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1 INTRODUCTION

The theory of rough sets is motivated by practical needs in classification, con-
cept formation, and data analysis with insufficient and incomplete informa-
tion [12–15]. It provides a systematic approach for the study of indiscernibility
of objects. Typically, indiscernibility is described using equivalence relations.
When objects of a universe are represented by using a set of attributes, one
may define the indiscernibility of objects based on their attribute values. If two
objects are characterized by the same values on certain attributes, i.e., they
have the same description, they are said to be indistinguishable or equivalent.
All objects with the same description form an equivalence class. The family of
equivalence classes defines a partition of the universe. In terms of equivalence
classes, a subset of the universe may be approximated by two subsets. The
lower approximation is the union of equivalence classes which are subsets of
the given set, and the upper approximation is the union of equivalence classes
which have a nonempty intersection with the given set. They can be formally
described by a pair of unary set-theoretic operators [23]. By applying the ar-
gument in a wider context, one may generalize the notion of approximation
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operators by using non-equivalence relations [10,19,20,22,24], or a covering of
the universe [10,16,25]. This leads to various approximation operators.

By adopting the notion of neighborhood systems from topological space and
its generalization called Frechet (V)space [18], Lin [4,5,7,8] proposed a more
general framework for the study of approximation. In neighborhood systems,
each element of a universe is associated with a nonempty family of subsets
of the universe. This family is called a neighborhood system of the element,
and each member is called a neighborhood of the element. A subset of the
universe can be approximated based on neighborhood systems of all elements
in the universe. With respect to an equivalence relation, the equivalence class
containing a given element may be interpreted as a neighborhood of that
element [10,20]. For an arbitrary binary relation, the successor elements of a
given element may be interpreted as its neighborhood [24]. The theory of rough
sets built from binary relations may therefore be related to neighborhood
systems.

The main objective of this paper is to build a common framework for the study
of a special class of neighborhood systems and rough set approximations. Bi-
nary relations are used as a primitive notion to interpret various concepts
involved. Within the proposed framework, main results of studies on rough
set approximation operators are reviewed. Pawlak approximation operators
are extended in three directions. One extension is consistent with the inter-
pretation of necessity and possibility operators of modal logic. The resulting
approximation operators can be expressed in terms of neighborhood operators.
The other two methods use coverings of universe induced by neighborhood sys-
tems. The connections between binary relations, neighborhood operators, and
approximation operators are examined.

2 RELATION BASED NEIGHBORHOOD OPERATORS

Let U denote a finite and nonempty set called the universe. For each element
x of U , one associates it with a subset n(x) ⊆ U called a neighborhood of x. A
neighborhood of x may or may not contain x. A neighborhood system NS(x)
of x is a nonempty family of neighborhoods of x. A neighborhood system of
U , denoted by NS(U), is the collection of NS(x) for all x in U . It determines
a Frechet (V)space, written (U, NS(U)). There is no additional requirement
on the neighborhood systems in a Frechet (V)space. A topological space is a
Frechet (V)space, but the converse is not true [5,6].

In this study, we consider a special type of neighborhood systems in which
each element has exactly one neighborhood. They are called 1-neighborhood
systems. Such a neighborhood system can be described by a neighborhood
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operator n : U −→ 2U , where 2U denotes the power set of the universe. The
operator n assigns a unique neighborhood n(x) to each element x ∈ U . For a
finite universe U , we can extend a neighborhood operator n from U to 2U as
follows:

N(X) =
⋃

x∈X

n(x). (1)

For the empty set ∅, we define N(∅) = ∅. The mapping N : 2U −→ 2U

associates each subset of U with a subset of U . It may be considered as an
unary set-theoretic operator. By definition, we have N({x}) = n(x). Operator
N may therefore be interpreted as an additive extension of n.

In order to study the structures of 1-neighborhood systems, we consider the
following properties of a neighborhood operator:

serial : for all x ∈ U, there exists a y ∈ U such that y ∈ n(x),

for all x ∈ U, n(x) 6= ∅,

inverse serial : for all x ∈ U, there exists a y ∈ U such that x ∈ n(y),
⋃

x∈U

n(x) = U,

reflexive : for all x ∈ U, x ∈ n(x),

symmetric : for all x, y ∈ U, x ∈ n(y) =⇒ y ∈ n(x),

transitive : for all x, y, z ∈ U, [y ∈ n(x), z ∈ n(y)] =⇒ z ∈ n(x),

Euclidean : for all x, y, z ∈ U, [y ∈ n(x), z ∈ n(x)] =⇒ z ∈ n(y).

A reflexive neighborhood operator is both serial and inverse serial. The family
of neighborhoods {n(x) | x ∈ U} of an inverse serial neighborhood operator
forms a covering of the universe. By combining these properties, we can char-
acterize more classes of neighborhood systems [8]. A neighborhood system is
called a B-neighborhood system if the neighborhood operator is reflexive and
symmetric. It is called a Pawlak-neighborhood system if the neighborhood
operator is reflexive, symmetric, and transitive [5,8]. A Pawlak-neighborhood
system can be equivalently characterized by the properties of reflexivity and
Euclidean. The family of neighborhoods of a Pawlak neighborhood operator
forms a partition of the universe.

