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Abstract

This paper proposes a reduct construction method based on discernibility matrix
simplification. The method works in a similar way to the classical Gaussian elimina-
tion method for solving a system of linear equations. Elementary matrix simplifica-
tion operations are introduced. Each operation transforms a matrix into a simpler
form. By applying these operations a finite number of times, one can transform a
discernibility matrix into one of its minimum (i.e., the simplest) forms. Elements of
a minimum discernibility matrix are either the empty set or singleton subsets, in
which the union derives a reduct. With respect to an ordering of attributes, which
is either computed based on a certain measure of attributes or directly given by
a user, two heuristic reduct construction algorithms are presented. One algorithm
attempts to exclude unimportant attributes from a reduct, and the other attempts
to include important attributes in a reduct.

Key words: rough sets, attribute reduction, discernibility matrix, matrix
simplification, algorithms

1 Introduction

Data analysis, dependency analysis, and learning are some of the most im-
portant applications of rough set theory. In those applications, it is typically
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assumed that we have a finite set of objects described by a finite set of at-
tributes. The values of objects on attributes can be conveniently represented
by an information table, with rows representing objects and columns represent-
ing attributes. The notion of a reduct plays an essential role in analyzing an
information table [19,21]. An attribute reduct is a minimal subset of attributes
that provides the same descriptive ability as the entire set of attributes. In
other words, attributes in a reduct is jointly sufficient and individually nec-
essary. We obtain the same results and conclusions by using a smaller set of
attributes. As a consequence, we normally obtain more general and simpler
rules.

Many methods have been proposed and examined for finding the set of all
reducts or a single reduct [1,15–17,20,23,26,27,29,33]. Unfortunately, it has
been proven that finding the set of all reducts, or finding an optimal reduct
(i.e., a reduct with the minimum number of attributes), is NP [31]. Thus, many
heuristic methods for finding one reduct have also been investigated [2,3,6,8–
10,14,28,30,32,34–36]. Software has been developed for reduct construction.
For example, RSES is a collection of algorithms and data structures for rough
set computations [25]. Several results from the study of reducts are particularly
relevant to the present paper.

A beautiful theoretical result was developed by Skowron and Rauszer [26],
based on the notion of a discernibility matrix. Both the rows and columns of
the matrix correspond to the objects. An element of the matrix is the set of
all attributes that distinguish the corresponding object pairs, namely, the set
consists of all attributes on which the corresponding two objects have distinct
values. One can construct a Boolean discernibility function from a discernibil-
ity relation, with attributes as Boolean variables. Skowron and Rauszer [26]
showed that the set of attribute reducts are in fact the set of prime implicants
of the reduced disjunctive form of the discernibility function. This provides
a logic foundation for the study of reducts. Many researchers studied reduct
construction by using the discernibility information in the discernibility ma-
trix [4,12,18,20,22,30,34]. However, a difficulty exists when applying the the-
oretical results. It is not very clear how to design an efficient algorithm for
constructing one reduct based on manipulating the discernibility function.

Pawlak [20] introduced the notion of a minimum discernibility matrix. Given
a reduct, a minimum discernibility matrix of the reduct is a matrix whose el-
ements are either the empty set or singleton subsets. An element is the empty
set if the original element is the empty set. Otherwise, it is obtained by se-
lecting one attribute in the reduct from the original element. The union of all
elements in the minimum matrix is the reduct that produces the minimum
matrix. This property of a minimum matrix has a valuable implication. If we
could find a systematic method for simplifying a discernibility matrix to a
minimum discernibility matrix, we would have a reduct construction method.
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Unfortunately, an algorithm does not exist yet for producing a minimum ma-
trix.

Wang and his colleagues [30,33,34] proposed an elegant algorithm for con-
structing a reduct by using the discernibility matrix and an ordering of at-
tributes. The algorithm is based on a set representation of the discernibility
matrix. That is, the discernibility matrix is transformed into a set of subsets
of attributes corresponding to the elements of the matrix. A few operations on
the set representation are introduced. The absorption operation deletes all el-
ements that are supersets of other elements. Suppose attributes in each subset
are ordered according to the given ordering. One can immediately introduce
the grouping operation that produces a partition of all elements based on
the very first attribute of each element. The algorithm starts from the empty
set as a partial reduct, i.e., a subset of a reduct. Based on the results of ab-
sorption and grouping, an attribute is selected to be added to a constructed
partial reduct, and an attribute subset is deleted from all elements in the set
representation. With the modified set representation, the algorithm repeats
the above steps until a reduct is constructed. A detailed description of the
algorithm can be found in [34]. Unfortunately, this elegant algorithm has not
received its due attention from researchers in the rough set community.

By combining the results from these studies, we introduce a method for ma-
trix simplification in order to find a reduct. Elementary matrix operations
are presented. They are similar to the operations used by Wang and his col-
leagues [34]. Each operation produces a simpler discernibility matrix. Based
on these operations, we present a method for transforming a discernibility
matrix. The working principle of our method is in the same spirit of the clas-
sical Gaussian elimination method for solving a system of linear equations.
By applying the elementary operations a finite number of times, we obtain
one minimum discernibility matrix. The union of all elements in the minimum
matrix produces a reduct.

In order to demonstrate the usefulness and flexibility of the proposed method,
we consider an ordering of attributes representing their importance. Two
heuristic algorithms are suggested. One algorithm involves deleting unimpor-
tant attributes and the other involves keeping important attributes.

The main objective of this paper is to present a theoretical result regarding
systematic discernibility matrix simplification, although some heuristics are
discussed for obtaining efficient algorithms. Based on the basic results of the
paper, it is possible to study a wide class of matrix simplification algorithms.
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2 Reducts in an Information Table

In many data analysis applications, information and knowledge are stored and
represented in an information table. An information table provides a conve-
nient way to describe a finite set of objects within a universe by a finite set of
attributes [19].

Definition 1 (Information table) An information table is the following
tuple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),
where U is a finite non-empty set of objects, At is a finite non-empty set of
attributes, Va is a non-empty set of values of a ∈ At, and Ia : U −→ Va is an
information function that maps an object of U to exactly one value in Va.

An information table represents all available information and knowledge. That
is, objects are only perceived, observed, or measured by using a finite number
of attributes.

Given a subset of attributes A ⊆ At, an indiscernibility relation IND(A) ⊆
U × U is defined by:

IND(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)}.

