
Interval Approaches for Uncertain Reasoning

Y.Y. Yao1 and S.K.M. Wong2

1 Department of Computer Science, Lakehead University
Thunder Bay, Ontario, Canada P7B 5E1

E-mail: yyao@flash.lakeheadu.ca

2 Department of Computer Science, University of Regina
Regina, Saskatchewan, Canada S4S 0A2

E-mail: wong@cs.uregina.ca

Abstract. This paper presents a framework for reasoning using inter-

vals. Two interpretations of intervals are examined, one treats intervals
as bounds of a truth evaluation function, and the other treats end points
of intervals as two truth evaluation functions. They lead to two different
reasoning approaches, one is based on interval computations, and the
other is based on interval structures. A number of interval based reason-
ing methods are reviewed and compared within the proposed framework.

1 Introduction

Traditionally, inference is performed using a single-valued truth evaluation func-
tion. A proposition takes a single element from a set of truth values as its truth
value. For example, in classical logic, a proposition is either true or false. In many-
valued logic systems such as fuzzy logic, a proposition takes a number between 0
and 1 as its truth value. In probabilistic logic, the truth value of a proposition is
also a number between 0 and 1, but is associated with a probabilistic interpreta-
tion. These approaches have many practical problems [11]. It may be unrealistic
to expect an expert to provide a precise and reliable truth evaluation function.
The maintenance of consistency using single-valued functions may be a difficult
task. To resolve some of these problems, various proposals have been suggested
using intervals as truth values [2,3,10–12,15,17–19]. These studies have resulted
in many interval based tools for uncertain reasoning, such as incidence calcu-
lus [3,20], interval structures [14], belief and plausibility functions [12], necessity
and possibility functions [4], and interval fuzzy reasoning [19].

There are at least two interpretations regarding the physical meanings of
interval-valued truth. Intervals may be interpreted as bounds of an unknown
single-valued truth evaluation function. Alternatively, the end points of intervals
can be interpreted as two truth evaluation functions, each is a single-valued
evaluation function. The main objective of this paper is to outline a framework
for interval based reasoning and to study some basic issues. With respect to
the two interpretations of interval-valued truth, we introduce the corresponding
reasoning methods, one is based on interval computations, and the other is based
on interval structures.



2 Interval based Reasoning

We consider three basic notions, propositional formulas, truth values, and eval-
uation functions, in a reasoning system. Given a particular situation, typically
we have a finite and non-empty set of primitive propositions Φ, which can be
regarded as a set of basic events [5]. The set L(Φ) of propositional formulas
generated by Φ is the closure of Φ under negation (¬) and conjunction (∧). For
convenience, we define two special formulas ⊤ and ⊥. Other connectives such
as the disjunction (∨), implication (→), and equivalence (↔) can be defined in
terms of negation and conjunction. Let V denote a set of truth values. A truth
evaluation function v : L(Φ) −→ V is a mapping from the set of propositional
formulas to the set of truth values. It provides interpretations of elements of L(Φ)
in terms of elements of V . For this reason, an evaluation function is also referred
to as a meaning function. Usually, certain operations are defined on the set of
truth values in order to interpret the logical connectives in L(Φ). An evaluation
function must also satisfy a set of axioms. The following examples are special
reasoning systems.

Example 1. Two-valued propositional logic. In the classical two-valued proposi-
tional logic, the set of truth values is the two-element Boolean algebra B2 =
{T, F}. An evaluation function v from L(Φ) to B2 should satisfy the axioms:

(c1) v(⊥) = F, v(⊤) = T,

(c2) v(¬φ) = ¬v(φ),

(c3) v(φ ∧ ψ) = v(φ) ∧ v(ψ),

(c4) v(φ ∨ ψ) = v(φ) ∨ v(ψ).

Note that the same set of symbols is used for both operations on L(Φ) and B2.
These axioms are not a minimal set.

Example 2. Min-max fuzzy logic. In the min-max fuzzy system ([0, 1], 1−(), min,
max) proposed by Zadeh [21], the set of truth values is the unit interval [0, 1]
with lattice operations min and max. In this system, an evaluation function fv
satisfies the axioms:

(f1) fv(⊥) = 0, fv(⊤) = 1,

(f2) fv(¬φ) = 1 − fv(φ),

(f3) fv(φ ∧ ψ) = min(fv(φ), fv(ψ)),

(f4) fv(φ ∨ ψ) = max(fv(φ), fv(ψ)).

In general, one may interpret fuzzy logic connectives using triangular norms
(t-norms) and conorms (t-conorms) [7].

