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Abstract

The rough set theory approximates a concept by three regions, namely, the positive,
boundary and negative regions. Rules constructed from the three regions are associ-
ated with different actions and decisions, which immediately leads to the notion of
three-way decision rules. A positive rule makes a decision of acceptance, a negative
rule makes a decision of rejection, and a boundary rule makes a decision of ab-
staining. This paper provides an analysis of three-way decision rules in the classical
rough set model and the decision-theoretic rough set model. The results enrich the
rough set theory by ideas from Bayesian decision theory and hypothesis testing in
statistics. The connections established between the levels of tolerance for errors and
costs of incorrect decisions make the rough set theory practical in applications.
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1 Introduction

When studying and applying any theory, it is important to pay due atten-
tions to both abstract theoretical formulations and concrete physical inter-
pretations. We must precisely articulate and define the theoretical concepts,
carefully examine their physical meanings in the context of a particular sit-
uation, and be fully aware the appropriateness and limitations of the theory
for solving a specific problem. This not only increases the likelihood of the
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success of an application of the theory but also avoids potential misuses of the
theory. For a healthy developement of any theory, it may be inevitable that
we periodically revisit, and revise if necessary, its existing formulations and
interpretations under the light of new evidence.

Since the introduction of rough sets more than a quarter century ago [14],
researchers have accumulated a vast literature on its theory and applica-
tions [17,18,24]. With the insights gained from existing studies, in this paper
we re-examine the roles of lower and upper approximations in the context of
rule induction. From a new semantic interpretation of the positive, boundary
and negative regions, we introduce and study the notion of three-way deci-
sions, consisting of positive, boundary and negative rules [39].

The notion of three-way decisions represents a close relationship between
rough set analysis, Bayesian decision analysis, and hypothesis testing in statis-
tics [3,4,27,31]. Slezak [20] points out a natural correspondence between the
fundamental notions of rough sets and statistics. The set to be approximated
corresponds to a hypothesis and an equivalence class to a piece of evidence;
the three regions correspond to the results of a three-way decision that the
hypothesis is verified positively, negatively, or undecidedly based on the ev-
idence. In terms of rules, a positive rule makes a decision of acceptance, a
negative rule makes a decision of rejection, and a boundary rule makes an
abstained or non-committed decision [39].

The new interpretation of a three-way decision is not so critical in the clas-
sical rough set model since both positive and negative rules do not involve
any uncertainty. It is essential in the probabilistic rough set models, where
acceptance and rejection decisions are made with certain levels of tolerance
for errors. Moreover, the Bayesian decision procedure can be used to develop a
decision-theoretic rough set model [34,36,37,40,41]. The required parameters
of probabilistic rough set approximations can be systematically determined
based on costs of various decisions. The incurred costs of decision rules can
be analyzed. Ideas from hypothesis testing in statistics may be used in inter-
preting the required parameters involved in three-way decision rules.

The three-way decision rules come closer to the philosophy of the rough set
theory, namely, representing a concept using three regions instead of two [15].
This three-way decision scheme has not been considered explicitly in other
theories of machine learning and rule induction, although it has been studied
in other fields. By considering three-way decision rules, one may appreciate
the true and unique contributions of rough set theory to machine learning and
rule induction. With the introduction of the notion of three-way decision, there
is a new avenue of research for rough set theory. The cost-based analysis of
three-way decisions brings the theory closer to real-world applications where
costs play an indispensable role [8,33].



Based on preliminary results in [39], we examine the formulations and inter-
pretations of three-way decision rules as follows. In Section 2, we briefly review
a few key studies that lead to three-way decision rules, which provides the mo-
tivations and justifications of the current study. Section 3 re-interprets rules
in classical rough set model for a single concept and introduces three-way de-
cision rules. Section 4 provides a detailed analysis of three-way decision rules
in the decision-theoretic rough set model. Section 5 applies three-way decision
rules for two-category classification and briefly touches upon many-category
classification.

2 Studies That Lead to Three-way Decision Rules

An important application of rough set theory is rule induction. Fundamental
notions, such as the lower and upper approximations of a concept, the positive,
boundary and negative regions of a concept, attribute reducts, attribute-value
reducts, indiscernibility relation and discernibility matrix, have been proposed
and studied for rule induction. With these notions, rule induction can be
conceptually modeled as searching for reducts [15,17]. The focus of this paper
is on the interpretation of rules, rather than rule induction. A survey of existing
studies shows that several interpretations of rules have been commonly used
in rough sets research. They have led to a wide range of applications on one
hand and to some confusion on the other.

A concept, or more precisely the extension of a concept, is represented by
a subset of a universe of objects and is approximated by a pair of defin-
able concepts of a logic language [35,38]. The lower approximation consists
of those objects that certainly belong to the concept, and upper approxima-
tion consists of those objects that only possibly belong to the concept [15].
Accordingly, Grzymala-Busse [5] suggested that two categories of rules can be
induced: certain rules from the lower approximation and possible rules from
the upper approximation. Lingras and Yao [9] referred to rules from the up-
per approximation as plausibilistic rules, based on a connection between lower
and upper approximations and belief and plausibility functions, respectively.
Since the lower approximation is a subset of the upper approximation, there
is an overlap between the two sets of rules. This may be considered to be an
undesirable feature with such an interpretation.

The lower and upper approximations divide the universe of objects into three
pair-wise disjoint regions: the lower approximation as the positive region, the
complement of the upper approximation as the negative region, and the dif-
ference between the upper and lower approximations as the boundary region.
For objects in both positive and negative regions, we can make deterministic
decisions about their memberships in the given decision class. We can only



make nondeterministic decisions for objects in the boundary region. Based on
this observation, Wong and Ziarko [30] proposed two types of rules: determin-
istic decision rules for positive region and undeterministic decision rules for
boundary region. Since the three regions are pair-wise disjoint, the derived
rule sets no longer have an overlap.