For any two objects x, y ∈ U , if x IND(A) y, then x and y are indiscernible
based on the attribute set A.

According to the indiscernibility relation, Pawlak defined a reduct in an in-
formation table as a minimum set of attributes that keeps the indiscernibility
relation IND(At) unchanged [20].

Definition 2 (Reduct) Given an information table S, an attribute set R ⊆
At is called a reduct, if R satisfies the two conditions:

(i). IND(R) = IND(At);
(ii). For any a ∈ R, IND(R− {a}) 6= IND(At).

The first condition indicates the joint sufficiency of the attribute set R. The
object pairs that cannot be distinguished (indiscernible) by R still cannot
be distinguished (indiscernible) by At, and vice versa. The second condition
indicates that each attribute in R is individually necessary. There exist object
pairs that cannot be distinguished (indiscernible) by R − {a} but can be
distinguished by At. It means that R is the minimum attribute set that can
keep the indiscernibility relation IND(At). Normally, there is more than one
reduct in an information table. The set of all reducts of an information table
S is denoted as RED(S).
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A special type of information tables can be denoted as S = (U,At = C ∪
{D}, {Va | a ∈ At}, {Ia | a ∈ At}), where C is a set of conditional attributes
and D is a decision attribute indicating the decision class of each object in the
universe. Such an information table is also called a decision table. The relative
indiscernibility relation of two objects is then defined as:

IND(A|{D}) = {(x, y) ∈ U × U | ∀a ∈ A [Ia(x) = Ia(y)] ∨ ID(x) = ID(y)}
= IND(A) ∪ IND({D}).

The relative indiscernibility relation consists of all object pairs that cannot
be distinguished (indiscernible) based on the set A of conditional attributes
or share the same value on the decision attribute D. Based on the relative
indiscernibility relation, a relative reduct can be similarly defined [20].

3 The Discernibility Matrix and the Discernibility Function

This section reviews the relevant results of the discernibility matrix and the
discernibility function [26]. They not only provide a convenient notation, but
also lead to a logical foundation and a systematic way to compute the set of
all reducts.

3.1 The discernibility matrix

Two objects are discernible if their values are different in at least one attribute.
Skowron and Rauszer suggested a matrix representation for storing the sets
of attributes that discern pairs of objects, called a discernibility matrix [26].

Definition 3 (Discernibility matrix) Given an information table S, its
discernibility matrix M = (M(x, y)) is a |U |×|U | matrix, in which the element
M(x, y) for an object pair (x, y) is defined by:

M(x, y) = {a ∈ At | Ia(x) 6= Ia(y)}. (1)

The physical meaning of the matrix elementM(x, y) is that objects x and y can
be distinguished by any attribute inM(x, y). The pair (x, y) can be discerned if
M(x, y) 6= ∅. A discernibility matrix M is symmetric, i.e., M(x, y) = M(y, x),
and M(x, x) = ∅. Therefore, it is sufficient to consider only the lower triangle
or the upper triangle of the matrix.
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Table 1
An information table

U a b c d e

1 high middle middle fer1 pes1

2 middle middle middle fer2 pes1

3 middle high weak fer1 pes2

4 middle high middle fer1 pes1

5 low middle strong fer1 pes1

6 high middle middle fer3 pes2

7 high high middle fer1 pes2

By the definitions of indiscernibility relation and discernibility matrix, we
have:

x IND({a}) y⇐⇒ a /∈M(x, y),

x IND(A) y⇐⇒A ∩M(x, y) = ∅.

Therefore, they can be defined by each other as follows:

IND(A) = {(x, y) ∈ U × U | A ∩M(x, y) = ∅};
M(x, y) = {a ∈ At | ¬(x IND({a}) y)}.

An attribute set A ⊆ At can discern an object pair (x, y) if A ∩M(x, y) 6= ∅.

Example 1 We adopt the information table shown in Table 1 from [34] to
illustrate the basic concepts, where a, b, c, d and e represent temperature,
humidity, wind, fertilization and pesticide, respectively.

The discernibility matrix of Table 1 is shown below. For the underlined object
pair (2,1), the entry {a, d} indicates that either attribute a or d discerns the
two objects.
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Table 2
A decision table

U a b c d e D

1 high middle middle fer1 pes1 high

2 middle middle middle fer2 pes1 high

3 middle high weak fer1 pes2 high

4 middle high middle fer1 pes1 low

5 low middle strong fer1 pes1 low

6 high middle middle fer3 pes2 low

7 high high middle fer1 pes2 low



{a, d}

{a, b, c, e} {b, c, d, e}

{a, b} {b, d} {c, e}

{a, c} {a, c, d} {a, b, c, e} {a, b, c}

{d, e} {a, d, e} {a, b, c, d} {a, b, d, e} {a, c, d, e}

{b, e} {a, b, d, e} {a, c} {a, e} {a, b, c, e} {b, d}



For a decision table, the relative discernibility can also be stored in a matrix
form in which an element is defined as:

M(x, y) = {a ∈ C | [Ia(x) 6= Ia(y)] ∧ [ID(x) 6= ID(y)]}. (2)

That is, we only consider the discernibility of objects in different decision
classes.

Example 2 The decision table shown in Table 2, adopted from [34], can be
used to illustrate a relative discernibility matrix. The discernibility matrix is
shown below.
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∅

∅ ∅

{a, b} {b, d} {c, e}

{a, c} {a, c, d} {a, b, c, e} ∅

{d, e} {a, d, e} {a, b, c, d} ∅ ∅

{b, e} {a, b, d, e} {a, c} ∅ ∅ ∅



(3)

Once a discernibility matrix is constructed, it can be processed in the same
way, independent of whether it is a normal discernibility matrix or a relative
discernibility matrix. In the rest of the paper, we consider them uniformly as
a discernibility matrix.

3.2 The discernibility function

From a discernibility matrix, one can define the notion of a discernibility
function [26].

Definition 4 (Discernibility function) The discernibility function of a dis-
cernibility matrix is defined by:

f(M) =
∧
{
∨

(M(x, y))|∀x, y ∈ U,M(x, y) 6= ∅}. (4)

The expression
∨

(M(x, y)) is the disjunction of all attributes in M(x, y), in-
dicating that the object pair (x, y) can be distinguished by any attribute in
M(x, y). The expression

∧{∨(M(x, y))} is the conjunction of all
∨

(M(x, y)),
indicating that the family of discernible object pairs can be distinguished by
a set of attributes satisfying

∧{∨(M(x, y))}.