Example 3. Probabilistic logic. In probabilistic logic, the set of truth values is
the unit interval [0, 1] with arithmetic operations, such as addition and multipli-
cation. An evaluation function P in this system must satisfy the axioms:

(p1) P (⊥) = 0, P (⊤) = 1,



(p2) P (¬φ) = 1 − P (φ),

(p3) P (φ ∧ ψ) = P (φ) + P (ψ) − P (φ ∨ ψ),

(p4) P (φ ∨ ψ) = P (φ) + P (ψ) − P (φ ∧ ψ).

Axiom (p3) is equivalent to (p4), and (p2) can be derived from other axioms.

Example 4. Incidence calculus – possible worlds semantics of logic. Let W de-

note a set of possible worlds. The power set 2W , equipped with set-theoretic
operations ∼, ∩, and ∪, is used as the set of truth values [3,17,20]. An evalua-
tion function i associates a proposition in L(Φ) with a subset of W , and must
satisfy the axioms:

(i1) i(⊥) = ∅, i(⊤) = W,

(i2) i(¬φ) = ∼ i(φ),

(i3) i(φ ∧ ψ) = i(φ) ∩ i(ψ),

(i4) i(φ ∨ ψ) = i(φ) ∪ i(ψ).

The set i(φ) may be interpreted as the subset of possible worlds in which φ is
true. The evaluation function i is referred to as an incidence mapping [3].

The above examples cover both numeric and non-numeric evaluation func-
tions. A common feature of these systems is that the set of truth values V is
equipped with an order relation. Suppose � is an order relation on V , for two
elements a, b ∈ V such that a � b, we define a closed interval:

[a, b] = {x | a � x � b}. (1)

That is, the interval [a, b] consists of all elements between two end points a and
b. Typically, the system (V,�) is a lattice. Let I(V ) denote the set of all closed
intervals on V . We assume that V has a universal maximum element, denoted
by 1, and a universal minimum element, denoted by 0. Clearly, [0, 1] belongs to
I(V ). With the notion of intervals, one may consider an evaluation from L(Φ)
to I(V ). This provides an interval extension of the proposed framework.

The introduction of the interval extension is motivated by practical needs.
In many situations, it may be difficult to specify precisely and consistently an
evaluation function from L(Φ) to V satisfying certain axioms. To resolve this
problem, one may use a pair of lower and upper bounds which define the range
of the actual evaluation function. In this case, intervals are interpreted as bounds
of an unknown evaluation function. Formally, we can introduce a pair of eval-
uations v∗, v

∗ : L(Φ) −→ V such that v∗(φ) � v(φ) � v∗(φ) for all φ ∈ L(Φ),
where v denotes the actual evaluation function. In general, the lower and upper
evaluations v∗ and v∗ belong to a class of evaluations that are different from
those of the class containing v, denoted by Cv. The evaluations v∗ and v∗ may
be interpreted as constraints that characterize the following subset of evaluations
in Cv:

IC(v∗, v
∗) = {u ∈ Cv | v∗(φ) � u(φ) � v∗(φ) for all φ ∈ L(Φ)}. (2)



In the absence of any information for a particular proposition, the trivial interval
[0, 1] may be used. One important feature of this interpretation is that we assume
the existence of an evaluation function. The notion of intervals represents our
ignorance regarding the actual evaluation function.

It may also happen that one cannot determine the exact class of evaluation
functions because of a lack of knowledge. That is, we may not assume the ex-
istence of a single-valued evaluation function. One may use a pair of evaluation
functions that produce interval evaluations. Each of the evaluation functions
may satisfy different axioms. For example, the lower evaluation is a belief func-
tion, while the upper evaluation is a plausibility function. Although intervals, in
this case, can be regarded as constraints representing available information and
knowledge, we may not explicitly express such constraints similar to equation (2).

The two interpretations of intervals can be related to different views of the
theory of belief functions [12]. A pair of belief and plausibility functions produces
an interval representation of uncertainty. There are at least two views for the
interpretation of belief and plausibility functions. One view treats them as a
pair of bounds that defines a family of probability functions [6], in a way similar
to equation (2). Smets [13] referred to this interpretation as type-1 probabilistic
reasoning, which is an upper and lower probability model. Our first interpretation
of intervals corresponds to this view. In the type-2 model referred to by Smets,
no probability function is postulated to exist. Belief and plausibility functions
are not considered as being bounds of a probability function, but as degrees of
belief. Our second interpretation of intervals conforms to this view.

A key notion in interval based inference is the interval-valued truth. The
inference process depends very much on the interpretation of such intervals. In
order to deal with operations and interpretations of interval-valued truth, we
present two methods in the subsequent sections, namely, interval computations
and interval structures.