One may associate probabilistic measures, such as accuracy, confidence, and
coverage, to rules [25]. The accuracy and confidence of a deterministic rule
is 1, namely, totally certain, and that of an undeterminstic rule is between
0 and 1 exclusively, namely, uncertain. Thus, Pawlak [16] referred to them,
respectively, as certain decision rules and uncertain decision rules.

Although other classifications and interpretations of rules have been consid-
ered in rough set theory, they are basically variations of the above three.
Within the classical Pawlak rough set theory, these interpretations make per-
fect sense. They truthfully reflect the qualitative, statistical, or syntactical
nature of rules, certain versus possible [5], deterministic versus nondetermin-
istic [30], and certain versus uncertain [16]. In his book and earlier works,
Pawlak [15] focused mainly on the positive region and certain rules, as they
characterize the objects on which we can make consistent and correct deci-
sions.

When the classical rough set model is generalized into probabilistic rough set
models [19,20,28,32,36,37,40,43], we meet difficulties with these qualitative
interpretations of rules. An object in the probabilistic positive region does
not certainly belong to the decision class, but with a high probability (i.e., the
probability value is above certain threshold). Like a probabilistic rules from
the probabilistic boundary region, a rule from the probabilistic positive region
may be uncertain and nondeterministic. There remains a semantic difficulty
and confusion in interpreting the two categories of probabilistic rules from,
respectively, the probabilistic positive and boundary regions.

In earlier papers [36,39,42], we argued that a solution can be sought from the
semantics of rules, rather than their syntactical characteristics of being cer-
tain or uncertain. Rules are interpreted and classified based on their associated
actions and decisions. With respect to the positive, boundary, and negative re-
gions, we introduced the notions of positive rules, boundary rules and negative
rules. A positive rule makes a decision of acceptance, a negative rule makes a
decision of rejection, and a boundary rule makes an abstained decision that
needs further-investigation [33,42]. There are other possibilities for viewing an
abstained decision, depending on particular applications. As pointed by one
reviewer of this paper, it may happen that a cost-benefit analysis does not
justify a decision based on information provided by the boundary region. The
new interpretation given by three-way decisions resolves the above mentioned
semantic difficulty and offers a new view of rules in rough set theory. This pa-



per makes a further contribution along the same line by giving a more detailed
analysis of three-way decision rules.

The concept of three-way decisions plays an important role in many real world
decision-making problems. One usually makes a decision based on available
information and evidence. When the evidence is insufficient or weak, it might
be impossible to make either a positive or a negative decision. One therefore
chooses an alternative decision that is neither yes nor no. A few examples are
given as illustrations. In the editorial peer review process of many journals, an
editor typically makes a three-way decision about a manuscript, namely, ac-
ceptance, rejection, or further revision, based on comments from reviewers; the
final decision of the third category is subject to comments from reviewers in
another round of review [29]. The rationale of this sequential decision-making
process may be explained by a framework of a sequential test of a statistical
hypothesis proposed by Wald [27]. At any stage of the experiment, a three-way
decision is made, namely, to accept the hypothesis being tested, to reject the
hypothesis, and to continue the experiment by making an additional observa-
tion. The process is terminated when one of the first two decisions is made;
another trial is performed if the third decision is made; the process is continued
until eventually either the first or the second decision is made. This three-way
decision-making strategy is commonly used in medical decision making [10,13].
In the threshold approach to clinical decision making proposed by Pauker and
Kassirer [13], a pair of a “testing” threshold and a “test-treatment” threshold
is used, with testing threshold being less than the test-treatment threshold. If
the probability of disease is smaller than the testing threshold, there should
be no treatment and no further testing; if the probability of disease is greater
than the test-treatment threshold, treatment should be given without further
testing. If the probability is between the two thresholds, a test should be
performed so that a decision may be made depending on its results.

To a large extent, the decision-theoretic rough set model [40,41] is based on
the same underlying idea of the threshold approach [13]. The three regions of
rough set theory lead to three-way decisions; they correspond to the positive
verification and negative verification of a hypothesis, as well as undecidabil-
ity, based on given evidence [20,27]. This three-way decision perspective on
the theory of rough sets may have many real-world applications. For example,
based on the three regions of the rough set theory, Sl@zak et al. [21] consider
a three-way decision when choosing data packs for query optimization; they
classify data packs into the relevant, irrelevant, and suspect data packs. In an
information filtering model, Li et al. [8] classify documents into three classes
based on a three-way decision, namely, relevant documents, irrelevant docu-
ments, and possible relevant documents. The similar ideas can be applied to
solve other problems.



3 Rules for a Single Concept

This section provides a brief summary of rules for a single concept in the
classical rough set model, which motivates and sets up the stage of the current
study.

3.1 The classical rough set model

Consider a simple knowledge representation scheme in which a finite set of
objects is described by using a finite set of attributes. Formally, it can be
defined by an information table M expressed as the tuple [15]:

M = (U At,{V, | a € At} {I, | a € At}), (1)

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, V, is a nonempty set of values for an attribute a € At, and I, :
U — V, is an information or a description function. It is assumed that the
mapping I, is single-valued. In this case, the value of an object x € U on an
attribute a € At is denoted by I1,(z).