The discernibility function can be used to state an important result regarding
the set of reducts of an information table, as shown by the following theorem
from Skowron and Rauszer [26].

Theorem 1 The reduct set problem is equivalent to the problem of transform-
ing the discernibility function to a reduced disjunctive form. Each conjunctor
of the reduced disjunctive form is called a prime implicant. Given the discerni-
bility matrix M of an information table S, an attribute set R = {a1, . . . , ap}
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is a reduct if and only if the conjunction of all attributes in R, denoted as
a1 ∧ · · · ∧ ap, is a prime implicant of f(M).

In order to derive the reduced disjunctive form, the discernibility function
f(M) is transformed by using the absorption and distribution laws. Accord-
ingly, finding the set of reducts can be modelled based on the manipulation
of a Boolean function. The set RED(S) of reducts of an information table is
equivalent to the set of prime implicants of the discernibility function.

Based on the results of Theorem 1, Skowron and Rauszer [26] also suggested
an alternative characterization of a reduct in terms of the discernibility matrix
as shown by the next theorem.

Theorem 2 Given the discernibility matrix M of an information table S, an
attribute set R is a reduct if and only if

(i). ∀(x, y) ∈ U × U [M(x, y) 6= ∅ =⇒ R ∩M(x, y) 6= ∅];
(ii). ∀a ∈ R ∃(x, y) ∈ U × U [M(x, y) 6= ∅ ∧ ((R− {a}) ∩M(x, y) = ∅)].

Property (i) shows that R is jointly sufficient for distinguishing all discernible
object pairs. In fact, the set of attributes formed by the union of all elements
of the discernibility matrix satisfies property (i). Property (ii) shows that each
attribute in R is individually necessary. The result of Theorem 2 provides a
convenient way to test if a subset of attributes is a reduct. However, it does not
directly offer a method to compute a reduct. Many authors have proposed and
studied various algorithms to construct a reduct based on the discernibility
matrix [18,20,22,30,34]. For simplicity, we denote the set of reducts of an
information table in terms of the discernibility matrix by RED(M).

4 Discernibility Matrix Simplification

In his book on rough sets, Pawlak [20] introduced the notion of a minimum
discernibility matrix. He noted that the union of all elements of the minimum
matrix is a reduct.

4.1 Minimum discernibility matrix

Given a reduct R, for all M(x, y) 6= ∅, we have R ∩M(x, y) 6= ∅. Thus, for
each non-empty M(x, y), we can replace it by one and only one attribute in
R to preserve the original discernibility of x and y. Such a simplest form is
called a minimum discernibility matrix [20]. For a given reduct R, we may
obtain more than one minimum discernibility matrix.
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Example 3 Consider Table 1. It can be verified that attribute sets {a, b, e}
and {a, b, c, d} are two reducts. We can obtain the following two minimum
discernibility matrices of the reducts {a, b, e}



{a}

{a} {b}

{a} {b} {e}

{a} {a} {a} {a}

{e} {a} {a} {a} {a}

{e} {a} {a} {a} {a} {b}


and {a, b, c, d},



{d}

{b} {b}

{b} {b} {c}

{c} {c} {b} {b}

{d} {d} {b} {b} {c}

{b} {b} {c} {a} {b} {b}


respectively.

The intuitive notion of a minimum discernibility matrix can be defined as
follows.

Definition 5 (Minimum discernibility matrix) Given an information ta-
ble S with the discernibility matrix M , a matrix M0 = (M0(x, y)) is called a
minimum discernibility matrix of M if M0 satisfies the following conditions:

(1.) Any element of M0 is either the empty set or a singleton attribute set;
(2.) ∀(x, y) ∈ U×U [M(x, y) 6= ∅ =⇒ (M0(x, y) 6= ∅∧M0(x, y) ⊆M(x, y))];
(3.) ∀(x, y) ∈ U × U [M(x, y) = ∅ =⇒M0(x, y) = ∅];
(4.)

⋃
(M0(x, y)) is a reduct.

According to the definition, an element M0(x, y) of M0 must be a subset of
the corresponding element M(x, y) of M . Furthermore, by conditions (2) and
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(3), M and M0 share the same qualitative property, namely, M(x, y) 6= ∅ ⇐⇒
M0(x, y) 6= ∅. The matrix M0 may be viewed as a simplification of M . Since
each element of M0 is either the empty set or a singleton subset, M0 may be
viewed as the simplest form of M . By the fact that the union of all elements
in M0 is a reduct, M0 gives an alternative representation of a reduct.

The procedure for constructing a minimum matrix from a reduct is trivial and
of no practical value. On the other hand, the reverse procedure is useful. If
we can transform M into one of its minimum forms, we can easily obtain a
reduct by taking the union of all elements of the minimum matrix. However,
an algorithm does not exist yet for constructing such a minimum matrix.

Intuitively speaking, an element M0(x, y) of the minimum matrix M0 is ob-
tained by deleting some attributes from M(x, y) of M . This deletion operation
may be viewed as a matrix simplification operation. In order to ensure that
the simplified matrix contains a reduct, we need to establish criteria for dele-
tion. That is, we need to study the conditions under which an attribute in
each M(x, y) ∈M can be deleted, as well as systematic procedures of matrix
simplification. In the rest of this paper, we present such a method.

4.2 Equivalence, specification and similarity of matrices

In order to precisely define matrix simplification operations, we first introduce
several relationships between two discernibility matrices.

Definition 6 (Simplified discernibility matrix) A matrix Ms is called a
simplified discernibility matrix of a discernibility matrix M if the following
conditions hold:

(1.) ∀(x, y) ∈ U × U [M(x, y) 6= ∅ =⇒ (Ms(x, y) 6= ∅ ∧Ms(x, y) ⊆M(x, y))];
(2.) ∀(x, y) ∈ U × U [M(x, y) = ∅ =⇒Ms(x, y) = ∅].

In this paper, our discussion is restricted to simplified discernibility matrices.
When no confusion arises, we also call a simplified discernibility matrix a
discernibility matrix.

We can define three types of relations between two discernibility matrices.
Two discernibility matrices are equivalent if they have exactly the same set
of reducts. One is a specification of the other if its set of reducts is a subset
of the set of reducts of the other. They are similar if they share at least one
reduct. Formally, we have the following definitions.