The class of 1-neighborhood systems can be interpreted using the more familiar
notion of binary relations. A binary relation R over a universe U is a subset of
the Cartesian product U × U . For two elements x, y ∈ U , if xRy, we say that
y is R-related to x, x is a predecessor of y, and y is a successor of x. Given a
binary relation, we define the successor neighborhood of x as follows:

Rs(x) = {y | xRy}. (2)
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It can be viewed as a successor neighborhood operator from U to 2U . Properties
of a binary relation R can be stated using the successor neighborhood operator:

serial : for all x ∈ U, there exists a y ∈ U such that xRy,

for all x ∈ U, Rs(x) 6= ∅,

inverse serial : for all x ∈ U, there exists a y ∈ U such that yRx,
⋃

x∈U

Rs(x) = U,

reflexive : for all x ∈ U, xRx,

for all x ∈ U, x ∈ Rs(x),

symmetric : for all x, y ∈ U, xRy =⇒ yRx,

for all x, y ∈ U, x ∈ Rs(y) =⇒ y ∈ Rs(x),

transitive : for all x, y, z ∈ U, [xRy, yRz] =⇒ xRz,

for all x, y, z ∈ U, [y ∈ Rs(x), z ∈ Rs(y)] =⇒ z ∈ Rs(x),

for all x, y ∈ U, y ∈ Rs(x) =⇒ Rs(y) ⊆ Rs(x),

Euclidean : for all x, y, z ∈ U, [xRy, xRz] =⇒ yRz,

for all x, y, z ∈ U, [y ∈ Rs(x), z ∈ Rs(x)] =⇒ z ∈ Rs(y),

for all x, y ∈ U, y ∈ Rs(x) =⇒ Rs(x) ⊆ Rs(y).

They correspond to the properties of neighborhood operators. For this reason,
we have in fact used the same naming system for both binary relations and
neighborhood operators.

Let R and Q be two binary relations. We define operations on binary relations
through set-theoretic operations:

∼R = {(x, y) | not xRy},

R ∩ Q = {(x, y) | xRy and xQy},

R ∪ Q = {(x, y) | xRy or xQy}. (3)

They are referred to as the complement, intersection, and union of binary
relations, respectively. For two relations R and Q, the successor neighborhoods
defined by ∼R, R ∩ Q, and R ∪ Q are given by:

(∼R)s(x) =∼Rs(x),

(R ∩ Q)s(x) =Rs(x) ∩ Qs(x),

(R ∪ Q)s(x) =Rs(x) ∪ Qs(x). (4)

They follow from the definitions of operations on binary relations and successor
neighborhoods. The set inclusion defines an order on binary relations on U . A
relation R is said to be finer than another relation Q, i.e., Q is coarser than
R, if R ⊆ Q. The successor neighborhoods of a finer relation are smaller than
that of a coarser relation, namely:
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R ⊆ Q ⇐⇒ for all x ∈ U, Rs(x) ⊆ Qs(x). (5)

Relation R ∩ Q is finer than both R and Q, they are finer than R ∪ Q.

With a binary relation, we can define additional types of neighborhoods of x:

Rp(x) = {y | yRx},

Rp∧s(x) = {y | xRy and yRx} = Rp(x) ∩ Rs(x),

Rp∨s(x) = {y | xRy or yRx} = Rp(x) ∪ Rs(x). (6)

They are called the predecessor, predecessor-and-successor, and predecessor-
or-successor neighborhood operators, respectively. Relationships between these
neighborhood system can be expressed as:

Rp∧s(x) ⊆ Rp(x) ⊆ Rp∨s(x),

Rp∧s(x) ⊆ Rs(x) ⊆ Rp∨s(x). (7)

A binary relation and neighborhood operators Rp and Rs uniquely determine
each other, namely,

xRy ⇐⇒ x ∈ Rp(y) ⇐⇒ y ∈ Rs(x). (8)

However, it is impossible to define others from operators Rp∧s and Rp∨s. For a
symmetric relation, all neighborhood operators Rp, Rs, Rp∧s, and Rp∨s reduce
to the same one. Relationships between properties of a binary relation and
the neighborhood operators are summarized in Table 1. The entry “i. serial”
stands for inverse serial, and the entry “serial & i.” stands for serial and inverse
serial. For reflexive and symmetric relations, all four neighborhood operators
have the same property of the corresponding binary relations.

Binary relation based neighborhoods have been studied by many authors. Or-
lowska [9–11,20] viewed Rp∨s(x) as a neighborhood of x. Yao and Lin [24]
regarded Rs(x) as a neighborhood of x. In general, one may define addi-
tional neighborhood operators, such as R¬s, R¬p, R¬p∨s, etc., which are self-
explanatory. The family of all possible neighborhood operators induced by a
binary relation forms an atomic Boolean algebra, in which the set of atoms
consists of R¬p∧¬s, R¬p∧s, Rp∧¬s, and Rp∧s. There are in total 16 different
neighborhood operators. Each of them represents a different interpretation of
the notion of neighborhoods of an element of U . Their additive extensions
provide neighborhoods of subsets of U .

For a binary relation R, its inverse R−1 is a binary relation defined by [2]:

yR−1x ⇐⇒ xRy. (9)
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Table 1
Properties of a binary relation and induced neighborhood operators

R Rs Rp Rp∧s Rp∨s

any symmetric symmetric

serial serial i. serial serial & i.

i. serial i. serial serial serial & i.

reflexive reflexive reflexive reflexive reflexive

symmetric symmetric symmetric symmetric symmetric

transitive transitive transitive transitive

Euclidean Euclidean Euclidean

R is reflexive and transitive if and only if R−1 is reflexive and transitive,
respectively. R is a symmetric if and only if R = R−1. In this case, we have
R = R−1 = R ∩R−1 = R ∪R−1. Independent of the properties of R, R ∩R−1

and R ∪ R−1 are symmetric relations. For a relation R and its inverse R−1,
the application of operators ∼, ∩, and ∪ produces 16 different relations, such
as ∼R, ∼R−1, and R ∪ ∼R−1. The predecessor neighborhood defined by R

is the successor neighborhood defined by R−1, namely,

Rp(x) = {y | yRx} = {y | xR−1y} = R−1

s (x). (10)

Combining this result with equations (4) and (6), one can establish an one-
to-one correspondence between different neighborhood operators induced by
R with the successor neighborhoods induced by relations derived from R and
R−1. For example, Rp∧s and Rp∨s can be expressed in terms of successor op-
erator as follows:

Rp∧s(x) = (R ∩ R−1)s(x),

Rp∨s(x) = (R ∪ R−1)s(x). (11)

We therefore have an alternative method for the formulation of neighborhood
operators with respect to a binary relation.