3 Power Algebras and Interval Computations

This section examines the notion of power algebras [1] and two special power
algebras, one for numeric interval-valued truth and the other for non-numeric
interval-valued truth.

3.1 Power algebras

Let U be a set and ◦ a binary operation on U . One can define a binary operation
◦+ on subsets of U as follows [1,18]:

X ◦+ Y = {x ◦ y | x ∈ X, y ∈ Y }, (3)

for any X,Y ⊆ U . In general, one may lift any operation f on elements of U
to an operation f+ on subsets of U , called the power operation of f . Suppose



f : Un −→ U (n ≥ 1) is an n-ary operation on U . The power operation f+ :
(2U )n −→ 2U is defined by [1]:

f+(X0, . . . , Xn−1) = {f(x0, . . . , xn−1) | xi ∈ Xi for i = 0, . . . , n− 1}, (4)

for any X0, . . . , Xn−1 ⊆ U . This provides a universal-algebraic construction ap-
proach. For any algebra (U, f1, . . . , fk) with base set U and operations f1, . . . , fk,
its power algebra is given by (2U , f+

1 , . . . , f
+

k
).

The power operation f+ may carry some properties of f . For example, for
a binary operation f : U2 −→ U , if f is commutative and associative, f+ is
commutative and associative, respectively. If e is an identity for some operation
f , the set {e} is an identity for f+. If an unary operation f : U −→ U is an
involution, i.e., f(f(x)) = f(x), f+ is also an involution. On the other hand,
many properties of f are not carried over by f+. For instance, if a binary oper-
ation f is idempotent, i.e., f(x, x) = x, f+ may not be idempotent. If a binary
operation g is distributive over f , g+ may not be distributive over f+.

A special type of power algebra is called interval algebra, in which operations
on elements of U are lifted to intervals of U , instead of arbitrary subsets of U .
In doing so, the power operation f+ may carry additional properties of f . The
notion of interval algebras forms a basis of uncertain reasoning with intervals.
Two such interval algebras are examined in the following subsections.

3.2 Interval number algebra

An interval number [a, a] with a ≤ a is the set of real numbers defined by:

[a, a] = {x | a ≤ x ≤ a}. (5)

The set of all interval numbers is denoted by I(ℜ). Degenerate intervals of the
form [a, a] are equivalent to real numbers.

One can perform arithmetic operations on interval numbers by lifting arith-
metic operations on real numbers [8]. Let A and B be two interval numbers, and
let ∗ denote an arithmetic operation +, −, · or / on pairs of real numbers. An
arithmetic operation ∗ may be extended to pairs of interval numbers A,B:

A ∗B = {x ∗ y | x ∈ A, y ∈ B}. (6)

The result A ∗ B is again a closed and bounded interval unless 0 ∈ B and the
operation ∗ is division (in which case, A∗B is undefined). They can be computed
by using formulas: for A = [a, a] and B = [b, b],

A+B = [a+ b, a+ b],

A−B = [a− b, a− b],

A · B = [min(a b, a b, a b, a b),max(a b, a b, a b, a b)],

A / B = [a, a] · [1/b, 1/b], 0 6∈ [b, b]. (7)



In the special case where both A and B are positive intervals, the multiplication
can be simplified to:

A · B = [a b, a b], 0 ≤ a ≤ a, 0 ≤ b ≤ b. (8)

One may lift any operations on real numbers, such as min and max, to power
operations on intervals of real numbers [19]. Interval number algebra may serve
as a basis for interval reasoning with numeric truth values, such as interval fuzzy
reasoning [19], and interval probabilistic reasoning [11,16].

Example 5. Interval min-max fuzzy reasoning. Using the results from interval
number algebra, we obtain the following inference rules for interval fuzzy rea-
soning [19]:

(if2) [fv∗(¬φ), fv∗(¬φ)] = [1 − fv∗(φ), 1 − fv∗(φ)],

(if3) [fv∗(φ ∧ ψ), fv∗(φ ∧ ψ)] = [min(fv∗(φ), fv∗(ψ)),min(fv∗(φ), fv∗(ψ))],

(if4) [fv∗(φ ∨ ψ), fv∗(φ ∨ ψ)] = [max(fv∗(φ), fv∗(ψ)),max(fv∗(φ), fv∗(ψ))].

This is an interval extension of the system given in Example 2.