Definition 7 (Equivalence, specification and similarity of matrices)
A discernibility matrix M1 is equivalent to another discernibility matrix M2,
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denoted as M1 ≡M2, if RED(M1) = RED(M2).

A discernibility matrix M1 is a specification of another discernibility matrix
M2, or M2 is a generalization of M1, denoted as M1 � M2, if RED(M1) ⊆
RED(M2).

A discernibility matrix M1 is similar to another discernibility matrix M2, de-
noted as M1 ≈M2, if RED(M1) ∩RED(M2) 6= ∅.

We can easily verify that

(i). M1 ≡M2 ⇐⇒M1 �M2 ∧M2 �M1;

(ii). M1 ≡M2 =⇒M1 ≈M2.
(5)

The relation ≡ is an equivalence relation, � is reflexive and transitive, and
≈ is reflexive and symmetric. For the purpose of constructing a minimum
discernibility matrix, we need to ensure that the matrix simplification process
is guided by one of these relations.

4.3 Elementary matrix operations

Based on the concepts of matrix equivalence and specification, we introduce
elementary matrix operations for matrix simplification. While the absorption
operations produce an equivalent matrix, the deletion operations produce a
specification of the original matrix.

Element absorption: For a matrix element M(x′, y′) 6= ∅, it absorbs another
element M(x, y) if the following condition holds:

∅ 6= M(x′, y′) ⊂M(x, y).

That is, the value of M(x, y) is replaced by the value of M(x′, y′) in the matrix.
We also say M(x, y) is absorbed by M(x′, y′).

The physical meaning of element absorption can be explained as follows. Sup-
pose M(x′, y′) 6= ∅ and M(x′, y′) ⊂ M(x, y). The set of attributes discerning
both pairs (x′, y′) and (x, y) is given by M(x, y)∩M(x′, y′) = M(x′, y′). After
absorption, M(x, y) becomes M(x′, y′). Attributes in M(x′, y′) are sufficient to
discern both object pairs (x′, y′) and (x, y). When an attribute from M(x′, y′)
is in a reduct, the same attribute can be used to discern (x, y). Thus, it is not
necessary to consider attributes in M(x, y)−M(x′, y′).

Based on element absorption, Wang et al. [34] propose a generalized version of
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the matrix absorption operation. Specifically, one applies the element absorp-
tion operation for all element pairs in the matrix to obtain a simpler matrix.

Matrix absorption: The matrix absorption operation is a sequence of all
possible element absorption operations on pairs of elements whenever the fol-
lowing condition holds:

∅ 6= M(x′, y′) ⊂M(x, y).

After matrix absorption, no element in the matrix is a proper subset of another
element.

It should be pointed out that the resulting matrix from matrix absorption is
not unique and depends on the ordering in which different pairs of elements
are absorbed. Nevertheless, all the absorbed matrices are equivalent to the
original discernibility matrix.

Lemma 1 The matrix obtained by the application of an element absorption
operation is equivalent to the original matrix. A matrix obtained by the matrix
absorption operation is equivalent to the original matrix.

Proof. The element absorption operation picks an element M(x1, y1) 6= ∅ of
M and works on another element M(x2, y2) with M(x1, y1) ⊂ M(x2, y2). Let
Me denote the matrix after the element absorption operation regarding the
absorber M(x1, y1). By the definition of element absorption, we have:

Me(x, y) =

M(x1, y1), (x, y) = (x2, y2);

M(x, y), otherwise.
(6)

To prove the first part of the lemma, we need to show that RED(M) ≡
RED(Me).

RED(M) ⊆ RED(Me): Suppose R ∈ RED(M). By Theorem 2, we have:

(i). ∀(x, y) ∈ U × U [M(x, y) 6= ∅ =⇒ R ∩M(x, y) 6= ∅];
(ii). ∀a ∈ R ∃(x, y) ∈ U × U [M(x, y) 6= ∅ ∧ ((R− {a}) ∩M(x, y) = ∅)].

We now show that R also satisfies (i) and (ii) for the matrix Me. According
to Equation (6), for (i) we only need to show that Me(x2, y2) ∩ R 6= ∅. This
is obviously the case because Me(x2, y2) = M(x1, y1) and M(x1, y1) ∩ R 6= ∅.
By the fact that Me(x, y) ⊆ M(x, y) for all object pairs and R satisfies (ii)
for M , R satisfies (ii) for Ms. According to Theorem 2, R ∈ RED(Me). Thus,
RED(M) ⊆ RED(Me).

RED(Me) ⊆ RED(M): Suppose R ∈ RED(Me). By Theorem 2, R satisfies
(i) and (ii) for the matrixMe. By the fact thatMe(x, y) ⊆M(x, y) for all object
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pairs, it follows that R satisfies (i) for M . Since R satisfies (ii) for Me, we know
that for any attribute a ∈ R there exists (x, y) ∈ U ×U , such that Me(x, y) 6=
∅ and (R − {a}) ∩ Me(x, y) = ∅. If (x, y) 6= (x2, y2), we can immediately
conclude that M(x, y) = Me(x, y) 6= ∅ and (R − {a}) ∩ M(x, y) = (R −
{a}) ∩Me(x, y) = ∅. If (x, y) = (x2, y2), it follows Me(x2, y2) = M(x1, y1) 6= ∅
and (R − {a}) ∩ M(x1, y1) = (R − {a}) ∩ Me(x2, y2) = ∅. Therefore, if R
satisfies (ii) for Me, it satisfies (ii) for M . By Theorem 2, R ∈ RED(M).
Thus, REDe(M) ⊆ RED(M).

Since the number of elements of a matrix is finite, the above proof can be
easily extended to the matrix absorption operation to prove the second part
of the lemma. 2

Attribute deletion: For an attribute a ∈ At, the attribute deletion operation
deletes a from all the elements if the following condition holds:

∀(M(x, y) 6= ∅) [(M(x, y)− {a}) 6= ∅].

In other words, attribute a can be deleted if {a} is not a singleton set in M .

The physical meaning of attribute deletion can be seen from the result of
Theorem 2. Recall that the union of all elements in the discernibility matrix,
i.e., W =

⋃
(M(x, y)), satisfies the joint sufficiency property:

(i). ∀(x, y) ∈ U × U [M(x, y) 6= ∅ =⇒ W ∩M(x, y) 6= ∅].