Neighborhood operators can be extended to subsets of universe by additive
extension. For example, for the successor neighborhood operator we have:
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Rs(X)=
⋃

x∈X

Rs(x)

= {y | there exists a x ∈ X such that xRy}, (12)

where the same symbol is used to denote both neighborhood operators. The
same relationships between neighborhood operators can be expressed using
subsets of U . For instance, for X ⊆ U we have:

Rp(X)=R−1

s (X),

Rp∧s(X)= (R ∩ R−1)s(X),

Rp∨s(X)= (R ∪ R−1)s(X). (13)

They are counterparts of equations (10) and (11).

3 ROUGH SET APPROXIMATION OPERATORS

In this section, we review and generalize Pawlak approximation operators
based on the notion of 1-neighborhood systems.

3.1 PAWLAK ROUGH SETS

Let R ⊆ U ×U be an equivalence relation on U , i.e., R is reflexive, symmetric,
and transitive. The pair apr = (U, R) is called a Pawlak approximation space.
The equivalence relation R partitions the universe U into disjoint subsets
called equivalence classes. Elements in the same equivalence class are said
to be indistinguishable. Equivalent classes of R are called elementary sets.
A union of elementary sets is called a definable (composed) set [12,13]. The
empty set is considered to be a definable set [23]. The family of all definable
sets is denoted by Def(apr). A Pawlak approximation space defines uniquely
a topological space (U, Def(apr)), in which Def(apr) is the family of all open
and closed sets [12].

Given a subset X ⊆ U , one can approximate X by a pair of subsets of U .
The lower approximation apr(X) is the greatest definable set contained in
X, and the upper approximation apr(X) is the least definable set containing
X. They correspond to the interior and closure of X in the topological space
(U, Def(apr)), and are dual to each other:

(a) apr(X) = ∼apr(∼X),

(b) apr(X) = ∼apr(∼X).
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One may interpret apr, apr : 2U −→ 2U as a pair of dual unary set-theoretic
operators [6,22]. The system (2U ,∩,∪,∼, apr, apr) is called a Pawlak rough
set algebra defined by the equivalence relation R. It may be viewed as an
extension of classical set algebra (2U ,∩,∪,∼).

In the development of rough set theory, two additional and distinct interpre-
tations of approximation operators have been proposed. One is focused on
the elements of U , and the other on the equivalence classes of R. An element
x ∈ U belongs to the lower approximation of X if all its equivalent elements
belong to X. It belongs to the upper approximation of X if at least one of its
equivalent elements belongs to X. That is,

(i) apr(X)= {x ∈ U | [x]R ⊆ X}

= {x ∈ U | for all y ∈ U, xRy implies y ∈ X}

= {x ∈ U | ∀y[y ∈ [x]R =⇒ y ∈ X]},

apr(X)= {x ∈ U | [x]R ∩ X 6= ∅}

= {x ∈ U | there exists a y ∈ U such that xRy and y ∈ X}

= {x ∈ U | ∃y[y ∈ [x]R, y ∈ X]},

where

[x]R = {y | xRy}, (14)

is the equivalence class containing x. This interpretation of approximation
operators is related to interpretation of the necessity and possibility operators
in modal logic [23,24]. Alternatively, in terms of equivalence classes of R, the
pair of lower and upper approximation operators can be defined by:

(ii) apr(X) =
⋃
{[x]R | x ∈ U, [x]R ⊆ X},

apr(X) =
⋃
{[x]R | x ∈ U, [x]R ∩ X 6= ∅}.

The lower approximation of X is the union of equivalence classes that are
subsets of X, and the upper approximation is the union of equivalence classes
that have a nonempty intersection with X.

If non-equivalence binary relations are used, the two interpretations (i) and (ii)
provide different generalizations of approximation operators [9–11,16,17,22–
25]. They are discussed in the following subsections.
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3.2 APPROXIMATION AND NEIGHBORHOOD OPERATORS

In generalizing Pawlak approximation operators, we may therefore use differ-
ent neighborhood operators to define distinct approximation operators. For
an equivalence relation R, the equivalence class [x]R may be considered as
a neighborhood of x. Let n denote an arbitrary neighborhood operator and
n(x) the corresponding neighborhood of x. By substituting [x]R with n(x) in
definition (i), we define a pair of approximation operators [4,6,23]:

(I) apr
n
(X)= {x ∈ U | n(x) ⊆ X}

= {x ∈ U | for all y ∈ U, y ∈ n(x) implies y ∈ X]}

= {x ∈ U | ∀y[y ∈ n(x) =⇒ y ∈ X]},

aprn(X)= {x ∈ U | n(x) ∩ X 6= ∅}

= {x ∈ U | there exists a y∈U such that y∈n(x) and y∈X}

= {x ∈ U | ∃y[y ∈ n(x), y ∈ X]}.

The subscript n indicates that the approximation operators are defined based
on a particular neighborhood operator n. They can be viewed as a generaliza-
tion of (i). The system (2U ,∩,∪,∼, apr

n
, aprn) is called a rough set algebra.