Given a subset of attributes A C At, we define an indiscernibility relation
ind(A) on U as follows:

z ind(A) y <= Va € A[l,(x) = L,(y)]. (2)

That is, two objects & and y are indiscernible with respect to A if and only if
they have exactly the same value on every attribute in A. The indiscernibility
relation ind(A) is an equivalence relation. The equivalence class containing
object  is denoted by [x]ing(a), or simply [z]4 and [z] if no confusion arises.
The pair apr = (U, ind(A)) is called an approximation space.

A concept, in the classical view, is defined by a pair of intension and exten-
sion [26]. The extension consists of the instances to which the concept applies;
the intension is a set of singly necessary and jointly sufficient conditions that
describe the instances of the concept. Concepts are assumed to have well-
defined boundaries and their extensions can be precisely defined by sets of
objects. In this paper, we sometimes use the terms concepts and sets (i.e.,
extensions of concepts) interchangeably.

The interpretation of a concept as a pair of intension and extension enables
us to study concept formation and learning in a logic setting in terms of
intensions and in a set-theoretic setting in terms of extensions [38]. Reasoning



about intensions is based on logic [22]. Concept learning aims at deriving the
intension of a concept based on a given extension and deriving relationships
between concepts based on the relations between their extensions.

In rough set theory, an approximation space apr = (U,ind(A)) serves as a
basic tool for inducing rules that describe a concept. The equivalence classes of
ind(A) are the most specific concepts that can be defined by using formulas in
a decision logic language in an information table [11,15,35]. More specifically,
the set [x] can be defined by the formula A,c4(a = I,(x)). The o-algebra,
o(U/ind(A)), consists of the empty set and unions of equivalence classes of
ind(A) and is the family of all definable sets. Suppose that the extension of
a concept is given by a subset C' C U. It may not necessarily represent a
definable concept. By using equivalence classes, we obtain a pair of definable
concepts as its lower and upper approximations [15]:

apr(C)={z [z € U, [z] C C};
apr(C) ={z |z € U, [«] N C # B} (3)

It follows that apr(C) C C' C apr(C). That is, the concept C' is approximated
from below and above by two definable concepts. When C' is a definable con-
cept, we have apr(C) = C = apr(C).

3.2 Three-way decision rules

The notion of three-way decision rules is introduced based on three disjoint
regions produced by the lower and upper approximations. The ideas are briefly
mentioned in [34] and further developed in [7,36,39,42].

Based on the approximations of C', one can divide the universe U into three
disjoint regions, the positive region POS(C), the boundary region BND(C),
and the negative region NEG(C):

POS(C) = apr(C),
BND(C) =apr(C) — apr(C),
NEG(C)=U — POS(C) UBND(C) = U — apr(C) = (@pr(C))°.  (4)

One can say with certainty that any element z € POS(C') belongs to C, and
that any element © € NEG(C') does not belong to C'. One cannot decide with
certainty whether or not an element x € BND(C') belongs to C'. With respect
to the positive and negative, we can derive positive, boundary, and negative
decision rules [7,34,36,39]:



Des([z]) —p Des(C), for [x] C POS(C);
Des([z]) —p Des(C), for [z] C BND(C);
Des([z]) —n Des(C), for [z] C NEG(C);

where Des([z]) denotes the logic formula defining the equivalence class [x] and
Des(C) is the name of the concept [15,19].

The formulation offers a new interpretation of rules that is more in line with
the philosophy of rough set theory. With insufficient information as provided
by a set of attributes A, the rough set theory promotes a methodology for
three-way decision making [39]. A positive rule is used for accepting, a neg-
ative rule for rejecting, and a boundary rule for abstaining. We accept an
object as being an instance of a concept C' based on a positive rule, reject
an object as being an instance of C based on a negative rule, and abstain
based on a boundary rule. It is the introduction of such a three-way decision
that makes rough set theory unique and different from other theories. In other
words, the rough set theory recognizes and models our inability to make a
definite acceptance or rejection decision with insufficient information. Accord-
ing to a boundary rule, we can neither accept nor reject an object. On the
other hand, when additional information is available, it is possible to narrow
down the boundary region and to change from abstained decision to a definite
decision [7].

In some sense, three-way decisions may be viewed as intermediate steps in a
sequential decision making. In general, one may consider a hierarchical way
of decision making. In the literature of rough sets, hierarchical classifiers have
been studied by many authors [1,12]. The integration of three-way decision-
making and hierarchical classifiers may produce fruitful results.

3.8  Limitations of the classical rough set model

Within the classical rough set model, existing studies on rules are unnecessarily
restricted. One can generalize the notion of rules to avoid such limitations.

Pawlak [15] focused mainly on the positive region and the associated positive
rules, as these rules produce certain and consistent classification. Based on
the fact that the negative region can be expressed as NEG(C) = (POS(C) U
BND(C))¢, the negative rules seem to be redundant. One can reject an object
if it does not satisfy a positive or boundary rule. For this reason, only positive
and boundary rules are considered in some studies [7,36,42]. In contrast, we
explicitly identify three types of rules to emphasize on their semantics and to
promote the rough-set philosophy of three-way decision making. Furthermore,
if one considers many concepts, instead of a single concept, negative rules will
not be redundant [42].



For a decision rule Des([z]) — Des(C), where A € {P, B, N}, we can asso-
ciate a probabilistic measure called the accuracy or confidence of the rule as
follows:

|[z] N C

¢(Des([]) —a Des(C)) = Pr(Cl[z]) = B

()

where || denotes the cardinality of a set, and Pr(C'|[z]) is the conditional prob-
ability of an object in C' given that the object is in [z], estimated by using the
cardinalities of sets. This method is only one of the possible ways, and perhaps
not a very practical way, to estimate probability. In Bayesian inference, one
typically transforms Pr(C|[z]) into Pr(C|[z]) = Pr([z]|C)Pr(C)/Pr([z]) by
the Bayes theorem and estimates more practically the probability Pr([z]|C') in-
stead [2,20]. In this paper we use the simple calculation mainly for the purpose
of illustration, so that we can concentrate on the basic ideas of tree-way de-
cisions without distracting ourselves from the issue of probability estimation.
In real applications, one needs to consider more practical ways to probability
estimation.