However, it may not satisfy the individual necessity property:

(ii). ∀a ∈ W ∃(x, y) ∈ U × U [M(x, y) 6= ∅ ∧ ((W − {a}) ∩M(x, y) = ∅)].

If the attribute set W does not satisfy property (ii), there must exist an
attribute a ∈ W such that

∀(M(x, y) 6= ∅) [(W − {a}) ∩M(x, y) 6= ∅].

It follows that W − {a} still satisfies property (i) and hence it can be deleted
from W .

In general, one can apply the attribute deletion operation several times to
delete a set of attributes.

Attribute set deletion: For an attribute set A ⊆ At, the attribute set
deletion operation deletes all the attributes in A from all the elements if the
following condition holds:

∀(M(x, y) 6= ∅) [(M(x, y)− A) 6= ∅].
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In other words, the attribute set A can be deleted if none of the subsets of A
is an element of M .

There are several reasons to study the set deletion operation. First, the set
deletion operation can be interpreted as a sequence of the single attribute
deletion operations. It provides a short-hand notation for the sequence. Sec-
ond, set deletion may reduce the computational cost. Third, in many reduct
construction algorithms, set deletion plays an important role. This will be
explained in detail in Section 5.

The results of the two deletion operations are unique, and the simplified ma-
trices are specifications of the original discernibility matrix.

Lemma 2 The matrix obtained by the application of an attribute deletion
operation or an attribute set deletion operation is a specification of the original
matrix.

Proof. Let Ms denote the matrix after the attribute d is deleted by the at-
tribute deletion operation. By the definition of attribute deletion, we have:

Ms(x, y) =

M(x, y), d /∈M(x, y);

M(x, y)− {d}, otherwise.
(7)

We need to show that RED(Ms) ⊆ RED(M). Suppose R ∈ RED(Ms). By
Theorem 2, R satisfies (i) and (ii) for the matrix Ms. It follows that d /∈ R,
otherwise it does not satisfy the individual necessity property (ii). By the fact
that Ms(x, y) ⊆ M(x, y) for all object pairs, it follows that R satisfies (i) for
M . Since R satisfies (ii) for Ms, we know that for any attribute a ∈ R there
exists (x, y) ∈ U × U , such that Ms(x, y) 6= ∅ and (R − {a}) ∩Ms(x, y) = ∅.
If d /∈ M(x, y), we can immediately conclude that M(x, y) 6= ∅ and (R −
{a}) ∩ M(x, y) = ∅. If d ∈ M(x, y), from the fact that d /∈ R, it follows
M(x, y) = Ms(x, y)∪{d} 6= ∅ and (R−{a})∩ (Ms(x, y)∪{d}) = ∅. Therefore,
if R satisfies (ii) for Ms, it satisfies (ii) for M . By Theorem 2, R ∈ RED(M).
Thus, REDs(M) ⊆ RED(M).

Since the attribute set deletion operation can be interpreted as a finite number
of attribute deletions, the same conclusion holds for the attribute set deletion
operation. 2

The resulting matrix from a deletion operation is a simplified matrix of the
original matrix, as defined by Definition 6. As shown by Lemma 3, such a
simplified matrix contains at least one reduct of the original matrix.

Lemma 3 The matrix obtained by the application of an attribute deletion
operation or an attribute set deletion operation contains at least one reduct of
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the original matrix.

Proof. Suppose Ms is the simplified matrix by deleting an attribute d ∈ At
from the original discernibility matrix M . The union of all elements in Ms is
W =

⋃
(Ms(x, y)) =

⋃
(M(x, y))−{d}. From the fact that Ms(x, y) ⊆M(x, y),

it follows that W satisfies the joint sufficiency property (i) of Theorem 2 for
both matrices M and Ms. That is, W is a superset of a reduct, namely, a
super-reduct [33], for both M and Ms. Hence, they must share at least one
reduct, which is a subset of W . Similarly, we can prove that the simplified
matrix after applying the attribute set deletion operation also must contain
at least one reduct of the original matrix. 2

Both the absorption and the deletion operations produce a simplified matrix.
The following theorem shows that these operations are indeed sufficient to
produce a minimum matrix.

Theorem 3 A discernibility matrix can be transformed to a minimum matrix
by the application of a finite number of elementary matrix operations.

Proof. We first need to prove that a finite number of elementary matrix
operations will produce a matrix which contains only the empty set or sin-
gleton subsets. Suppose there exists an element which contains at least two
attributes, and let us denote it by M(x0, y0). We consider two cases: (1) there
exists a non-empty element of M which is a proper subset of M(x0, y0), and
(2) there does not exist a non-empty element of M which is a proper subset
of M(x0, y0). For case (1), the element M(x0, y0) is absorbed by the proper
subset, and hence its cardinality is reduced by at least one. For case (2), for
any attribute a ∈ M(x0, y0), {a} is not a singleton attribute set in M . One
can conclude that a satisfies the following condition for the attribute deletion
operation:

∀(M(x, y) 6= ∅) [M(x, y)− {a} 6= ∅].

Thus, by applying the attribute a deletion operation, the cardinality of the
element M(x0, y0) is reduced. Since the number of elements in the matrix and
the cardinality of each element are finite, we can produce a matrix Ms contain-
ing only the empty set or singleton subsets by a finite number of elementary
matrix operations.

For matrix Ms, the union of all its elements satisfies the properties (i) and (ii)
of Theorem 2, and hence is a reduct of Ms. According to Lemmas 2 and 3, it
is also a reduct of the original discernibility matrix of an information table.
By the definition of a minimum matrix, we can conclude that the resulting
matrix is in fact a minimum matrix. 2

Example 4 Consider the discernibility matrix of Table 1:
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{a, d}

{a, b, c, e} {b, c, d, e}

{a, b} {b, d} {c, e}

{a, c} {a, c, d} {a, b, c, e} {a, b, c}

{d, e} {a, d, e} {a, b, c, d} {a, b, d, e} {a, c, d, e}

{b, e} {a, b, d, e} {a, c} {a, e} {a, b, c, e} {b, d}



(8)

We demonstrate matrix simplification by using two different sequences of ele-
mentary operations.