Theorem 1 For an arbitrary neighborhood operator, the pair of approxima-
tion operators satisfies the properties:

(L0) apr
n
(X) = ∼(aprn(∼X)),

(U0) aprn(X) = ∼(apr
n
(∼X));

(L1) apr
n
(U) = U,

(U1) aprn(∅) = ∅;

(L2) apr
n
(X ∩ Y ) = apr

n
(X) ∩ apr

n
(Y ),

(U2) aprn(X ∪ Y ) = aprn(X) ∪ aprn(Y ).

PROOF. It can be easily checked by definition that (L1) and (U1) hold.
Approximation operators are defined by using the universal and existential
quantifiers. The other two properties trivially follow from the following laws
of predicate logic:

(a) ∀x[P (x)] ⇐⇒ ¬(∃x[¬P (x)]),

∃x[P (x)] ⇐⇒ ¬(∀x[¬P (x)]),

(b) ∀x[P (x) ∧ Q(x)] ⇐⇒ ∀x[P (x)] ∧ ∀x[Q(x)],

∃x[P (x) ∨ Q(x)] ⇐⇒ ∃x[P (x)] ∨ ∃x[Q(x)].
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where the variable x is over U , and P and Q are predicate symbols.

The interpretation of rough set approximation operators using predicate logic
was recently studied by Wong and Yao [21].

Properties (L0) and (U0) show that approximation operators apr
n

and aprn

are dual to each other. Properties with the same number may be considered as
dual properties. The first three properties are independent. They also imply
many other useful properties of approximation operators, for example,

(L3) apr
n
(X ∪ Y ) ⊇ apr

n
(X) ∪ apr

n
(Y ),

(U3) aprn(X ∩ Y ) ⊆ aprn(X) ∩ aprn(Y );

(L4) X ⊆ Y =⇒ apr
n
(X) ⊆ apr

n
(Y ),

(U4) X ⊆ Y =⇒ aprn(X) ⊆ aprn(Y );

(L5) apr
n
(X) =

⋂

x 6∈X

apr
n
(∼{x}),

(U5) aprn(X) =
⋃

x∈X

aprn({x}).

Properties (L4) and (U4) state that approximation operators are monotonic
with respect to set inclusion. Properties (L5) and (U5) show the relationships
between the approximations of the set X and the approximations of a family
of subsets of U constructed from the singleton subsets of X.

Additional properties of approximation operators are determined by the prop-
erties of neighborhood operators. The main results are summarized in the
following theorem.

Theorem 2 Suppose n : U −→ 2U is a neighborhood operators. With re-
spect to serial, inverse serial, reflexive, symmetric, transitive, and Euclidean
neighborhood operators, the approximation operators have the following corre-
sponding properties:

(L6) apr
n
(∅) = ∅,

(U6) aprn(U) = U,

(LU6) apr
n
(X) ⊆ aprn(X);

(L7) for all x ∈ U, apr
n
(∼ {x}) 6= U ;

(U7) for all x ∈ U, aprn({x}) 6= ∅;

(L8) apr
n
(X) ⊆ X,

(U8) X ⊆ aprn(X);

(L9) X ⊆ apr
n
(aprn(X)),

(U9) aprn(apr
n
(X)) ⊆ X;
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(L10) apr
n
(X) ⊆ apr

n
(apr

n
(X)),

(U10) aprn(aprn(X)) ⊆ aprn(X);

(L11) aprn(X) ⊆ apr
n
(aprn(X)),

(U11) aprn(apr
n
(X)) ⊆ apr

n
(X)).

PROOF. By the duality of approximation operators, we only need to prove
one of the dual properties.

Serial neighborhood operator: For any x ∈ U , we have n(x) 6= ∅. It immedi-
ately follows that (L6) holds. Now suppose x ∈ apr

n
(X). We have n(x) ⊆ X

and n(x) 6= ∅. They imply n(x) ∩ X 6= ∅, namely, x ∈ aprn(X). Thus, prop-
erty (LU6) holds. In fact, one can easily show that (L6), (U6), and (LU6) are
equivalent, provided that (L0), (U0), (L2), and (U2) hold.

Inverse serial neighborhood operator: For any x ∈ U , there must exist a y ∈ U

such that x ∈ n(y). Hence, n(y) 6⊆∼ {x}. By definition, y must not belong to
apr

n
(∼ {x}), which implies that (L7) holds.

Reflexive neighborhood operator: For any x ∈ U , x ∈ n(x). Suppose x ∈
apr

n
(X), which is equivalent to n(x) ⊆ X. Combining x ∈ n(x) and n(x) ⊆ X,

we have x ∈ X. Thus, (L8) holds.

Symmetric neighborhood operator: Suppose x ∈ X. By the symmetry of n,
for all y ∈ n(x) we have x ∈ n(y), i.e., x ∈ n(y) ∩ X. This implies that
for all y ∈ n(x), y ∈ aprn(X). Hence, n(x) ⊆ aprn(X), which means that
x ∈ apr

n
(aprn(X)). Therefore, (L9) holds.

Transitive neighborhood operator: Suppose x ∈ apr
n
(X), i.e., n(x) ⊆ X. By

transitivity, for all y ∈ n(x), n(y) ⊆ n(x) ⊆ X. This is equivalent to say that
for all y ∈ n(x), y ∈ apr

n
(X). One can therefore conclude that n(x) ⊆ apr

n
(X)

and in turn x ∈ apr
n
(apr

n
(X)). That is, (L10) holds.

Euclidean neighborhood operator: Suppose x ∈ aprn(X), i.e., n(x) ∩ X 6= ∅.
By the Euclidean property of n, for all y ∈ n(x), n(x) ⊆ n(y). Combining this
result with n(x)∩X 6= ∅, we can conclude that for all y ∈ n(x), y ∈ aprn(X).
This is equivalent to say n(x) ⊆ aprn(X), which implies x ∈ apr

n
(aprn(X)).