According to the confidence values, positive, boundary, and negative rules are
defined by the conditions ¢ = 1, 0 < ¢ < 1, and ¢ = 0, respectively. That is,
the decisions of acceptance and rejection are made by using the two extreme
values 0 and 1. Rules in classical rough set model are of qualitatively nature.
The acceptance and rejection decisions are made without any tolerance of
uncertainty.

The qualitative categorization may be too restrictive to be practically useful.
In order to resolve this problem, we may recall some results from hypothesis
testing in statistics, where the decision of rejecting a null hypothesis is made
when the value of the test statistics falls into the rejection region. That is,
the rejection of a null hypothesis is normally associated with a risk of erro-
neous rejection. When such an idea is applied to rough set theory, we need
to introduce confidence levels of acceptance, abstaining, and rejection in the
three-way decision making. More specifically, we can accept an object into the
positive region if there is a very low risk of erroneous acceptance; similarly, we
can reject an object if there is a very low risk of erroneous rejection; otherwise,
we make an abstained decision. This motivates the decision-theoretic rough
set model [34,36,37,40,41], which will be described in the next section.

We can adopt results from many studies on statical inference and decision
involving a three-way decision [3,4,31]. Woodward and Naylor[31] discussed
Bayesian methods in statistical process control. A pair of threshold values on
the posterior odds ratio is used to make a three-stage decision about a pro-
cess: accept without further inspection, adjust (reject) and continue inspecting,
or continue inspecting. Forster [3] considered the importance of model selec-



tion criteria with a three-way decision: accept, reject or suspend judgment.
Goudey [4] discussed three-way statistical inference that supports three pos-
sible actions for an environmental manager: act as if there is no problem, act
as if there is a problem, or act as if there is not yet sufficient information to
allow a decision.

With the new interpretation of rules as three-way decisions with tolerance
levels of errors, we can greatly enlarge the application domain of the rough
set theory.

4 Probabilistic Rules for a Single Concept

Probabilistic rough set models allow a tolerance of inaccuracy in lower and
upper approximations, or equivalently in the probabilistic positive, boundary;,
and negative regions. Based on the well established Bayesian decision pro-
cedure, the decision-theoretic rough set model provides systematic methods
for deriving the required thresholds on probabilities for defining the three
regions [7,34,36,37,40,41].

4.1 Decision-theoretic rough set model

The Bayesian decision procedure is widely used in many fields. In developing
the decision-theoretic rough set model, we adopt the formulation for classifi-
cation given in the book by Duda and Hart [2].

With respect to the membership of an object in C' and the three-way decision,
we have a set of 2 states and a set of 3 actions for each state. The set of
states is given by 2 = {C,C°} indicating that an element is in C' and not in
C, respectively. For simplicity, we use the same symbol to denote both the
set C' and the corresponding state. With respect to the three regions, the set
of actions with respect to a state is given by A = {P, B, N}, where P, B,
and N represent the three actions in classifying an object x, namely, deciding
x € POS(C), deciding x € BND(C), and deciding = € NEG(C'), respectively.
The loss function regarding the risk or cost of actions in different states is
given by the 3 X 2 matrix:

10



B | App ABN
N | Anp ANN

In the matrix, App, Agp and Ayp denote the losses incurred for taking actions
P, B and N, respectively, when an object belongs to C', and Apy, Agy and
Ann denote the losses incurred for taking the same actions when the object
does not belong to C.

We assume that the losses induced by different actions are given by experts in
a particular domain. For example, in medical decision making, the losses may
be interpreted based on the harms of treating patients who do not have the
disease and the benefits of treating patients with the disease [10,23]. Losses
may be estimated through techniques such as cost-effective analysis and cost-
benefit analysis. One may intuitively interpret losses as costs measured in
terms of the amount of money, although putting a monetary value is not
always easy in practice. The estimation of losses is much domain dependent
and needs careful investigation based on domain knowledge when applying the
decision-theoretic rough set model.

Given the loss matrix, the expected losses associated with taking different
actions for objects in [z] can be expressed as [34,40,41]:

R(P|[z]) = App Pr(C|[z]) + Apn Pr(C°|[x]
R(B|[z]) = App Pr(C|[z]) + Apy Pr(C¢|[z]),
R(N|[z]) = Anp Pr(C|[z]) + Ann Pr(C€|[z]). (6)

The Bayesian decision procedure suggests the following minimum-risk decision
rules [34,40,41]:

(P) It R(P[z])
(B) 1If R(B|[x])
(N) If R(N|[«])

R(N|[z]) and R(P <
R(P|[z]) and R(B|[z]) <
R(P|[x]) and R(N|[z]) <

—
8

=

-

R(B|[z]),decide z € POS(C);
R(N|[]), decide z € BND(C);
R(B|[z]),decide z € NEG(C).

IA IA A

Tie-breaking criteria should be added so that each object is put into only one
region. Since Pr(C|[z]) + Pr(C¢|[z]) = 1, we can simplify the rules based only
on the probabilities Pr(C|[z]) and the loss function A.