(1). By applying the matrix absorption operation on M in Equation (8), the
simplified matrix is given by:



{a, d}

{a, b} {d, e}

{a, b} {b, d} {c, e}

{a, c} {a, d} {a, b} {a, b}

{d, e} {a, d} {a, b} {a, b} {a, c}

{b, e} {a, d} {a, c} {a, e} {a, b} {b, d}


It can be seen that attribute a can be deleted. The attribute a deletion operation
produces:



{d}

{b} {d, e}

{b} {b, d} {c, e}

{c} {d} {b} {b}

{d, e} {d} {b} {b} {c}

{b, e} {d} {c} {e} {b} {b, d}


By applying the matrix absorption, we arrive at a minimum matrix:
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{d}

{b} {d}

{b} {b} {c}

{c} {d} {b} {b}

{d} {d} {b} {b} {c}

{b} {d} {c} {e} {b} {b}


The corresponding reduct is {b, c, d, e}.

(2). By applying attribute set {b, c} deletion on M in Equation (8), we obtain:



{a, d}

{a, e} {d, e}

{a} {d} {e}

{a} {a, d} {a, e} {a}

{d, e} {a, d, e} {a, d} {a, d, e} {a, d, e}

{e} {a, d, e} {a} {a, e} {a, e} {d}


We then apply the matrix absorption operation, and the result is a minimum
matrix:



{a}

{a} {d}

{a} {d} {e}

{a} {a} {a} {a}

{d} {a} {a} {a} {a}

{e} {a} {a} {a} {a} {d}


We obtain a different reduct {a, d, e}.
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Input: The discernibility matrix M of an information table S.
Output: A reduct R.

while M contains non-singleton subsets do
M = ξ(M);

output R as the union of all elements in M .

Fig. 1. A general reduct construction algorithm

4.4 Reduct construction algorithms based on matrix simplification

The matrix operations allow us to design various algorithms based on matrix
simplification. By the result of Theorem 3, a high-level outline of a general
reduct construction algorithm is given in Figure 1. The operation ξ represents
any elementary matrix operation. The sequence of operations is not fixed,
and hence many different versions of the algorithm can be designed based on
different sequences of operations.

The proposed method for constructing a reduct by matrix simplification shares
high-level similarities with the classical method for solving a system of linear
equations. Corresponding to the Gaussian elimination method, we propose a
row-wise matrix simplification method.

In row-wise matrix simplification, we apply the absorption and the deletion
operations to simplify the matrix elements row by row. Consider the situation
of simplifying element M(i, j) in a triangular representation of a matrix. As
shown by Figure 2, we divide the triangle into two parts. Part A contains all
the simplified elements and part B contains all the non-simplified elements. If
we arrange the elements of the matrix in the following order:

M(2, 1),M(3, 1),M(3, 2),M(4, 1), . . . ,M(i, j), . . . ,M(n, n− 1),

where n = |U |, then A consists of those elements before M(i, j) and B contains
those elements after M(i, j).

If element M(i, j) is not the empty set, we will simplify it in three steps. In the
first step, we try to absorb M(i, j) by all the elements in B, so that no element
in B is a proper subset of M(i, j). In the second step, we select any attribute a
in M(i, j), compute the set of remaining attributes, let A = M(i, j)−{a}, and
replace M(i, j) by {a}. In the third step, we try to absorb elements in B by {a}
and perform the deletion of A on elements in B. It should be noted that after
the matrix absorption operation in the first step, for all ∅ 6= M(x, y) ∈ B,
M(x, y) − A 6= ∅. The result of this row-wise simplification is a minimum
matrix. The detailed algorithm is given in Figure 3.
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M(i,j)

Fig. 2. Divide the triangle of the matrix into two parts: the simplified part (A) and
the non-simplified part (B)

There are n2−n
2

elements in the triangular representation of a discernibility
matrix. For the row-wise simplification algorithm, each non-empty element
M(i, j) is first absorbed by the non-simplified elements in B, then the simpli-
fied element M(i, j) is employed to absorb the non-simplified elements in B.
If we treat the time complexity of the element absorption operation as a unit,
then in the worst cases, element M(2, 1) needs to take n2−n

2
− 1 absorptions,

element M(3, 1) needs to take n2−n
2
− 2 absorptions, and so on. Therefore, for

all elements in M , the time complexity for the worst case is O(n4).

In the presentation of the row-wise simplification algorithm, we emphasize its
high-level structure. Thus, we purposely omit a number of techniques to speed
up the process. For example, if M(i, j) is a singleton set, we do not need to
absorb it by elements of B. If A = ∅, we do not need to perform the deletion
of A operation. Normally, many elements of the discernibility matrix are the
same set. This suggests a set-based representation. If the matrix is represented
as a set, we can eliminate the empty set, and do not need to simplify the
duplicate elements [34]. We can select the element with the minimum length
as a starting point in order to facilitate the matrix absorption operation.

Example 5 We illustrate the row-wise simplification algorithm by an exam-
ple. Suppose we have a decision table shown in Table 3. Its discernibility matrix
is shown below, with non-empty elements in part B underlined:
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Input: The discernibility matrix M of an information table S.
Output: A reduct R.

for i = 2 to n do {
for j = 1 to i− 1 {

if M(i, j) 6= ∅ {
// Absorb M(i, j) by every non-empty element in B
for every non-empty element M(i′, j′) ∈ B do

if M(i′, j′) ⊂M(i, j) then
M(i, j) = M(i′, j′);

// Divide M(i, j) into two parts
select an attribute a from M(i, j);
A = M(i, j)− {a};
M(i, j) = {a};

// Simplify every non-empty element in B
for every non-empty element M(i′, j′) ∈ B do

if a ∈M(i′, j′) then
M(i′, j′) = {a};

else
M(i′, j′) = M(i′, j′)− A;

} // end if
} // end for loop of j

} // end for loop of i

Fig. 3. A row-wise simplification reduct construction algorithm
Table 3
Another decision table

U a b c d e f D

1 0 0 0 0 0 0 +

2 1 1 1 1 0 0 +

3 1 0 0 0 1 0 +

4 1 1 0 0 0 1 -

5 1 0 1 0 0 0 -

6 1 0 0 1 0 0 -

∅

∅ ∅

{a, b, f} {c, d, f} {b, e, f}

{a, c} {b, d} {c, e} ∅

{a, d} {b, c} {d, e} ∅ ∅


(9)
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The first iteration of row-wise simplification: absorbing M(4, 1) by B produces:



