨ b ∧ c ∧ d ∧ f).

The result shows that we can obtain three indiscernibility-and-discernibility
reducts, i.e., {a, b, d, e} {b, c, d, e} and {a, b, c, d, f} of Table 1.

Although a matrix function expressed in a reduced disjunctive normal form is
ideal for finding all reducts, it can be very complex while the amount of matrix
elements is huge. In this case, a variety of heuristics need to be applied to find
one reduct, a group of reducts, or a preferred reduct. Many promising search
strategies and search heuristics have been proposed and tested for constructing
indiscernibility reducts. They equally can be applied to construct discernibility
reducts and indiscernibility-and-discernibility reducts.

5 Relative Reducts and Relative Reduct Construction

Without losing the generality, we can split the attribute set At into two parts,
i.e., At = C ∪D, where C is a set of conditional attributes, and D is a set of
decision attributes. Such an information table is also called a decision table
for decision making purposes. For simplicity, in the rest of the paper, we only
treat D as a singleton set, and the only attribute in the set is also called D.

5.1 Relative relations and matrices

Given a subset of conditional attributes A ⊆ C, two decision-relative rela-
tions, briefly, relative relations or D-relative relations, between objects can be
distinguished.

Definition 9 Given a subset of conditional attributes A ⊆ C, the four relative
relations on U are defined as:

INDD(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y) and ID(x) = ID(y)},
WINDD(A) = {(x, y) ∈ U × U | ∃a ∈ A, Ia(x) = Ia(y) and ID(x) = ID(y)},

DISD(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) 6= Ia(y) and ID(x) 6= ID(y)},
WDISD(A) = {(x, y) ∈ U × U | ∃a ∈ A, Ia(x) 6= Ia(y) and ID(x) 6= ID(y)}.
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The relation-counterpart matrices can be constructed. Each cell of a rela-
tive discernibility matrix stores those conditional attributes, on which the
corresponding two objects of the universe have distinct values and different
classes [21].

Definition 10 Given a decision table S, its relative discernibility matrix dmD

is a |U |×|U | matrix. For all (x, y) ∈ U×U each element dmD(x, y) is defined
as:

dmD(x, y) =




{a ∈ C | Ia(x) 6= Ia(y)}, if ID(x) 6= ID(y),

∅, otherwise.

In contract to a relative discernibility matrix, a relative indiscernibility matrix
can be similarly defined. Each element of a relative indiscernibility matrix
stores the conditional attributes, on which the corresponding two objects have
the same values and belong to the same class.

Definition 11 Given a decision table S, its relative indiscernibility matrix
imD is a |U | × |U | matrix. For all (x, y) ∈ U × U each element imD(x, y) is
defined as:

imD(x, y) =




{a ∈ C | Ia(x) = Ia(y)}, if ID(x) = ID(y),

∅, otherwise.

Both of the relative indiscernibility and discernibility matrices are symmetric,
i.e., imD(x, x) = At and dmD(x, x) = ∅. To note, for a decision table, there
are one and only one relative discernibility matrix dmD, but |VD| relative
indiscernibility matrices regarding each value of D.

Example 5 For the further illustration, we provide a sample decision Table 4
by adding a decision attribute D into the former information Table 1. The
relative indiscernibility and discernibility matrices of the decision Table 4 are
illustrated in Tables 5 and 6.

5.2 Relative reducts and relative reduction

We can define two different relative reducts associated with the complementary
relations and matrices.

Definition 12 For a decision table S = (U,At = C ∪ {D}, {Va}, {Ia}), an
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Table 4
A decision table.

U C D

a b c d e f

o1 1 1 1 1 1 1 +

o2 1 0 1 0 1 1 +

o3 0 0 1 1 0 0 +

o4 1 1 1 0 0 1 -

o5 1 0 1 0 1 1 -

o6 0 0 0 1 1 0 -

o7 1 0 1 1 1 1 -

o8 0 0 0 0 1 1 -

o9 1 0 0 1 0 0 -

Table 5
Two relative indiscernibility matrices im+ and im− of the decision Table 4.

o1 o2 o3 o4 o5 o6 o7 o8 o9

o1 At acef cd o4 At acdf ∅ acf df ae

o2 At bc o5 At be abcef bdef ab

o3 At o6 At bde abce bcdf

o7 At bef abd

o8 At bc

o9 At

Table 6
The relative discernibility matrix dmD of the decision Table 4.

o4 o5 o6 o7 o8 o9

o1 de bd abcf b abcd bcef

o2 be ∅ acdf d ac cdef

o3 abdf adef ce aef cdef ac

attribute set P ⊆ C is a D-relative reduct if it meets following two conditions:

(R1.) RD(P ) = RD(C);
(R2.) For any proper subset P ′ ⊂ P , RD(P ′) 6= RD(C),
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where R ∈ {IND, DIS}. The corresponding reducts are called relative indis-
cernibility reducts and relative discernibility reducts, respectively.