Consider a special kind of loss functions with:

11



(c0)  App < App < Anp,
ANy < Ay < Apw. (7)

That is, the loss of classifying an object x belonging to C' into the positive
region POS(C) is less than or equal to the loss of classifying x into the bound-
ary region BND(C'), and both of these losses are strictly less than the loss
of classifying x into the negative region NEG(C'). The reverse order of losses
is used for classifying an object not in C. Under condition (c0), the decision
rules can be re-expressed as:

(P) If Pr(C|[z]) > a and Pr(C|[z]) > =, decide z € POS(C);
(B) If Pr(C|[z]) < a and Pr(C|[z]) > B, decide x € BND(C');
(N) If Pr(C|[z]) < g and Pr(C|[z]) <, decide x € NEG(C);

where the parameters «, 3, and v are defined as:

o (Apv — Asy)
(Apy — Agy) + (Asp — App)’
B (AN — Anw)
(Aen — Ann) + (Anp — Agp)’
_ (ApN — Anw)
7= (Apv — Ann) + (Anp — App) (8)

In other words, from a loss function one can systematically determine the
required threshold parameters.

A closer examination of expressions of «, § and 7 suggests that they in fact
use the relative values of the loss function rather than the absolute values.
That is, as long as the differences of losses inside pairs of parentheses remain
the same, one would obtain the same values for «, # and =, independent of
the actual values of the loss function. Figure 1 illustrates these differences and
their relationships based on line segments. We use different symbols to denote
each line segment. For example, the symbol Ag_pyp denotes the difference
of losses for putting an element of C' into the boundary and positive regions
of C, respectively. It is indeed the increase of losses for moving an object
in C' from the positive region to boundary region. From the figure, we see
that A\ yv—p)p = A(B—p)P + A(v—B)p; the longer line segment is the sum of two
shorter line segments. That is, the increase of losses of moving an object in
C from the positive region to the negative region in one move is the same as
the sum of differences of losses of two moves, first moving the object from the
positive region to the boundary region and then moving it from the boundary
region to the negative region. Similar results can be observed from the losses
of classifying objects not in C.

12



A(N-P)P
A(B-P)P Al
App AP Anp i
A(P—N)N
AB-nN A(P-B)N
ANN ABN ey

Fig. 1. Line segments interpretation of a loss function

From the analysis, it is sufficient to consider only four basic differences, con-
sisting of A\(p—p)n, AB—P)P, A(B—N)N, and A(n_pyp. With the new notations,
we have:

A(P-B)N

o= ,
Ap—B)N + AB—P)P

A(B=-N)N

B ANB-NN + A\n-B)P
A(P=N)N

f}/ =
A(P=N)N + A(N=P)P

AB-N)N + Ap-B)N ()

B AB-NN + A p—B)N + AN—B)P + AB-P)P

By interpreting differences of losses in terms of line segments, one obtains an-
other intuitive interpretation of the required parameters. As will be discussed
later, it is much easier to state and interpret conditions on a loss function
based on line segments.

Consider now an additional condition on a loss function [36]:

(cl)  Ap-BNAW-B)P > ANB-N)NA(B—P)P- (10)

When Ag_n)nv # 0 and An_p)p # 0, we can equivalently re-express the
condition in terms of ratios:

Ap— AB—
(1) Me=Bw  Aw-pp (11)
AB-N)N  AWN-B)P

In the rest of this paper, we use such a ratio form with the understanding
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that all denominators are not zero; if a denominator is indeed zero, the ratio
form should read by its corresponding product form. The left hand side of >
in (cl) concerns the differences of losses for taking two different actions for
the same object not in C', and the right hand side considers similar differences
of losses for the same object in C'. Specifically, the left hand side is the ratio
of difference of losses of putting an element not in C' into the positive region
and boundary region of C' over the difference of losses of putting the element
in the boundary region and negative region of C'. From Figure 1, it is easier to
interpret this ratio in terms of line segments. In particular, if we fix the values
of Ayn and Apy, the ratio decreases with the increase of Agy, namely, the ratio
is monotonically decreasing with Agy. One can have a similar interpretation
of the right hand side for classifying an element in C. In this case, the ratio is
monotonically increasing with Agp.

Another interpretation of condition (c1) can be obtained by considering the
following equivalent condition:

AN— AB—
(c1) (N-B)P _ AB-P)P

12
AB=N)N  ANP—B)N (12)

The left hand side concerns a pair of the same actions, namely, putting an
object into the boundary and negative regions, but for two different objects
such that one is in C' and the other is not in C. On the other hand, the right
hand side considers a pair of the same actions of putting two different objects,
in C' and not in C, respectively, into the positive and boundary regions. From
Figure 1, one can easily interpret the two ratios involved.

Based on the ratios in the condition (c1’), we now re-express a and 3 as:

A —1
<1 + (B— P)P) :
A(P—B)N
)\ -1
B= <1 + (N‘B)P> . (13)

It follows that 1 > a > v > (8 > 0. The following simplified rules are obtained
after tie-breaking [36]:

(P1) If Pr(C|[z]) > «, decide x € POS(C);
(B1) If g < Pr(C|[z]) < «, decide = € BND(C);
(N1) If Pr(C|[z]) < B, decide x € NEG(C).

The parameter v is no longer needed.
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The («, 3)-probabilistic positive, negative and boundary regions are given by
rules (P1), (B1), and (N1), respectively, as:

POS(,5)(C) = {z € U | Pr(Cl[a]) > a,
BND(u,5)(C) = {z € U | 8 < Pr(C|[x]) < a},
NEG(a)(C) = {z € U | Pr(Clla]) < 5}. (14)

The («, 3)-probabilistic lower and upper approximations are defined by:

apr, ,(O)={z € U | Pr(C|la]) > a},
P70, (C) = {x € U | Pr(Cl[a]) > B}. (15)

A more detailed derivation of existing probabilistic models can be found in
other papers [36,37]. A game-theoretic risk analysis of the required parameters
in the decision-theoretic rough set models is given by Herhert and Yao [6].