∅

∅ ∅

{a, b, f} {c, d, f} {b, e, f}

{a, c} {b, d} {c, e} ∅

{a, d} {b, c} {d, e} ∅ ∅



Let A = {b, f} and M(4, 1) = {a}. We simplify part B into:



∅

∅ ∅

{a} {c, d} {e}

{a} {d} {c, e} ∅

{a} {c} {d, e} ∅ ∅



The second iteration of row-wise simplification: absorbing M(4, 2) by B pro-
duces:



∅

∅ ∅

{a} {d} {e}

{a} {d} {c, e} ∅

{a} {c} {d, e} ∅ ∅



Let A = ∅ and M(4, 2) = {d}. We simplify part B to produce:
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∅

∅ ∅

{a} {d} {e}

{a} {d} {c, e} ∅

{a} {c} {d} ∅ ∅



The third iteration of row-wise simplification: absorbing M(4, 3) by B produces:



∅

∅ ∅

{a} {d} {e}

{a} {d} {c, e} ∅

{a} {c} {d} ∅ ∅


Let A = ∅ and M(4, 3) = {e}. We then simplify part B to produce:



∅

∅ ∅

{a} {d} {e}

{a} {d} {e} ∅

{a} {c} {d} ∅ ∅


After three iterations, the original matrix is simplified into a minimum matrix,
which produces a reduct {a, c, d, e}.

5 Heuristic Approaches Based on an Ordering of Attributes

Many reduct construction algorithms use an ordering of attributes in order to
represent the importance of attributes [7,11,30,33,34,37]. An ordering can be
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either defined based on a measure of the importance or fitness of attributes,
or given by a user [33]. In this section, we demonstrate that such an ordering
can be easily incorporated into a matrix simplification process.

5.1 Orderings of attributes

An ordering of attributes can be computed based on a measure of the impor-
tance of attributes. The numerical weight of an attribute a may be interpreted
as the degree of fitness of a, or the cost of testing a in a rule. Alternatively,
an ordering can be given by a user. Formally, for any two attributes a, b ∈ At,
a � b means that a is more important than b, or equivalently, the user prefers
a to b. In the absence of preference, we say that a and b are indifferent, denoted
as a ∼ b. Based on the preference and indifference relations, one can define
a relation � on At, that is, a � b ⇐⇒ (a � b) ∨ (a ∼ b). It is reasonable to
assume that the preference-indifference relation � is reflexive and transitive.
A detailed study on this topic in the context of reduct construction is reported
by Yao et al. [33].

We assume that � on At is transitive and complete (i.e., for a, b ∈ At either
a � b or b � a). An ordering satisfying these two properties is called a weak
order [5,24]. For a weak order, we can arrange its elements sequentially, called
a linear extension [33]. For simplicity, we consider a linear extension of a weak
order in the rest of this section.

For a family of attribute sets, we can arrange them sequentially by extending
the ordering of attributes. For two sets of attributes, we first arrange attributes
in them according to the ordering of attributes. We then compare the two sets
of attributes by comparing the corresponding attributes one-by-one. Based
on the directions in which attributes are examined, we define two lexical or-
ders [33]. In the left-to-right lexical order, we compare two sets of attributes
from left to right in order to determine which set of attributes is preferred. In
the right-to-left lexical order, we compare attributes in the reverse order.

Definition 8 (Left-to-right lexical order) Given two attribute sets A :
a1 � a2 � · · · � am and B : b1 � b2 � · · · � bn, let t = min{m,n}. We say
that A precedes B in the left-to-right lexical order, written A � B, if and only
if

(a) there exists an i: 1 ≤ i ≤ t such that aj ∼ bj for 1 ≤ j < i and ai � bi, or
(b) ai ∼ bi for 1 ≤ i ≤ t and m < n.

Definition 9 (Right-to-left lexical order) Given two attribute sets A :
a1 � a2 � · · · � am and B : b1 � b2 � · · · � bn, let t = min{m,n}. We say
that A precedes B in the right-to-left lexical order, written A � B, if and only
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Input: The discernibility matrix M of an information table S, and an
ordering � of attributes.

Output: A reduct R.

perform matrix absorption on M ;
while M contains non-singleton subsets do {

select the right-most attribute a in the ordering � that satisfies
the condition {a} /∈M ;

perform the deletion of a on M ;
perform matrix absorption on M ;

} // end while loop
output R as the union of all elements in M .

Fig. 4. A deletion algorithm for reduct construction

if

(a) there exists an i: 0 ≤ i < t such that am−j ∼ bn−j for 0 ≤ j < i
and am−i � bn−i, or

(b) am−i ∼ bn−i for 0 ≤ i < t and m < n.

These two lexical orders represent two extreme views and define two different
criteria for selecting attribute sets. The left-to-right method focuses on the
preferred attributes of the two sets. That is, the winner is determined by
comparing the strongest attributes of individual sets. On the other hand, the
right-to-left method emphasizes the less preferred attributes of the two sets.
The winner is determined by comparing the weakest attributes of individual
sets [33].

5.2 Two reduct construction algorithms

For the purpose of constructing a reduct, a given ordering of attributes sug-
gests two strategies. It is reasonable to delete less preferred attributes; it is
equally reasonable to include more preferred attributes.

Consider first a deletion-based algorithm that attempts to delete less preferred
attributes from right to left according to an ordering of attributes. The algo-
rithm is given in Figure 4. It deletes the least preferred attribute from the
matrix in each iteration by the attribute deletion operation until a minimum
matrix is constructed.

Example 6 We illustrate the deletion algorithm by the discernibility matrix
of the decision table in Table 3:
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∅

∅ ∅

{a, b, f} {c, d, f} {b, e, f}

{a, c} {b, d} {c, e} ∅

{a, d} {b, c} {d, e} ∅ ∅


(10)

An ordering of conditional attributes is: a � b � c � d � e � f . In this
example, the absorbed matrix is equivalent to the one in Equation (10). We
first delete the least preferred attribute f from the matrix in Equation (10) and
perform matrix absorption to produce:



∅

∅ ∅

{a, b} {c, d} {b, e}

{a, c} {b, d} {c, e} ∅

{a, d} {b, c} {d, e} ∅ ∅


.

We then delete the second least preferred attribute e from the resulting matrix
to produce:



∅

∅ ∅

{a, b} {c, d} {b, e}

{a, c} {b, d} {c, e} ∅

{a, d} {b, c} {d, e} ∅ ∅



and perform the matrix absorption to produce:
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Input: The discernibility matrix M of an information table S, and an
ordering � of attributes.