Therefore, (L11) holds.

Approximation operators defined by (I) are consistent with the notion of ne-
cessity and possibility operators in modal logic [11,23,24]. With respect to
axioms in modal logic [1], if necessity operator 2 is replaced by apr

n
, possi-

bility operator 3 by aprn, negation ¬ by set complement ∼, conjunction ∧
by set intersection ∩, disjunction ∨ by set union ∪, and implication → by
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set inclusion ⊆, one can obtain the axioms of approximation operators. Most
of the properties of approximation operators discussed so far correspond to
axioms in modal logic.

With respect to a binary relation, we may define distinct approximation op-
erators by using different neighborhood operators. The choice of a particular
rough set algebra depends on the application. For neighborhood operators
Rp(x), Rs(x), Rp∧s(x), and Rp∨s(x), four commonly used pairs of approxima-
tion operators are defined by:

(I1) apr
Rp

(X) = {x ∈ U | Rp(x) ⊆ X},

aprRp
(X) = {x ∈ U | Rp(x) ∩ X 6= ∅},

(I2) apr
Rs

(X) = {x ∈ U | Rs(x) ⊆ X},

aprRs
(X) = {x ∈ U | Rs(x) ∩ X 6= ∅},

(I3) apr
Rp∧s

(X) = {x ∈ U | Rp∧s(x) ⊆ X},

aprRp∧s
(X) = {x ∈ U | Rp∧s(x) ∩ X 6= ∅},

(I4) apr
Rp∨s

(X) = {x ∈ U | Rp∨s(x) ⊆ X},

aprRp∨s
(X) = {x ∈ U | Rp∨s(x) ∩ X 6= ∅}.

For Pawlak approximation operators, an equivalence relation R is used. In this
case, four neighborhood operators become the same, i.e., Rp(x) = Rs(x) =
Rp∧s(x) = Rp∨s(x) = [x]R. All definitions (I1)-(I4) are equivalent. The condi-
tion of an equivalence relation is sufficient but not necessary. A necessary and
sufficient condition is given below.

Theorem 3 Two pairs of lower and upper approximation operators from (I1)-
(I4) are equivalent if and only if the binary relation R is symmetric.

PROOF. (⇐=) If R is a symmetric relation, we have for Rp(x) = Rs(x) =
Rp∧s(x) = Rp∨s(x). By definition, (I1)-(I4) are equivalent.

(=⇒) Consider the upper approximation of singleton subsets of U . By defi-
nition, for approximation operator aprRp

, we have:

aprRp
({x}) = {y | Rp(y) ∩ {x} 6= ∅}

= {y | x ∈ Rp(y)}

= {y | xRy}

= {y | y ∈ Rs(x)}

=Rs(x). (15)

Similarly,
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aprRs
({x}) = Rp(x),

aprRp∧s
({x}) = Rp∧s(x),

aprRp∨s
({x}) = Rp∨s(x). (16)

Suppose (I1) and (I2) are equivalent, we must have: for all x ∈ U ,

Rs(x) = aprRp
({x}) = aprRs

({x}) = Rp(x). (17)

Therefore, we can conclude that R is symmetric. Following the same argument,
we can show that the equivalence of any pair from (I1)-(I4) implies that R is
a symmetric relation.

If a binary relation is not symmetric, one may obtain distinct approximation
operators. By definition, each neighborhood operator defines a pair of dual ap-
proximation operators. Orlowska [11] used definition (I1) in the investigation of
dynamic information systems involving temporal information. Definition (I4)
was used by Orlowska [9–11] and Wasilewska [20]. The operators given by (I2)
is a commonly used definition, which has been investigated by many authors
either explicitly through a binary relation or implicitly through a covering
of the universe [11,16,17,22,24]. A number of proposals have been made for
using approximation operators that are not dual to each other. Slowinski and
Vanderpooten [19] used apr

Rp

and aprRs
as a pair of approximation opera-

tors in the study of rough approximations using binary relations that are only
reflexive. Wybraniec-Skardowska [22] used apr

Rs

and aprRp
as a pair of ap-

proximations determined by a binary relation. In this study, we only consider
dual approximation operators.

According to property (U2) and equations (15) and (16), upper approximation
operators can be interpreted using neighborhood operators:

aprRp
(X) = Rs(X),

aprRs
(X) = Rp(X),

aprRp∧s
(X) = Rp∧s(X),

aprRp∨s
(X) = Rp∨s(X). (18)

Clearly, rough set approximation operators are in fact neighborhood opera-
tors. The upper approximation of X defined by the predecessor neighborhood
operator is the successor neighborhood of X, while the upper approxima-
tion of X defined by the successor neighborhood operator is the predecessor
neighborhood of X. In contrast, operators Rp∧s and Rp∨s produce upper ap-
proximations that are the same as the corresponding neighborhoods. For these
operators, we can establish the following relationships:
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apr
Rp∧s

(X)= {x ∈ U | aprRp∧s
({x}) ⊆ X},

apr
Rp∨s

(X)= {x ∈ U | aprRp∨s
({x}) ⊆ X}. (19)

This connection between lower and upper approximation operators has been
investigated by some authors [17,22]. Wybraniec-Skardowska [22] defined a
lower approximation operator in terms of upper approximations of singleton
subsets of U using equation (19). One can verify that there does not exist
such a relationship between apr

Rp

and aprRp
, and between apr

Rs

and aprRs
.

This implies that in general one may not use equation (19) to define dual
approximation operators.