In real applications of the probabilistic rough set models, one may directly
supply the parameters o and 3 based on an intuitive understanding the levels
of tolerance for errors [43]. This means that one indeed uses an intermediate
result of the decision-theoretic rough set model without an in-depth under-
standing of its theoretical foundations [36]. It should be pointed out that the
uses of ad hoc parameters a and (8 may largely due to an unawareness of the
well-established Bayesian decision procedure. As a final remark, one may find
it much easier to give loss functions that can be related to more intuitive terms
such as costs, benefits, and risks, than to give abstract threshold values. This
is particular true in situations where the costs can be translated into monetary
values.

In other papers [36,37], we have shown explicitly that many earlier proba-
bilistic rough set models can be obtained from the decision-theoretic rough
set model when additional conditions are imposed on the losses. Recently,
Slezak [20] examined two additional formulations of the three probabilistic
regions. In one formulation, the threshold values o and (3 are replaced by the
probability Pr([z]). By expressing the losses as functions of Pr([z]), one can
derive this formulation. In the other formulation, two probabilities, Pr([z]|C)
and Pr([z]|C*), are compared to define the probabilistic regions of C'. Instead
of using a pair of threshold values on the probability Pr(C|[z]), one uses a
pair of threshold values on the likelihood ratio, Pr([z]|C)/Pr([x]|C). Recall
that the odds Pr(C|[z])/Pr(C¢|[x]) is a monotonic increasing transformation
of the probability Pr(C|[z]). A threshold value on the probability can be in-
terpreted as another threshold value on the odds. For the positive region, we
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have:

Pr(Cll«])

P(Cl[z]) > a <= W

>, (16)

where o/ = /(1 — ). By Bayes theorem, we can re-express odds in terms of
likelihood ratio as follows:

Pr([z]|C)Pr(C)

Pr(Cllz]) _ —mmy  _ Pr([]lC) Pr(C) (17)
Pr(Cellel) - PEERE  Pr(llCe) Pr(Ce)
Therefore,

Pr(Cllz]) _
P(Clle]) 2 o= 5 i 2 o

Pr(lz]|C) Pr(C) _

= Pr((z|Ce) Pr(Ce) = ©
Pr(lz]|C) _ Pr(C) , _ o (18)

Pr([z]|C¢) — Pr(C)

where o’ = (Pr(C%a)/(Pr(C)(1 — «)). Similar expressions can be obtained
for the boundary and negative regions. By expressing losses as functions of
P(C) and P(C°), one can derive the formulation from the decision-theoretic
rough set model.

4.2 Probabilistic rules

According to the three probabilistic regions, one can make three-way decisions
based on the following positive, boundary and negative rules:

Des([z]) —p Des(C), for [z] C POS(4,5/(C);
Des([z]) —p Des(C), for [x] € BND,g(C);
Des([z]) —n Des(C), for [z] C NEG(4,3)(C).

Recall that the conditional probability ¢ = Pr(C|[z]) is the accuracy and
confidence of a rule. Unlike rules in the classical rough set theory, all three
types of rules may be uncertain. They represent the levels of tolerance in
making incorrect decisions. For positive rules, the error rate of accepting a non-
member of C' as a member of C'is defined by Pr(C¢|[z]) = 1—-Pr(C|[z]) = 1—c
and is below 1 — . For negative rules, the error rate of rejecting a member of
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C' as a non-member of C is given by Pr(C|[z]) = ¢ and is below 5. When the
conditional probability is too low (i.e., below threshold «) for acceptance and
at the same time too high (i.e., above the threshold /) for rejection, we choose
a boundary rule for an abstained decision, an indecision or a delayed decision.
The error rates for putting an object in C' and an object not in C' into the
boundary region are Pr(C|[z]) = ¢ and Pr(C¢|[z]) =1 — Pr(C|[z]) =1 —¢,
respectively.

The semantics of the three types of rules can be easily explained by their
associated different costs:

positive rule :  ¢*x App + (1 — ¢) * A\py,
boundary rule : ¢* Agp + (1 — ¢) * Ay,
negative rule : ¢ x Ayp + (1 — ¢) * Ay, (19)

where ¢ = Pr(C|[z]) for rule Des([z]) —a Des(C), A € {P, B, N}. Consider
the special case where we assume zero cost for a correct classification, namely,
App = Ayn = 0. The costs of rules can be simplified into:

positive rule : (1 — ¢) x Apy,
boundary rule : ¢ Agp + (1 — ¢) * Ay,
negative rule : ¢ * Ayp. (20)

In this case, they are only related to the misclassification error rates and
therefore much easier to understand. Assume further that we have a unit cost
for misclassification, namely, A\py = Anyp = 1, the costs of positive and negative
rules are reduced to the misclassification error rates:

positive rule : (1 — ¢),
boundary rule : ¢ Agp + (1 — ¢) * Agy,
negative rule : c. (21)

If we assume again that Agp = Ay, the cost of a boundary rule becomes
Agp = Agn. Studies that use only the classification error rates may therefore
be considered as a special case.

5 Rules for Two-Category Classification

Based on the discussion of the approximations of a single concept, one may
study the approximations of many concepts at the same time. Consider first
the simple case of a two-category classification problem, where C' denotes one
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class and the C¢ denotes the other class. In the classical rough set theory, we
have:

POS(C) = NEG(C®),
BND(C') = BND(C®),
NEG(C) = POS(C®). (22)

It follows that the positive, boundary, and negative rules of C' correspond, re-
spectively, to the negative, boundary, and positive rules of C, and vice versa.
Thus, it is sufficient to study only the approximations of C' without explicitly
considering the approximations of C°. Unfortunately, these equalities do not
necessarily hold for probabilistic approximations. For two-category classifica-
tion, we must consider the approximations of both classes in three separate
cases.