Similar to Theorem 2, Definition 12 can be redefined in other three ways. All
the methods for reduct construction can be used for relative reduct construc-
tion.

Example 6 According to the relative indiscernibility matrices im+ and im−
shown in Table 5, we can obtain

fINDD
(im+) = c ∨ (a ∧ b ∧ d) ∨ (b ∧ d ∧ e) ∨ (b ∧ d ∧ f).

Each disjunct indicates a positive-relative discernibility reduct, and,

fINDD
(im−) = (a ∧ b ∧ d) ∨ (a ∧ c ∧ d ∧ e) ∨ (a ∧ c ∧ e ∧ f) ∨ (b ∧ c ∧ d).

Each disjunct indicates a negative-relative discernibility reduct.

According to the relative discernibility matrix shown in Table 6, we can obtain

fDISD
(dmD) = (a ∧ b ∧ c ∧ d) ∨ (a ∧ b ∧ d ∧ e) ∨ (b ∧ c ∧ d ∧ e) ∨

(b ∧ c ∧ d ∧ f).

Each disjunct indicates a relative indiscernibility reduct.

It needs to be noted that Susmaga’s terminologies for reducts and constructs
are closely related to the ones used in this paper. [27,28]. Susmaga uses the
standard definition of an indiscernibility relation. The complement relation
to an indiscernibility relation is called a discernibility relation. A similarity
relation defined by a set of attributes indicates all the object pairs that are
indiscernible on at least one attribute of the set. According to Susmaga, a
reduct is a minimum set of attributes that retains the discernibility relation.
Constructs, defined in a similar way, represent a notion that is a kind of gener-
alization of the reduct. That is, a construct retains both the discernibility and
similarity relations of the whole set of attributes. Table 7 summaries Susmaga’s
terminologies and the ones used in this paper. Susmaga’s definition of reducts
is equivalent to the definition of our indiscernibility reducts, and his definition
of conducts is actually the definition of our indiscernibility-and-discernibility
reducts. We extend Susmaga’s research by adding discernibility reducts into
the discussion. We do not want to use construct, or any other new words, to
name a different type of reducts. The main differences among different types
of reducts reside in the properties they retain. By our naming convention,
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Susmaga’s Ours Meanings

IND(A) IND(A) {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)}
SIM(A) WIND(A) {(x, y) ∈ U × U | ∃a ∈ A, Ia(x) = Ia(y)}

DIS(A) {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) 6= Ia(y)}
DIS(A) WDIS(A) {(x, y) ∈ U × U | ∃a ∈ AIa(x) 6= Ia(y)}
reducts IND reducts retain the IND and WDIS relations

DIS reducts retain the DIS and WIND relations

constructs IND−DIS reducts retain the strong and weak IND/DIS relations

Table 7
Comparing Susmaga’s terminologies to the ones used in this paper

the retaining properties of indiscernibility reducts, discernibility reducts and
indiscernibility-and-discernibility reducts are clearly stated as their names.

6 Experiment Evaluations

To demonstrate the usefulness of the complementary relations and reducts,
we use a real-life dataset for letter recognition. There are two different tasks
for English letter recognition. On one hand, we want to distinguish letters
written by different people. To deal with this task, for a particular letter, we
need to group together the letters written in the same style, and differentiate
the groups of letters. On the other hand, in some situations, a letter written
by the same person may diverse in a certain degree. We want to identify the
letters written by the same person by ignoring certain differences. That is,
we want to summarize the characteristics of one’s writing style, and recognize
the letter in order to identify the person’s handwriting correctly. These two
tasks are especially useful for signature identification. We can use reducts to
represent the rules and simplify the rules.

The objective for constructing the indiscernibility reducts of the dataset is to
retain the strong indiscernibility relation and the weak discernibility relation.
Suppose the letters are written by different people. A strong indiscernibility re-
lation groups the letters that are the same regarding the describing attributes.
An indiscernibility reduct is a minimum attribute set that can distinguish
these groups. For any subset of the indiscernibility reduct, more object pairs,
weakly discernible regarding the entire attribute set, are incorrectly grouped
together.