3.3 APPROXIMATION OPERATORS AND NEIGHBORHOODS

In a Pawlak approximation space, the family of equivalence classes forms a
partition of universe. By using coverings instead of partitions, many studies
generalize Pawlak approximation operators [16,22,25]. Such a generalization
can be easily interpreted in the framework of neighborhood systems.

Using 1-neighborhood systems, we may define a pair of approximation oper-
ators by replacing the equivalence class [x]R with the neighborhood n(x) in
definition (ii). However, there exists a problem with such a straightforward
extension. The lower and upper approximation operators are not necessar-
ily dual operators. To resolve this problem, one may extend definition (ii) in
two ways. Either the lower or the upper approximation operator may be ex-
tended, and the other one is defined by duality. The results are two pairs of
dual approximation operators:

(II′) apr′
n
(X)=

⋃
{n(x) | x ∈ U, n(x) ⊆ X}

= {x ∈ U | ∃y[x ∈ n(y), n(y) ⊆ X]},

apr′n(X)=∼ apr′
n
(∼X)

=∼ {x ∈ U | ∃y[x ∈ n(y), n(y) ⊆∼X]},

=∼ {x ∈ U | ∃y[x ∈ n(y), n(y) ∩ X = ∅]},

= {x ∈ U | ∀y[x ∈ n(y) =⇒ n(y) ∩ X 6= ∅]},

(II′′) apr′′
n
(X)=∼ apr′′n(∼X)

=∼ {x ∈ U | ∃y[x ∈ n(y), n(y) ∩ ∼X 6= ∅]}

= {x ∈ U | ∀y[x ∈ n(y) =⇒ n(y) ∩ ∼X = ∅]}

= {x ∈ U | ∀y[x ∈ n(y) =⇒ n(y) ⊆ X]},

apr′′n(X)=
⋃
{n(x) | x ∈ U, n(x) ∩ X 6= ∅}

= {x ∈ U | ∃y[x ∈ n(y), n(y) ∩ X 6= ∅]}.
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They were suggested and studied, together with several pairs of dual approxi-
mation operators, by Pomykala [16,17] using the notion of coverings. Proper-
ties of these approximation operators are summarized below.

Theorem 4 Suppose n : U −→ 2U is an arbitrary neighborhood operator.
Approximation operators apr′

n
and apr′n satisfy (L0), (U0), (L8), (U8), (L10),

(U10), and the following weaker versions of (L2) and (U2):

(L2′) apr′
n
(X ∩ Y ) ⊆ apr′

n
(X) ∩ apr′

n
(Y ),

(U2′) apr′n(X ∪ Y ) ⊇ apr′n(X) ∪ apr′n(Y ).

Approximation operators apr′′
n

and apr′′n satisfy (L0)-(L2), (U0)-(U2), (L9),
(U9), and the following more restricted version of (L8) and (U8):

(L8′) apr′′
n
(apr′′

n
(X)) ⊆ apr′′

n
(X),

(U8′) apr′′n(X) ⊆ apr′′n(apr′′n(X)).

PROOF. All these properties can be easily checked by definitions (II′) and
(II′′). As examples, we prove that apr′

n
satisfies (L10), and apr′′

n
and apr′′n

satisfy (L9).

Assume x ∈ apr′
n
(X). By definition, there must exist a y ∈ U such that

x ∈ n(y) and n(y) ⊆ X. Moreover, for all z ∈ n(y) we have z ∈ apr′
n
(X),

which implies n(y) ⊆ apr′
n
(X). From x ∈ n(y), we immediately have x ∈

apr′
n
(apr′

n
(X)). Therefore, apr′

n
(X) ⊆ apr′

n
(apr′

n
(X)), namely, (L10) holds.

For a subset X ⊆ U , assume x ∈ X. By definition, we have apr′′n(X) =⋃
{n(z) | z ∈ U, n(z) ∩X 6= ∅}. From assumption x ∈ X, for any y if x ∈ n(y)

then x ∈ n(y) ∩ X 6= ∅. This implies n(y) ⊆ apr′′n(X). By definition, we have
x ∈ apr′′

n
(apr′′n(X)), namely (L9) holds.

Theorem 5 Suppose n : U −→ 2U is an inverse serial neighborhood operator.
Approximation operators apr′

n
and apr′n satisfy (L1) and (U1). Approximation

operators apr′′
n

and apr′′n satisfy (L8) and (U8).

PROOF. For an inverse serial neighborhood operator n, the family {n(x) |
x ∈ U} is a covering of the universe. It easily follows that apr′

n
satisfies (L1).

For a subset X ⊆ U , assume x ∈ X. Since n is an inverse serial neighborhood
operator, there must exist a y ∈ U such that x ∈ n(y). We have x ∈ X∩n(y) 6=
∅. By definition, x ∈ apr′′n(X). Thus, apr′′n satisfies (U8).
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Properties (L2′) and (U2′) imply (L3), (L4), (U3), (U4), and the following
weaker version of (L5) and (U5):

(L5′) apr′
n
(X) ⊆

⋂

x 6∈X

apr′
n
(∼{x}),

(U5′) apr′n(X) ⊇
⋃

x∈X

apr′n({x}).

Properties (L8) and (U8) imply (LU6), (L7), (U7), and (L8′) and (U8′). Prop-
erties (L2) and (U2) imply (L3)-(L5), (U3)-(U5), and (L2′) and (U2′). By
Theorems 4 and 5, the corresponding approximation operators satisfy such
implied properties.