5.1 Probabilistic rules for classification

For a two-category classification problem C = {C,C*}, in general we can use
two loss functions, one for C' and the other for C'°. For easy analysis, we assume
that the same loss function is used for both C' and C¢. Then we have two sets
of probabilistic rules, the set for C,

(P*) Des([z]) —p Des(C), for [z] C POS(a5(C);
(B*) Des([z]) — 5 Des(C), for [z] € BND(,4(C);
(NT)  Des([z]) —n Des(C), for [z] C NEG(4,z(C).

and the set for C°,

P7) Des([z]) —p Des(C*), for [z] € POS(q,3(C°);
(B7) Des([z]) —p Des(C¢), for [x] € BND(4,4)(C);
(N7) Des([z]) —n Des(C), for [z] C NEG(q,3(C°).

The positive rules (P*) and (P~) are used to accept an object to be an instance
of C' and C*, respectively; the negative rules (P*) and (P~) are used to reject
an object to be an instance of C' and C°, respectively; the boundary rules
represent an abstained decision.

Unlike rules in the classical rough set theory, the acceptance (rejection) of an
object to be an instance of C' does not imply the rejection (acceptance) of the
object to be an instance of C°, and vice versa. For example, it is possible that
we may accept an object to be an instance of C' and at the same time do not
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(c). Model 3: a > fand a+ (3 > 1

Fig. 2. Three models of two-category classification

reject the object to be an instance of C°. Our three-way decisions for two-
category classification depend on the actual values of a and . Three models
are identified and examined next.

5.2 Model 1: > and a+ =1

The model with a+ (3 = 1 is illustrated by Figure 2(a) based on the probability
values Pr(C|[z]). If a loss function satisfies (c0) and (c1), we have o > (3. Thus,
£ < 0.5 and o > 0.5 hold in Model 1.

From the fact that « =1 — g and § =1 — «, it follows that

Pr(C|[z]) > a<= Pr(C|[z]) <1 -«
= Pr(C|[2]) < 5;
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Pr(Cllz]) < f<= Pr(C°[z]) >1-p
< Pr(C¢[z]) > «;
B < Pr(Cllz]) <a<=1—a< Pr(Cq[z]) <1-0
[ < Pr(CY[z]) < a. (23)

By the definition of the probabilistic positive, boundary and negative regions,
we have:

POS(4,5)(C) = NEG(q,)(C°),
BND 4,4 (C) =BND(q,5)/(C°),
NEG(a,5)(C) = POS 0,5 (C°). (24)

These relationships are shown in Figure 2(a). They may be viewed as a coun-
terpart of Equation (22) of the classical rough set model.

For the model with o+ 8 = 1, the following double implications hold between
the decisions of acceptance and rejection:

P* : accept an object for C' with confidence Pr(C|[x]) > «

<= N7 : reject an object for C° with confidence Pr(C¢|[z]) < f=1—«;
N* : reject an object for C' with confidence Pr(C|[z]) < 3
<= P~ : accept an object for C° with confidence Pr(C¢|[z]) > a =1 — ;

That is, for any object the acceptance of C' is equivalent to the rejection of C*
and the rejection of C' is equivalent to the acceptance of C¢, and vice versa.
Furthermore, the abstained decisions are the same for both C' and C*. Thus,
this model may be viewed as a symmetric model.

To derive Model 1, a loss function must satisfy (c0), (c1) and the condition:

ANP-B)N A(B-P)P
(c2) A< W A< Ly (25)
(N—B)P (B—N)N

The condition is again represented in terms of ratios of increases of losses,
and can be interpreted based on Figure 1. For a symmetric model, it is ex-
pected that the loss function is in some sense symmetric with respect to C
and C*. Consider a loss function satisfying the following additional symmetric
conditions:

>\PP = )\NN;
)\BP = >\BN;
)\Np = )\pN. (26)
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Under these conditions, both ratios in (¢2) become 1 and hence the loss func-
tion satisfies (c2). In other words, the symmetric conditions in Equation (26)
characterize a family of loss functions for deriving Model 1. Given condi-
tions (c0) and (cl), condition (c2) is both necessary and sufficient for deriving
Model 1, and conditions given by Equation (26) are sufficient but not neces-
sary.

The classical rough set model is defined by o = 1 and = 0, which satisfies the
condition a+ 3 = 1. Thus, it is a special case of Model 1. From equation (9),

it following that given (c0), the following conditions are both necessary and
sufficient for the classical rough set model [37]:

AP = App, ABN = ANN- (27)

A loss function satisfying the above condition satisfies condition (¢2) in its
product form.

5.8 Model 2: > 3 and a+ 3 < 1
Model 2 is defined by the condition a4 < 1 and is illustrated by Figure 2(b).
By the condition a > 3, 3 < 0.5 holds for Model 2.

To derive Model 2, a loss function must satisfy the condition:

Ap— ANB—
(P=B)N _ A(B-P)P

(c3) (28)

AN-B)P  AB-N)N

For Model 2, we no longer have the equivalence of accepting C' and rejecting
C°, nor the equivalence of rejecting C' and accepting C°. Instead, as shown by
Figure 2(b), we only have the following single implications:

N* : reject an object for C' with confidence Pr(C|[z]) < 3
= P~ : accept an object for C° with confidence Pr(C¢|[z]) >
N~ : reject an object for C° with confidence Pr(C¢|[z]) <
= P* : accept an object for C' with confidence Pr(C|[z]) > a.