The objective for constructing the discernibility reducts of the dataset is to
retain the strong discernibility relation and the weak indiscernibility relation.
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Suppose some of the letters are written by the same person. A strong discerni-
bility relation lists all the distinct object pairs regarding to their values on the
describing attributes. A discernibility reduct is a minimum attribute set that
retains the distinct object pairs. For any subset of the discernibility reduct,
more object pairs, weakly indiscernible regarding the entire attribute set, are
incorrectly identified as distinct pairs.

The dataset used is called letter-recognition from the UCI Machine Learning
Repository. It contains 20,000 unique data records, each represents a hand-
written capital letter in the English alphabet. Each letter is identified as a
group of black-and-white pixels in a rectangular box, and is conveniently de-
scribed by one categorical attribute and sixteen primitive numerical attributes
that represent the statistical values and edge counts of the pixel box. Each
numerical attribute has sixteen possible values from 0 to 15. The meaning of
attributes are listed below:

1. capital letter (26 values from A to Z)
2. horizontal position of box: x (integer)
3. vertical position of box: y (integer)
4. width of box (integer)
5. height of box (integer)
6. total number of on-pixels (integer)
7. x of on-pixels in box (integer)
8. y of on-pixels in box (integer)
9. x variance (integer)
10. y variance (integer)
11. x y correlation (integer)
12. x * x * y (integer)
13. x * y * y (integer)
14. edge count left to right (integer)
15. correlation of x-edge with y (integer)
16. edge count bottom to top (integer)
17. correlation of y-edge with x (integer)

We partition the 20,000 objects according to the letters. The class distribution
is almost equalized. We randomly pick two sub-tables containing letter A (789
records) and the letter S (748 records) for our evaluation. For each sub-table,
the letters are described by the sixteen numerical attributes. We want to
construct the indiscernibility reducts and discernibility reducts of these two
tables.

The method applied for this experiment is a greedy algorithm. For sixteen
attributes, we have 216 − 1 = 65, 535 subsets. We relax the strong indiscerni-
bility and the strong discernibility relations, such that if (x, y) ∈ ind90%(A)
then x and y are considered indiscernible. If (x, y) ∈ dis90%(A) then x and y
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# of IND-reducts # of DIS-reducts

Length = 3 17 0

Length = 4 33 0

Length = 5 19 0

Length = 6 9 0

Length = 7 1 0

Length = 8 0 1

Length = 9 0 5

Total 79 6

Table 8
Comparing indiscernibility/discernibility reducts of the table containing the letter
A

# of IND-reducts # of DIS-reducts

Length = 3 1 0

Length = 4 45 0

Length = 5 46 0

Length = 10 0 5

Length = 11 0 10

Length = 12 0 1

Total 92 16

Table 9
Comparing indiscernibility/discernibility reducts of the table containing the letter
S

are considered discernible. The counts of indiscernibility/discernibility reducts
of two tables are listed in Tables 8 and 9, respectively.

From the results, both the indiscernibility and discernibility reducts can simply
the table and rules. We can tell that we usually have more indiscernibility
reducts than discernibility reducts, and the lengths of indiscernibility reducts
are shorter than discernibility reducts. It shows that it is easier to distinguish
letters written in different styles, and harder to identify letters written in the
same style.
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7 Conclusion

Data analysis approaches are mainly based on two different views, i.e., to ex-
plore either the similarities or the differences of objects. To cope with these two
views, four relations can be observed. They are the strong and weak indiscerni-
bility relations and the strong and weak discernibility relations. Alternatively,
two complementary matrices, an indiscernibility matrix and a discernibility
matrix, can be applied for data analysis.

Based on the two views, three different types of reducts can be constructed.
They are indiscernibility reducts, discernibility reducts and indiscernibility-
and-discernibility reducts. An indiscernibility reduct is a minimum attribute
set that retains the strong indiscernibility relation and the weak discernibil-
ity relation defined by the entire attribute set. A discernibility reduct is a
minimum attribute set that retains the strong discernibility relation and the
weak indiscernibility relation defined by the entire attribute set. Combining
these two features, an indiscernibility-and-discernibility reduct retains all the
four relations defined by the entire attribute set. Although the indiscernibility
reducts have been extensively studied by the rough set society, the other two
types of reducts need further exploration.
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