Example 6. Interval probabilistic reasoning. According to the laws of probability
and interval number algebra, we have the following rules for interval probabilistic
reasoning [16]:

(ip2) [P∗(¬φ), P ∗(¬φ)] = [1 − P ∗(φ), 1 − P∗(φ)],

(ip3) P∗(φ ∧ ψ) ≥ max(0, P∗(φ) + P∗(ψ) − P ∗(φ ∨ ψ)),

P ∗(φ ∧ ψ) ≤ min(P ∗(φ), P ∗(ψ), P ∗(φ) + P ∗(ψ) − P∗(φ ∨ ψ)),

(ip4) P∗(φ ∨ ψ) ≥ max(P∗(φ), P∗(ψ), P∗(φ) + P∗(ψ) − P ∗(φ ∧ ψ)),

P ∗(φ ∨ ψ) ≤ min(1, P ∗(φ) + P ∗(ψ) − P∗(φ ∨ ψ)).

It is an interval extension of the system given in Example 3. Inference rules (ip3)
and (ip4) cannot be expressed using equality as that of (if3) and (if4) in interval
fuzzy reasoning. This stems from the fact that probabilistic logic is not truth-
functional.

3.3 Interval set algebra

Given two sets A1, A2 ∈ 2U with A1 ⊆ A2, the subset of 2U ,

A = [A1, A2] = {X ∈ 2U | A1 ⊆ X ⊆ A2}, (9)

is called a closed interval set [15]. The set A1 is called the lower bound of the
interval set and A2 the upper bound. An interval set is a set of subsets bounded
by two elements of the Boolean algebra (2U ,∩,∪,∼). Let I(2U ) denote the set
of all closed interval sets.

Let ∩,∪ and − be set intersection, union and difference defined on 2U . We
define the following binary operations on interval sets by lifting set-theoretic



operations. For two interval sets A = [A1, A2] and B = [B1, B2], the interval set
intersection, union and difference are respectively defined as:

A⊓ B = {X ∩ Y | X ∈ A, Y ∈ B},

A⊔ B = {X ∪ Y | X ∈ A, Y ∈ B},

A \ B = {X − Y | X ∈ A, Y ∈ B}. (10)

The above defined operators are closed on I(2U ), namely, A⊓B, A⊔B and A \ B
are interval sets. In fact, these interval sets can be explicitly computed by:

A⊓ B = [A1 ∩B1, A2 ∩B2],

A⊔ B = [A1 ∪B1, A2 ∪B2],

A \ B = [A1 −B2, A2 − B1]. (11)

The interval set complement ¬[A1, A2] of [A1, A2] is defined by [U,U ] \[A1, A2].
This is equivalent to [U−A2, U−A1] = [∼A2,∼A1]. Obviously, we have ¬[∅, ∅] =
[U,U ] and ¬[U,U ] = [∅, ∅]. The system (I(2U ),⊓,⊔) is a completely distributive
lattice [9].

The set algebra (2U ,∩,∪,∼) is a special Boolean algebra. By using the same
argument, one can lift operations in a Boolean algebra or a lattice [19]. Such
interval algebras may be used for reasoning with interval extension of classical
logic [17], and interval incidence calculus [20].

Example 7. A three-valued propositional logic. For the two-element Boolean al-
gebra B2 = {T, F}, the set of all intervals is I(B2) = {[F, F ], [F, T ], [T, T ]}. It
may be regarded as the truth values of a three-valued logic [19]. In this case,
interval truth evaluation function v∗, v

∗ from L(Φ) to I(B2) should satisfy the
axioms:

(ic2) [v∗(¬φ), v∗(¬φ)] = [¬v∗(φ),¬v∗(φ)],

(ic3) [v∗(φ ∧ ψ), v∗(φ ∧ ψ)] = [v∗(φ) ∧ v∗(ψ), v∗(φ) ∧ v∗(ψ)],

(ic3) [v∗(φ ∨ ψ), v∗(φ ∨ ψ)] = [v∗(φ) ∨ v∗(ψ), v∗(φ) ∨ v∗(ψ)].

We therefore obtain a three-valued logic from the two-valued logic given in Ex-
ample 1.

Example 8. Interval incidence calculus. The incidence calculus given in Exam-
ple 4 can be extended to an interval version. In this case, the following axioms
are used [17]:

(ii2) [i∗(¬φ), i∗(¬φ)] = [∼ i∗(φ),∼ i∗(φ)],

(ii3) [i∗(φ ∧ ψ), i∗(φ ∧ ψ)] = [i∗(φ) ∩ i∗(ψ), i∗(φ) ∩ i∗(ψ)],

(ii4) [i∗(φ ∨ ψ), i∗(φ ∨ ψ)] = [i∗(φ) ∪ i∗(ψ), i∗(φ) ∪ i∗(ψ)].