That is, from rejection of one class we can conclude the acceptance of the
other class. However, as shown in Figure 2(b), the reverse of the implications
does not hold.
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5.4 Model 3: > 3 and a+ > 1

Model 3 may be viewed as a mirror model of Model 2. It is defined by the
condition o+ (8 > 1 and is illustrated by Figure 2(c). By the condition o > 3,
a > 0.5 holds for Model 3.

To derive Model 3, a loss function must satisfy the condition:

Ap— AB—
(c4) (P=B)N _ A(B-P)P

(29)

AN-B)P  AB-N)N

As shown by Figure 2(c), the following mirror implications of Model 2 hold in
Model 3:

P~ : accept an object for C° with confidence Pr(C¢|[z]) > «
= N7 : reject an object for C' with confidence Pr(C|[z]) < ;
P : accept an object for C with confidence Pr(C|[z]) > «

= N~ : reject an object for C° with confidence Pr(C¢|[x]) < f.

From acceptance of one class we can conclude the rejection of the other class.
The reverse of the implications does not hold.

5.5 Many-category classification

The notion of three-way decision rules can be extended from the two-category
classification into many-category classification. There are several ways to achieve
this goal. In this section, we only briefly comment on a few issues regarding
many-category classification.

Sl@zak [20] suggests an approach for defining the three probabilistic regions
based on pair-wise comparisons of categories. A matrix of threshold values
is used, with a pair of threshold values on the likelihood ratio of each pair
of categories. Although the approach is mathematically appealing and sound,
one may have difficulties in estimating all threshold values. One may simplify
the model by using the same pair of threshold values for all pairs of categories.

An alternative method is to change an m-category classification problem into
m two-category classification problems [42]. Consider an m-category classifi-
cation problem C = {C1,Cy,...,C,}, where C;’s form a family of pair-wise
disjoint subset of U, namely, C; N C; = 0 for i # j, and UC; = U. For each
C;, we can define a two-category classification by {C,C¢}, where C' = C;
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and C° = Cf = U;x;C;. The results from two-category classification can be
immediately applied.

In general, one may use different losses for different categories. The results are
a model with different threshold values for different categories, which is indeed
used by Sl@zak [20]. Mathematically, the formulation is not much complicated,
but the resulting model is more general and flexible. Again, there are practical
difficulties in estimating the required parameters. In building a model, one
needs to strike the right balance between the simplicity and flexibility, and
between mathematical generality and practical applicability, of a model. A
simple model is not always an inferior practical model.

Depending on the values of a and (3, an equivalence class may produce more
than one positive rule. For a > 0.5, each equivalence class produces at most
one positive rule. Similarly, an equivalence class may produce several boundary
rules and several negative rules. For 3 > 0.5, each equivalence class produces
at most one boundary rule. In general, one has to consider the problem of
rule conflict resolution in order to make effective acceptance, rejection, and
abstaining decisions.

For classification problems with more than two classes, one may not be inter-
ested in negative rules. The objects in the negative region of one class may
be in the positive and boundary regions of other classes. For this reason, only
positive and boundary rules were considered in some earlier studies [36,42].
In general, it is necessary to consider negative rules. The notion of three-way
decisions seems to be more accurate and appropriate for interpreting rules in
rough set theory.

It is necessary to have a further study on the probabilistic positive, boundary,
and negative regions of a classification, as well as the associated rules. In the
classical rough set model, these three regions form a partition of the universe.
This is not necessarily true in the probabilistic models [36,42]. One needs to
impose conditions on the losses in the decision-theoretic set model [40,41],
or on the threshold values on the Bayesian rough set model [20], in order to
derive pair-wise disjoint regions. Such a subtle difference needs to be carefully
examined.

6 Conclusion

By observing a difficulty in interpreting rules in probabilistic rough set mod-
els, we introduce the notion of three-way decision rules. Positive, negative, and
boundary rules are constructed from the corresponding regions. They represent
the results of a three-way decision of acceptance, rejection, or abstaining. Sim-
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ilar to the ideas of hypothesis testing in statistics, the decisions of acceptance
and rejection are made with certain levels of tolerance for errors. These levels
of tolerance are determined systematically based on the well-known Bayesian
decision procedure with respect to losses associated with various decisions.

The framework of three-way decision rules is applied to two-category classifi-
cation. Three models, one symmetric and two non-symmetric, are derived. In
the symmetric model, the acceptance of one class is equivalent to the rejection
of the other class, and vice versa. It is no longer true in the non-symmetric
models. The same ideas of three-way decision rules can be extended to many-
category classification.

With probabilistic approximations, we tolerate certain levels of erroneous de-
cisions. This offers a new view for rule induction, which is absent from the
classical rough set model. However, some existing studies straightforwardly
adopt, or slightly generalize, the notions from the classical rough model with-
out considering the new semantics offered by the probabilistic rough set mod-
els. For example, some studies use the sizes of probabilistic regions produced
by a subset of attributes and the entire set of attributes, respectively, in the
process of attribute reduction [43]. Such a practice is not entirely consistent
with the ideas of tolerance of erroneous decisions that motivate probabilistic
rough set models [42]. There does not exist a convincing argument to support
the claim that an attribute reduct should keep the same probabilistic positive
region, except the fact that the classical rough set model requires it. Suppose
that our tolerance level of errors is 10% and the probabilistic positive region
defined by the entire set of attributes produces 5% errors. It may be unnec-
essary to require that the probabilistic positive region defined by an attribute
reduct also produces 5% errors. Therefore, as future research, we need to re-
examine and re-interpret notions from the classical rough model in the new
probabilistic setting of three-way decisions.
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