Output: A reduct R.

perform matrix absorption on M ;
while M contains non-singleton subsets do {

select the left-most attribute a in the ordering � that satisfies
the condition {a} /∈M ;

select an element M(x0, y0) that satisfies the condition a ∈M(x0, y0);
A = M(x0, y0)− {a} and M(x0, y0) = {a};
perform the deletion of A on M ;
perform matrix absorption on M ;

} // end while loop
output R as the union of all elements in M .

Fig. 5. An addition algorithm for reduct construction

∅

∅ ∅

{b} {c} {b}

{c} {b} {c} ∅

{d} {b} {d} ∅ ∅


We obtain a minimum matrix after two deletion operations. The deletion al-
gorithm results in the winning reduct {b, c, d} under the right-to-left lexical
order.

For the deletion algorithm, there is no guarantee that more preferred attributes
will be in the constructed reduct. In order to resolve this problem, we consider
an addition-based algorithm that tries to add more preferred attributes to a
partial reduct from left to right according to the ordering of attributes. The
algorithm is given in Figure 5.

Given an attribute a ∈M(x, y), the attribute set A = M(x, y)−{a} is called
the tail of a in M(x, y). In the addition-based algorithm, if we want to add a to
a partial reduct, we need to delete the tail of a, so that a would be necessary to
discern the corresponding pair of objects. We consider two different situations.
If there is only one element M0(x, y) containing a and it is not a singleton set,
then the only tail A = M(x0, y0) − {a} is deleted from all elements of M . If
there exist more than one element containing a, then a has more than one tail.
We can compare the tails based on either the left-to-right or the right-to-left
lexical order, and select the least preferred one for tail deletion. The reason to
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delete the least preferred tail is try to keep the most preferred attributes in the
partial reduct. It should be noted that after the matrix absorption operation,
∀M(x, y) 6= ∅ [(M(x, y)− A) 6= ∅]. Thus, one can safely perform the deletion
of A operation.

While the deletion algorithm can generate the winning reduct under the right-
to-left lexical order, the addition algorithm does not necessarily produce the
winning reduct under the left-to-right lexical order. In fact, constructing the
winning reduct under the left-to-right lexical order has been proven to be NP-
hard [13]. The intuitive explanation is that the attribute set deletion operation
combined with the matrix absorption operation may delete attributes of the
winning reduct under the left-to-right lexical order.

Example 7 We illustrate the addition algorithm by the same matrix in Equa-
tion (10) of the decision table in Table 3. The ordering of conditional attributes
is: a � b � c � d � e � f . In order to keep the most preferred attribute a in
the minimum matrix, we can either delete the tail {d} according to the left-to-
right lexical order, or delete the tail {b, f} according to the right-to-left lexical
order.

We first show the process of the addition algorithm by selecting the least pre-
ferred tail under the left-to-right lexical order. By selecting a, we delete the
least preferred tail {d} under the left-to-right order from M in Equation (10),
and then perform matrix absorption:



∅

∅ ∅

{a} {c, f} {b}

{a} {b} {e} ∅

{a} {b} {e} ∅ ∅



We then select c, delete {f} from the resulting matrix, and then perform matrix
absorption:
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∅

∅ ∅

{a} {c} {b}

{a} {b} {e} ∅

{a} {b} {e} ∅ ∅


The resulting matrix is a minimum matrix, which indicates a reduct {a, b, c, e}.

We then show the process of the addition algorithm by selecting the least pre-
ferred tail under the right-to-left lexical order. By selecting a, we delete the least
preferred tail {b, f} under the right-to-left order from M in Equation (10), and
then perform matrix absorption:



∅

∅ ∅

{a} {c} {e}

{a} {d} {e} ∅

{a} {c} {d} ∅ ∅


The resulting matrix is a minimum matrix, which indicates a reduct {a, c, d, e}.
It is easy to identify that two resulting reducts satisfying {a, b, c, e} � {a, c, d, e}
according to the left-to-right lexical order. Keeping the current most preferred
attribute by deleting its least preferred tail cannot guarantee that the next most
preferred attribute can be kept. It demonstrates that the addition algorithm does
not necessarily produce the winning reduct under the left-to-right lexical order.

6 Conclusion

The study of reducts is fundamental in rough set theory. The concept of a dis-
cernibility matrix enables us to establish a logical and theoretical foundation
for reducts of an information table. One can define a Boolean function based
on a discernibility matrix. By applying the absorption and distribution laws,
the discernibility function is transformed to a reduced disjunctive form. Each
prime implicant corresponds to a reduct of the information table. Although
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many reduct construction algorithms have been proposed based on the dis-
cernibility matrix, they are based on the logical interpretations of the matrix,
rather than processing the matrix directly. On the other hand, directly oper-
ating on the matrix may provide us an alternative view and produce a deeper
understanding of reduct construction.

Based on the notion of a minimum matrix suggested by Pawlak and a reduct
construction method proposed by Wang and his colleagues, we introduce a
method of reduct construction by matrix simplification. Specifically, one di-
rectly operates on the matrix, in a similar way to the classical Gaussian elim-
ination method for solving a system of linear equations. The basic notions of
this method are matrix equivalence and matrix specification. For transforming
a matrix to an equivalent matrix, we introduce element and matrix absorp-
tions. For transforming a matrix to one of its specifications, we introduce
single attribute and attribute set deletions. These operations are sufficient to
produce a minimum matrix in a finite number of steps. By the fact that the
union of all elements in a minimum matrix is a reduct, the matrix simplifica-
tion process in fact offers a procedure for constructing a reduct.

To demonstrate the working principle of the method, we outline a high-level
algorithm and give a concrete row-wise simplification algorithm. The method
of matrix simplification is applied to the situations where we have an order-
ing of attributes. Two algorithms are proposed by exploring the orderings of
attributes. A deletion-based algorithm tries to delete unimportant attributes,
and an addition-based algorithm tries to include important attributes.

For clarity, we did not cover any topics on optimizations related to the im-
plementation of the proposed matrix simplification algorithms. This allows us
to focus on the basic issues of the method in order to obtain new insights
into reduct construction. As future work, we will investigate data structures
for representing a discernibility matrix which will produce more efficient algo-
rithms.
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