Interval incidence calculus may be interpreted in term of the three-valued logic
in Example 7. The set i∗(φ) may be interpreted as the subset of possible worlds
in which the truth value of φ is [T, T ], while i∗(φ) is the subset of possible worlds
in which the truth value of φ is [T, T ] or [F, T ].



4 Interval Structures

The notion of interval structure was introduced by Wong, Wang and Yao [14]
as a non-numeric representation of uncertainty. It may be considered as another
interval extension of incidence calculus [3]. Let W denote a set called possible
worlds. An interval structure is a pair of mappings i, i : L(Φ) −→ 2W satisfying
the following axioms: for φ, ψ ∈ L(Φ),

(lp) i(φ) = ∼ i(¬φ), i(φ) = ∼ i(¬φ),

(l1) i(⊥) = ∅,

(l2) i(⊤) = W,

(l3) i(φ ∧ ψ) = i(φ) ∩ i(ψ),

(u1) i(⊥) = ∅,

(u2) i(⊤) = W,

(u3) i(φ ∨ ψ) = i(φ) ∪ i(ψ).

The set i(φ) may be interpreted as the subset of possible worlds in which φ is
known or can be proved to be true, and ∼ i(φ) the subset of possible worlds
in which φ is known or can be proved to be false. Interval structures may be
regarded as an interval extension of incidence mappings. When i = i, the interval
structure reduces to an incidence mapping.

For an interval structure (i, i), we have the property:

i(φ) ⊆ i(φ), (12)

for any φ ∈ L(Φ). They may be considered as the end points of the interval set:

[i(φ), i(φ)] = {X | i(φ) ⊆ X ⊆ i(φ)}. (13)

The interval set corresponding to (i(¬φ), i(¬φ)) is:

[∼ i(φ),∼ i(φ)] = ¬[i(φ), i(φ)]. (14)

Interval sets corresponding to (i(φ ∧ ψ), i(φ ∧ ψ)) and (i(φ ∨ ψ), i(φ ∨ ψ)) are:

[i(φ ∧ ψ), i(φ ∧ ψ)] = [i(φ) ∩ i(ψ), i(φ ∧ ψ)],

[i(φ ∨ ψ), i(φ ∨ ψ)] = [i(φ ∨ ψ), i(φ) ∪ i(ψ)]. (15)

In general, they cannot be obtained from the interval set operations. Therefore,
interval set algebra and interval structures offer two different approaches for
interval reasoning.

Consider a special class of interval structures satisfying the axioms [20]:

(l4) i(φ) ⊆ i(ψ) or i(ψ) ⊆ i(φ),

(u4) i(φ) ⊆ i(ψ) or i(ψ) ⊆ i(φ),



for any φ, ψ ∈ L(Φ). We call such a class consonant interval structures. Ax-
ioms (l4) and (u4) can be equivalently expressed as:

(l5) i(φ ∧ ψ) = i(φ) or i(φ ∧ ψ) = i(ψ),

(u5) i(φ ∨ ψ) = i(φ) or i(φ ∨ ψ) = i(ψ).

In general, an interval structure does not have such properties.
The concept of incidence mappings is related to probabilistic reasoning. Let

PW denote a probability function defined on 2W , and i an incidence mapping
from L(Φ) to 2W . The truth evaluation function defined by:

P (φ) = PW (i(φ)), (16)

is a probability function defined on L(Φ). For an interval structure (i, i), a pair
of truth evaluation functions defined by:

P (φ) = PW (i(φ)),

P (φ) = PW (i(φ)), (17)

is a pair of belief and plausibility functions [14]. Furthermore, if (i, i) is a con-
sonant interval structure, P and P are a pair of necessity and possibility func-
tions [20].

Reasoning with interval-valued truth obtained from interval structures should
follow the axioms of interval structures. It provides an approach different from
and complementary to inference based on interval computations.

5 Conclusion

Interval based reasoning is a practical solution to problems in inference with
incomplete, insufficient, or inconsistent information. Instead of using a single-
valued truth evaluation functions, one assigns each proposition with an interval-
valued truth. At least two views can be adopted for the interpretation of such
intervals. Intervals may be interpreted as bounds of an unknown single-valued
truth evaluation function. Alternatively, the end points of intervals can be in-
terpreted as defining two truth evaluation functions, each is a single-valued
evaluation function. With respect to such interpretations, we have presented
a framework of interval reasoning. Two classes of interval reasoning approaches
are introduced based on interval computations and interval structures. They are
different from and complementary to each other.
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