For an arbitrary neighborhood operator, the family of neighborhoods {n(x) |
x ∈ U} may not be a covering of the universe. It is a covering of U if and only if
n is an inverse serial neighborhood operator. Our formulation is therefore more
general than the existing definitions using the notion of coverings. According
to Table 1, for an arbitrary binary relation R, none of the four families,

CRp
= {Rp(x) | x ∈ U},

CRs
= {Rs(x) | x ∈ U},

CRp∧s
= {Rp∧s(x) | x ∈ U},

CRp∨s
= {Rp∨s(x) | x ∈ U}, (20)

necessarily forms a covering of U . The families CRs
and CRp∨s

are coverings if
R is an inverse serial. If the relation R is serial, CRp

and CRp∨s
are coverings.

If R is reflexive, all four families are coverings. Theorem 5 provides additional
properties satisfied by approximation operators constructed from a covering.

With respect to a covering of the universe, Zakowski [25] used apr′
n

and apr′′n
as a pair of approximation operators. The same notion was also adopted by
Wybraniec-Skardowska [22]. Orlowska [9–11] used the pair of of approximation
operators apr′

Rp∨s

and apr′′Rp∨s
. A problem with such definitions is that they

may not produce dual operators [3,16].

4 CONNECTIONS OF APPROXIMATION OPERATORS

With respect to a neighborhood operator n, we have defined three pairs of
dual approximation operators by using (I), (II′), and (II′′). For comparison,
we restate them using a similar format as follows:
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Table 2
An example of approximation operators

X apr
n

aprn apr′
n

apr′n apr′′
n

apr′′n

∅ ∅ ∅ ∅ ∅ ∅ ∅

{a} ∅ {a} ∅ {a} ∅ {a, b}

{b} {c} {a, c} {b} {a, b} ∅ {a, b}

{c} {b} {b} {c} {c} {c} {c}

{a, b} {a, c} {a, c} {a, b} {a, b} {a, b} {a, b}

{a, c} {b} {a, b} {c} {a, c} {c} U

{b, c} {b, c} U {b, c} U {c} U

U U U U U U U

(I) apr
n
(X)= {x ∈ U | n(x) ⊆ X},

aprn(X)= {x ∈ U | n(x) ∩ X 6= ∅};

(II′) apr′
n
(X)= {x ∈ U | ∃y[x ∈ n(y), n(y) ⊆ X]},

apr′n(X)= {x ∈ U | ∀y[x ∈ n(y) =⇒ n(y) ∩ X 6= ∅]};

(II′′) apr′′
n
(X)= {x ∈ U | ∀y[x ∈ n(y) =⇒ n(y) ⊆ X]},

apr′′n(X)= {x ∈ U | ∃y[x ∈ n(y), n(y) ∩ X 6= ∅]}.

Definition (I) only uses the neighborhood of x to decide if x belongs to the
lower or the upper approximation. In making the same decision, both defini-
tions (II′) and (II′′) use a family of neighborhoods {n(y) | y ∈ U, x ∈ n(y)}. In
some sense, they may be regarded as converse definitions. While definition (II′)
uses the existential quantifier for lower approximation and the universal quan-
tifier for upper approximation, definition (II′′) uses the opposite quantifiers.
These three definitions produce distinct but related approximation operators.

Example 6 Consider a universe U = {a, b, c}. Suppose a neighborhood oper-
ator n is given by:

n(a) = {a, b}, n(b) = {c}, n(c) = {b}.

It is a serial and an inverse serial neighborhood operator. Using definitions (I),
(II′), and (II′′), we have three pairs of approximation operators in Table 2.
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From the example, one may observe that three pairs of approximation opera-
tors are different, although they are defined based on the same neighborhood
operator. Operators apr′

n
and apr′n give tighter approximations than that of

apr′′
n

and apr′′n. For other operators, there is not such a relationship. If ad-
ditional properties are imposed on neighborhood operators, much stronger
relationships may be established.

Theorem 7 Suppose n : U −→ 2U is a neighborhood operator. If n is inverse
serial, the following relationships hold:

(R1) apr′′
n
(X) ⊆ apr′

n
(X) ⊆ X ⊆ apr′n(X) ⊆ apr′′n(X).

If n is a reflexive, we have:

(R2) apr′′
n
(X) ⊆ apr

n
(X) ⊆ apr′

n
(X) ⊆ X ⊆

apr′n(X) ⊆ aprn(X) ⊆ apr′′n(X).

PROOF. (R1): For an inverse serial neighborhood operator n, by Theorems 4
and 5 we know that the set X lies between its lower and upper approximations
as defined by (II′) and (II′′). We only need to show apr′′

n
(X) ⊆ apr′

n
(X).

The other relation apr′n(X) ⊆ apr′′n(X) can be obtained by duality. Assume
x ∈ apr′′

n
(X). Since n is inverse serial, there must exist a y ∈ U such that

x ∈ n(y). By assumption x ∈ apr′′
n
(X) and definition of apr′′

n
, we can conclude

that n(y) ⊆ X. It follows that x ∈ apr′
n
(X). Therefore, apr′′

n
(X) ⊆ apr′

n
(X).

(R2) can be similarly proved.

Theorem 8 [16, page 660, Corollary of Theorem 3] Two pairs of lower and
upper approximation operators defined by (II′) and (II′′) are equivalent if and
only if the family {n(x) 6= ∅ | x ∈ U} forms a partition of the universe.

Theorem 9 Two pairs of lower and upper approximation operators defined
by (I) and (II′) are equivalent if and only if the neighborhood operator n is
reflexive and transitive.

PROOF. (⇐=) By the reflexivity of n, we have apr
n
(X) ⊆ apr′

n
(X). Now

we need to prove the reverse. Assume x ∈ apr′
n
(X). There must exist a y ∈ U

such that x ∈ n(y) and n(y) ⊆ X. By the transitivity of n, we have n(x) ⊆
n(y) ⊆ X, which implies x ∈ apr

n
(X). Therefore, apr

n
(X) = apr′

n
(X).

(=⇒) Suppose apr
n
(X) = apr′

n
(X) and aprn(X) = apr′n(X) for all X ⊆

U . For any x ∈ U , by definition we have x ∈ apr′n({x}). By assumption,
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x ∈ aprn({x}). It follows x ∈ n(x), that is, n is reflexive. For three elements
x, y, z ∈ U , assume y ∈ n(x) and z ∈ n(y). By definition, y ∈ apr′

n
(n(x)).

Thus, y ∈ apr
n
(n(x)). This implies n(y) ⊆ n(x). Combining with z ∈ n(y),

we have z ∈ n(x). Therefore, n is transitive.

Theorem 10 Two pairs of lower and upper approximation operators defined
by (I) and (II′′) are equivalent if and only if the neighborhood operator n is
symmetric and transitive.

PROOF. (⇐=) Assume x ∈ apr′′
n
(X). Consider the family O(x) = {y ∈

U | x ∈ n(y)}. If O(x) = ∅, by the symmetry of n we can conclude n(x) = ∅,
hence x ∈ apr

n
(X). If O(x) 6= ∅, by definition of apr′′

n
we have x ∈ n(y) and

n(y) ⊆ X for all y ∈ O(x). By the transitivity of n, we have n(x) ⊆ n(y) ⊆ X.
Thus, x ∈ apr

n
(X). By summarizing the results for both cases, we obtain

apr′′
n
(X) ⊆ apr

n
(X). Assume x ∈ apr

n
(X). We have n(x) ⊆ X. Consider

any y ∈ U with x ∈ n(y). By the symmetry of n, it follows y ∈ n(x). By
the transitivity of n, we can conclude that n(y) ⊆ n(x) ⊆ X. According
to definition, x ∈ apr′′

n
(X). We thus proved apr

n
(X) ⊆ apr′′

n
(X). Therefore,

apr
n
(X) = apr′′

n
(X).

(=⇒) Suppose apr
n
(X) = apr′′

n
(X) and aprn(X) = apr′′n(X) for all X ⊆ U .

For a pair x, y ∈ U , assume x ∈ n(y). By Theorem 4, apr′′
n

and apr′′n satisfy
(L9). It follows that y ∈ apr′′

n
(apr′′n({y})). Thus, y ∈ apr

n
(aprn({y})). From

definition, we have n(y) ⊆ aprn({y}). By assumption, x ∈ n(y) ⊆ aprn({y}).
It implies y ∈ n(x), namely, n is symmetric. For three elements x, y, z ∈
U , assume y ∈ n(x), z ∈ n(y). By definition, x ∈ apr

n
(n(x)). Hence x ∈

apr′′
n
(n(x)). By definition, for all w, x ∈ n(w) implies n(w) ⊆ n(x). From

the symmetry of n and assumption y ∈ n(x), we have x ∈ n(y), and hence
n(y) ⊆ n(x). Combining this with z ∈ n(y), we obtain z ∈ n(x). Therefore, n

must be transitive.

Based on the results of the last three theorems, Figure 1 summarizes the
conditions under which two pairs of approximation operators are equivalent.
With the condition:

(P) {n(x) 6= ∅ | x ∈ U} is a partition,

we have:

[reflexivity, P] =⇒ symmetry,

[symmetry, transitivity, P] =⇒ reflexivity,

[reflexivity, symmetry, transitivity] =⇒ P. (21)
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Fig. 1. Relationships between approximation operators

It should be pointed out that none of reflexivity, symmetry, and transitivity
is necessary for (P). For example, consider a universe U = {a, b, c} with a
neighborhood operator n given by:

n(a) = {b}, n(b) = {c}, n(c) = {a}.

Obviously, n is not reflexive, nor symmetric and transitive. Nevertheless, the
family {{b}, {c}, {a}} is a partition of U . A set of necessary and sufficient
condition for (P) is:

(P1) n is inverse serial,

(P2) for all x, y ∈ U, either n(x) = n(y) or n(x) ∩ n(y) = ∅.

Condition (P1) is equivalent to saying that
⋃

x∈U n(x) = U . The following
Corollary follows from the last three theorems.

Corollary 11 Three pairs of lower and upper approximation operators defined
by (I), (II′), and (II′′) are equivalent if and only if n is reflexive, symmetric,
and transitive.

Neighborhood operators may be interpreted by using binary relations. Their
properties are determined by the properties of binary relations. The results
developed in this section may be alternatively stated using binary relations.
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5 CONCLUSION

We propose a binary relation based framework for the study of neighbor-
hood systems and rough set approximations. Within this framework, these
two notions may be formulated, interpreted, and compared. The class of 1-
neighborhood systems, in which each element has one neighborhood, are stud-
ied in detail. A binary relation is used to define and interpret such neighbor-
hood systems. In particular, 16 distinct neighborhood operators are obtained
from a binary relation. Properties of neighborhood operators are related to the
properties of binary relations. Three generalizations of Pawlak approximation
operators are suggested. Each of them captures different aspects in approxi-
mating a subset of the universe. One generalization is related to the notion
of modal operators in modal logic. For this generalization, only the neigh-
borhood of x is used to decide the memberships of x in the lower and upper
approximation of a subset X. For the other two generalizations, the family
of neighborhoods, {n(y) | x ∈ n(y)}, is used to decide the memberships of x.
Conditions on neighborhood operators are identified, under which some or all
of these approximation operators are equivalent.

The notions of neighborhood systems and approximation operators are useful
in modeling approximation. In this paper, we only analyzed 1-neighborhood
systems. A careful study of general neighborhood systems may produce a more
powerful and useful tool in approximations.
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